organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(2-Hydr­­oxy-5-chloro­benzyl­­idene)-4-nitro­benzohydrazide methanol solvate

aLiao Ning Benxi Third Pharmaceuticals Co Ltd, Benxi 117004, People's Republic of China, bNERC for the Pharmaceuties of Traditional Chinese Medicines, Benxi 117004, People's Republic of China, and cCollege of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
*Correspondence e-mail: diaoyiwen@126.com

(Received 27 March 2008; accepted 28 March 2008; online 2 April 2008)

The title compound, C14H10ClN3O4·CH4O, was synthesized from the reaction of 5-chloro­salicylaldehyde with 4-nitro­benzohydrazide in methanol. The Schiff base mol­ecule is nearly planar, with a dihedral angle of 9.1 (3)° between the two benzene rings. The methanol solvent mol­ecules are linked to the Schiff base mol­ecules by N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds, forming chains running parallel to the a axis.

Related literature

For related structures, see: Brückner et al. (2000[Brückner, C., Rettig, S. J. & Dolphin, D. (2000). Inorg. Chem. 39, 6100-6106.]); Diao (2007[Diao, Y.-P. (2007). Acta Cryst. E63, m1453-m1454.]); Diao, Huang et al. (2008[Diao, Y.-P., Huang, S.-S., Zhang, J.-K. & Kang, T.-G. (2008). Acta Cryst. E64, o470.]); Diao, Shu et al. (2007[Diao, Y.-P., Shu, X.-H., Zhang, B.-J., Zhen, Y.-H. & Kang, T.-G. (2007). Acta Cryst. E63, m1816.]); Diao, Zhen et al. (2008[Diao, Y.-P., Zhen, Y.-H., Han, X. & Deng, S. (2008). Acta Cryst. E64, o101.]); Harrop et al. (2003[Harrop, T. C., Olmstead, M. M. & Mascharak, P. K. (2003). Chem. Commun. pp. 410-411.]); Huang et al. (2007[Huang, S.-S., Zhou, Q. & Diao, Y.-P. (2007). Acta Cryst. E63, o4659.]); Li et al. (2007[Li, K., Huang, S.-S., Zhang, B.-J., Meng, D.-L. & Diao, Y.-P. (2007). Acta Cryst. E63, m2291.]); Ma et al. (2008[Ma, H.-B., Huang, S.-S. & Diao, Y.-P. (2008). Acta Cryst. E64, o210.]); Ren et al. (2002[Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410-419.]); Wang et al. (2008[Wang, Y.-Z., Wang, M.-D., Diao, Y.-P. & Cai, Q. (2008). Acta Cryst. E64, o668.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10ClN3O4·CH4O

  • Mr = 351.74

  • Monoclinic, P 21 /n

  • a = 6.628 (1) Å

  • b = 18.980 (3) Å

  • c = 12.521 (2) Å

  • β = 91.29 (3)°

  • V = 1574.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 298 (2) K

  • 0.20 × 0.18 × 0.17 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.947, Tmax = 0.955

  • 9258 measured reflections

  • 3259 independent reflections

  • 1776 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.147

  • S = 1.01

  • 3259 reflections

  • 223 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯N3 0.82 2.04 2.745 (3) 144
O4—H4⋯O5i 0.82 2.47 2.930 (3) 116
O5—H5⋯O3ii 0.82 1.88 2.692 (3) 171
N2—H2A⋯O5 0.899 (10) 2.016 (13) 2.888 (3) 163 (3)
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base compounds have been found to have potential pharmacological and antitumor properties (Brückner et al., 2000; Harrop et al., 2003; Ren et al., 2002). Recently, a few Schiff base compounds derived from the reaction of aldehydes with benzohydrazides have been reported (Diao 2007; Diao, Huang et al., 2008; Diao, Shu et al., 2007; Diao, Zhen et al., 2008; Huang et al., 2007; Li et al., 2007; Ma et al., 2008; Wang et al., 2008). As a further study of such compounds, we report here the crystal structure of the title compound.

The asymmetric unit of the title compound consists of a Schiff base molecule and a lattice methanol molecule. The Schiff base molecule is nearly planar with the dihedral angle between the two benzene rings of 9.1 (3)°. The dihedral angle between the C1-C6 benzene ring and the O1/N1/O2 nitryl plane is 6.4 (3) °. The torsion angles C9—C8—N3—N2 and C4—C7—N2—N3 are 179.8 (2)° and -173.6 (2)°, respectively. The methanol solvent molecules are linked to the Schiff base molecules by N—H···O, O—H···N and O—H···O hydrogen bonds (Table 1), forming chains running along the a axis (Fig. 2).

Related literature top

For related structures, see: Brückner et al. (2000); Diao (2007); Diao, Huang et al. (2008); Diao, Shu et al. (2007); Diao, Zhen et al. (2008); Harrop et al. (2003); Huang et al. (2007); Li et al. (2007); Ma et al. (2008); Ren et al. (2002); Wang et al. (2008).

Experimental top

5-Chlorosalicylaldehyde (0.1 mmol, 15.7 mg) and 4-nitrobenzohydrazide (0.1 mmol, 18.1 mg) were dissolved in a methanol solution (20 ml). The mixture was stirred at reflux for 1 h and cooled to room temperature. After keeping the solution in air for a week, yellow block-like crystals were formed.

Refinement top

Atom H2A was located from a difference Fourier map and refined isotropically, with the N–H distance restrained to 0.90 (1) Å. All other H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C–H = 0.93–0.96 Å, O–H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O and methyl C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of the compound viewed along the c axis. Intermolecular hydrogen bonds are shown as dashed lines. H atoms not involved in the interactions have been omitted.
N'-(2-Hydroxy-5-chlorobenzylidene)-4-nitrobenzohydrazide methanol solvate top
Crystal data top
C14H10ClN3O4·CH4OF(000) = 728
Mr = 351.74Dx = 1.484 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1014 reflections
a = 6.628 (1) Åθ = 2.5–24.3°
b = 18.980 (3) ŵ = 0.27 mm1
c = 12.521 (2) ÅT = 298 K
β = 91.29 (3)°Block, yellow
V = 1574.7 (4) Å30.20 × 0.18 × 0.17 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3259 independent reflections
Radiation source: fine-focus sealed tube1776 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ω scansθmax = 26.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 87
Tmin = 0.947, Tmax = 0.955k = 2223
9258 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0624P)2]
where P = (Fo2 + 2Fc2)/3
3259 reflections(Δ/σ)max = 0.001
223 parametersΔρmax = 0.23 e Å3
1 restraintΔρmin = 0.29 e Å3
Crystal data top
C14H10ClN3O4·CH4OV = 1574.7 (4) Å3
Mr = 351.74Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.628 (1) ŵ = 0.27 mm1
b = 18.980 (3) ÅT = 298 K
c = 12.521 (2) Å0.20 × 0.18 × 0.17 mm
β = 91.29 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3259 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1776 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.955Rint = 0.056
9258 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0551 restraint
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.23 e Å3
3259 reflectionsΔρmin = 0.29 e Å3
223 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.68929 (13)0.04557 (4)0.92197 (7)0.0738 (3)
N10.5353 (5)0.73926 (13)0.88443 (19)0.0595 (7)
N20.8868 (3)0.42344 (11)0.86323 (19)0.0495 (6)
N30.9879 (3)0.35976 (11)0.86989 (17)0.0478 (6)
O10.3541 (4)0.73510 (11)0.89719 (19)0.0807 (7)
O20.6246 (4)0.79469 (11)0.87488 (19)0.0824 (7)
O31.1727 (3)0.48808 (10)0.86669 (16)0.0623 (6)
O41.2997 (3)0.26460 (10)0.87161 (18)0.0659 (6)
H41.25200.30440.87350.099*
O50.4676 (3)0.40021 (11)0.80587 (18)0.0674 (6)
H50.37270.42320.82810.101*
C10.6514 (4)0.67373 (13)0.8806 (2)0.0470 (7)
C20.5546 (4)0.61164 (14)0.9009 (2)0.0548 (8)
H20.41870.61130.91770.066*
C30.6617 (4)0.54978 (14)0.8959 (2)0.0518 (8)
H30.59770.50740.91080.062*
C40.8634 (4)0.54947 (13)0.8691 (2)0.0426 (6)
C50.9558 (4)0.61350 (14)0.8499 (2)0.0521 (7)
H5A1.09150.61430.83270.063*
C60.8517 (5)0.67595 (14)0.8558 (2)0.0549 (8)
H60.91560.71870.84320.066*
C70.9882 (4)0.48478 (14)0.8649 (2)0.0443 (6)
C80.8723 (4)0.30647 (14)0.8789 (2)0.0488 (7)
H80.73380.31400.88060.059*
C90.9467 (4)0.23460 (13)0.8868 (2)0.0443 (7)
C101.1506 (4)0.21677 (14)0.8820 (2)0.0499 (7)
C111.2063 (5)0.14648 (15)0.8879 (3)0.0635 (9)
H111.34190.13440.88420.076*
C121.0660 (5)0.09492 (15)0.8992 (2)0.0607 (8)
H121.10580.04800.90250.073*
C130.8651 (4)0.11224 (14)0.9058 (2)0.0503 (7)
C140.8072 (4)0.18097 (14)0.8996 (2)0.0497 (7)
H140.67110.19220.90420.060*
C150.4413 (6)0.38939 (17)0.6953 (3)0.0850 (11)
H15A0.37670.42980.66360.127*
H15B0.35870.34850.68300.127*
H15C0.57040.38240.66370.127*
H2A0.7515 (16)0.4223 (17)0.856 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0638 (6)0.0528 (5)0.1047 (7)0.0066 (4)0.0002 (5)0.0189 (4)
N10.071 (2)0.0480 (16)0.0598 (16)0.0150 (14)0.0003 (14)0.0022 (12)
N20.0387 (13)0.0391 (12)0.0704 (16)0.0081 (12)0.0020 (12)0.0003 (11)
N30.0466 (15)0.0393 (13)0.0575 (15)0.0082 (11)0.0014 (11)0.0002 (11)
O10.0651 (17)0.0686 (15)0.1087 (19)0.0264 (13)0.0099 (14)0.0013 (12)
O20.099 (2)0.0440 (13)0.1044 (19)0.0093 (13)0.0000 (15)0.0054 (12)
O30.0380 (13)0.0549 (12)0.0939 (16)0.0046 (10)0.0008 (11)0.0051 (11)
O40.0451 (13)0.0489 (12)0.1037 (17)0.0004 (10)0.0008 (12)0.0042 (12)
O50.0445 (13)0.0623 (14)0.0952 (17)0.0103 (10)0.0024 (11)0.0156 (11)
C10.053 (2)0.0405 (15)0.0476 (16)0.0108 (13)0.0011 (14)0.0005 (12)
C20.0428 (17)0.0491 (17)0.073 (2)0.0058 (14)0.0056 (15)0.0036 (15)
C30.0441 (18)0.0399 (15)0.071 (2)0.0018 (13)0.0055 (15)0.0016 (13)
C40.0378 (16)0.0421 (15)0.0479 (16)0.0023 (12)0.0013 (12)0.0007 (12)
C50.0388 (17)0.0523 (17)0.0653 (19)0.0020 (14)0.0007 (14)0.0024 (14)
C60.055 (2)0.0425 (16)0.067 (2)0.0003 (14)0.0032 (16)0.0048 (14)
C70.0377 (17)0.0446 (15)0.0505 (17)0.0030 (13)0.0018 (13)0.0017 (13)
C80.0412 (17)0.0454 (16)0.0599 (18)0.0082 (13)0.0017 (14)0.0011 (13)
C90.0389 (16)0.0425 (15)0.0514 (17)0.0040 (12)0.0009 (13)0.0010 (12)
C100.0435 (18)0.0461 (16)0.0600 (18)0.0012 (14)0.0002 (14)0.0021 (14)
C110.0441 (18)0.0485 (17)0.098 (2)0.0127 (15)0.0008 (16)0.0038 (17)
C120.058 (2)0.0437 (17)0.080 (2)0.0052 (15)0.0042 (16)0.0064 (15)
C130.0495 (18)0.0420 (15)0.0594 (18)0.0005 (13)0.0024 (14)0.0065 (13)
C140.0379 (17)0.0496 (16)0.0616 (18)0.0062 (13)0.0014 (13)0.0011 (14)
C150.092 (3)0.076 (2)0.087 (3)0.000 (2)0.006 (2)0.003 (2)
Geometric parameters (Å, º) top
Cl1—C131.735 (3)C4—C51.384 (3)
N1—O21.215 (3)C4—C71.482 (4)
N1—O11.217 (3)C5—C61.374 (4)
N1—C11.464 (3)C5—H5A0.93
N2—C71.344 (3)C6—H60.93
N2—N31.384 (3)C8—C91.453 (3)
N2—H2A0.899 (10)C8—H80.93
N3—C81.275 (3)C9—C141.387 (4)
O3—C71.225 (3)C9—C101.396 (4)
O4—C101.350 (3)C10—C111.386 (4)
O4—H40.82C11—C121.360 (4)
O5—C151.407 (4)C11—H110.93
O5—H50.82C12—C131.375 (4)
C1—C21.368 (4)C12—H120.93
C1—C61.371 (4)C13—C141.362 (3)
C2—C31.374 (3)C14—H140.93
C2—H20.93C15—H15A0.96
C3—C41.386 (4)C15—H15B0.96
C3—H30.93C15—H15C0.96
O2—N1—O1123.6 (3)N2—C7—C4116.0 (2)
O2—N1—C1118.3 (3)N3—C8—C9123.2 (3)
O1—N1—C1118.0 (3)N3—C8—H8118.4
C7—N2—N3121.0 (2)C9—C8—H8118.4
C7—N2—H2A121 (2)C14—C9—C10118.4 (2)
N3—N2—H2A118 (2)C14—C9—C8118.1 (2)
C8—N3—N2114.0 (2)C10—C9—C8123.5 (3)
C10—O4—H4109.5O4—C10—C11117.2 (3)
C15—O5—H5109.5O4—C10—C9123.6 (2)
C2—C1—C6121.9 (3)C11—C10—C9119.2 (3)
C2—C1—N1118.5 (3)C12—C11—C10121.1 (3)
C6—C1—N1119.6 (3)C12—C11—H11119.4
C1—C2—C3118.9 (3)C10—C11—H11119.4
C1—C2—H2120.6C11—C12—C13120.0 (3)
C3—C2—H2120.6C11—C12—H12120.0
C2—C3—C4121.1 (3)C13—C12—H12120.0
C2—C3—H3119.4C14—C13—C12119.8 (3)
C4—C3—H3119.4C14—C13—Cl1121.1 (2)
C5—C4—C3118.1 (2)C12—C13—Cl1119.1 (2)
C5—C4—C7118.2 (2)C13—C14—C9121.5 (3)
C3—C4—C7123.7 (2)C13—C14—H14119.3
C6—C5—C4121.6 (3)C9—C14—H14119.3
C6—C5—H5A119.2O5—C15—H15A109.5
C4—C5—H5A119.2O5—C15—H15B109.5
C1—C6—C5118.4 (3)H15A—C15—H15B109.5
C1—C6—H6120.8O5—C15—H15C109.5
C5—C6—H6120.8H15A—C15—H15C109.5
O3—C7—N2122.9 (2)H15B—C15—H15C109.5
O3—C7—C4121.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···N30.822.042.745 (3)144
O4—H4···O5i0.822.472.930 (3)116
O5—H5···O3ii0.821.882.692 (3)171
N2—H2A···O50.90 (1)2.02 (1)2.888 (3)163 (3)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC14H10ClN3O4·CH4O
Mr351.74
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)6.628 (1), 18.980 (3), 12.521 (2)
β (°) 91.29 (3)
V3)1574.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.20 × 0.18 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.947, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
9258, 3259, 1776
Rint0.056
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.147, 1.01
No. of reflections3259
No. of parameters223
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.29

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···N30.822.042.745 (3)144
O4—H4···O5i0.822.472.930 (3)116
O5—H5···O3ii0.821.882.692 (3)171
N2—H2A···O50.899 (10)2.016 (13)2.888 (3)163 (3)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

Acknowledgements

This project was supported by a research grant from Dalian Medical University.

References

First citationBrückner, C., Rettig, S. J. & Dolphin, D. (2000). Inorg. Chem. 39, 6100–6106.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2000). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDiao, Y.-P. (2007). Acta Cryst. E63, m1453–m1454.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDiao, Y.-P., Huang, S.-S., Zhang, J.-K. & Kang, T.-G. (2008). Acta Cryst. E64, o470.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDiao, Y.-P., Shu, X.-H., Zhang, B.-J., Zhen, Y.-H. & Kang, T.-G. (2007). Acta Cryst. E63, m1816.  CSD CrossRef IUCr Journals Google Scholar
First citationDiao, Y.-P., Zhen, Y.-H., Han, X. & Deng, S. (2008). Acta Cryst. E64, o101.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarrop, T. C., Olmstead, M. M. & Mascharak, P. K. (2003). Chem. Commun. pp. 410–411.  Web of Science CSD CrossRef Google Scholar
First citationHuang, S.-S., Zhou, Q. & Diao, Y.-P. (2007). Acta Cryst. E63, o4659.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, K., Huang, S.-S., Zhang, B.-J., Meng, D.-L. & Diao, Y.-P. (2007). Acta Cryst. E63, m2291.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, H.-B., Huang, S.-S. & Diao, Y.-P. (2008). Acta Cryst. E64, o210.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRen, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410–419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y.-Z., Wang, M.-D., Diao, Y.-P. & Cai, Q. (2008). Acta Cryst. E64, o668.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds