metal-organic compounds
Bis{2-methoxy-6-[3-(methylamino)propyliminomethyl]phenolato}nickel(II) bis(perchlorate)
aZhoukou Vocational and Technical College, Zhoukou Henan 466600, People's Republic of China
*Correspondence e-mail: yinting_he@163.com
The 12H18N2O2)2](ClO4)2, consists of one-half of a centrosymmetric mononuclear Schiff base nickel(II) complex cation and one perchlorate anion. The NiII ion, lying on the inversion center, is coordinated by two N atoms and two O atoms from two Schiff base ligands, forming a square-planar geometry. The crystal packing is stabilized by N—H⋯O hydrogen bonds.
of the title compound, [Ni(CRelated literature
For related structures, see: Arıcı et al. (2005); Bian et al. (2004); Chen et al. (2008); Holm (1960); Ma, Gu et al. (2006); Ma, Lv et al. (2006); Ma, Wu et al. (2006); Ma et al. (2005); Skovsgaard et al. (2005); Zhao (2007); Zhu et al. (2004).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808009562/ci2578sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808009562/ci2578Isup2.hkl
N-Methylpropane-1,3-diamine (0.5 mmol, 44.0 mg) and 3-methoxysalicylaldehyde (0.5 mmol, 76.0 mg) were dissolved in methanol (30 ml). The mixture was stirred for 1 h to obtain a clear yellow solution. To the solution was added with stirring a methanol solution (20 ml) of nickel(II) perchlorate (0.5 mmol, 192.0 mg). After keeping the resulting solution in air for a few days, red block-shaped crystals were formed.
All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C-H = 0.93–0.97 Å, N-H = 0.90 Å, and with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(methyl C).
Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids. Unlabelled atoms are related to labelled atoms by the symmetry operation (1 - x, 1 - y, 1 - z). |
[Ni(C12H18N2O2)2](ClO4)2 | F(000) = 1464 |
Mr = 702.18 | Dx = 1.489 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 3048 reflections |
a = 13.557 (5) Å | θ = 2.3–25.3° |
b = 13.302 (5) Å | µ = 0.86 mm−1 |
c = 17.371 (7) Å | T = 298 K |
V = 3133 (2) Å3 | Block, red |
Z = 4 | 0.33 × 0.28 × 0.27 mm |
Bruker SMART CCD area-detector diffractometer | 3276 independent reflections |
Radiation source: fine-focus sealed tube | 2125 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
ω scans | θmax = 26.6°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −8→17 |
Tmin = 0.766, Tmax = 0.802 | k = −16→15 |
16728 measured reflections | l = −19→21 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.055 | H-atom parameters constrained |
wR(F2) = 0.188 | w = 1/[σ2(Fo2) + (0.0892P)2 + 4.466P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
3276 reflections | Δρmax = 0.97 e Å−3 |
199 parameters | Δρmin = −0.55 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0023 (6) |
[Ni(C12H18N2O2)2](ClO4)2 | V = 3133 (2) Å3 |
Mr = 702.18 | Z = 4 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 13.557 (5) Å | µ = 0.86 mm−1 |
b = 13.302 (5) Å | T = 298 K |
c = 17.371 (7) Å | 0.33 × 0.28 × 0.27 mm |
Bruker SMART CCD area-detector diffractometer | 3276 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2125 reflections with I > 2σ(I) |
Tmin = 0.766, Tmax = 0.802 | Rint = 0.042 |
16728 measured reflections |
R[F2 > 2σ(F2)] = 0.055 | 0 restraints |
wR(F2) = 0.188 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.97 e Å−3 |
3276 reflections | Δρmin = −0.55 e Å−3 |
199 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.5000 | 0.5000 | 0.5000 | 0.0412 (3) | |
Cl1 | 0.39978 (9) | 0.29292 (9) | 0.63654 (7) | 0.0623 (4) | |
O1 | 0.5954 (2) | 0.5558 (2) | 0.56985 (16) | 0.0550 (8) | |
O2 | 0.6861 (3) | 0.7085 (3) | 0.6382 (2) | 0.0792 (11) | |
O3 | 0.4646 (5) | 0.3472 (5) | 0.5938 (4) | 0.178 (3) | |
O4 | 0.4518 (5) | 0.2905 (5) | 0.7084 (4) | 0.169 (3) | |
O5 | 0.3852 (5) | 0.1987 (5) | 0.6207 (7) | 0.260 (6) | |
O6 | 0.3118 (3) | 0.3474 (4) | 0.6470 (3) | 0.1112 (15) | |
N1 | 0.6046 (3) | 0.4103 (3) | 0.45407 (18) | 0.0497 (8) | |
N2 | 0.4565 (3) | 0.4199 (3) | 0.2818 (2) | 0.0604 (10) | |
H2A | 0.4351 | 0.4211 | 0.3308 | 0.072* | |
H2B | 0.4363 | 0.3615 | 0.2608 | 0.072* | |
C1 | 0.7430 (4) | 0.5058 (3) | 0.5061 (2) | 0.0549 (11) | |
C2 | 0.6908 (3) | 0.5687 (3) | 0.5551 (2) | 0.0495 (10) | |
C3 | 0.7427 (4) | 0.6482 (4) | 0.5911 (2) | 0.0586 (11) | |
C4 | 0.8418 (4) | 0.6607 (4) | 0.5796 (3) | 0.0715 (14) | |
H4 | 0.8747 | 0.7132 | 0.6040 | 0.086* | |
C5 | 0.8935 (4) | 0.5960 (5) | 0.5320 (4) | 0.0797 (16) | |
H5 | 0.9611 | 0.6044 | 0.5251 | 0.096* | |
C6 | 0.8456 (4) | 0.5204 (4) | 0.4957 (3) | 0.0715 (15) | |
H6 | 0.8806 | 0.4774 | 0.4634 | 0.086* | |
C7 | 0.6969 (3) | 0.4249 (3) | 0.4641 (2) | 0.0563 (11) | |
H7 | 0.7391 | 0.3780 | 0.4418 | 0.068* | |
C8 | 0.5803 (4) | 0.3206 (3) | 0.4076 (3) | 0.0633 (12) | |
H8A | 0.5102 | 0.3074 | 0.4118 | 0.076* | |
H8B | 0.6150 | 0.2630 | 0.4286 | 0.076* | |
C9 | 0.6073 (4) | 0.3317 (4) | 0.3228 (3) | 0.0731 (15) | |
H9A | 0.6786 | 0.3348 | 0.3187 | 0.088* | |
H9B | 0.5858 | 0.2716 | 0.2959 | 0.088* | |
C10 | 0.5648 (4) | 0.4214 (4) | 0.2820 (3) | 0.0713 (14) | |
H10A | 0.5874 | 0.4823 | 0.3072 | 0.086* | |
H10B | 0.5886 | 0.4226 | 0.2294 | 0.086* | |
C11 | 0.4092 (6) | 0.5042 (4) | 0.2391 (4) | 0.099 (2) | |
H11A | 0.4323 | 0.5671 | 0.2594 | 0.149* | |
H11B | 0.3389 | 0.5002 | 0.2450 | 0.149* | |
H11C | 0.4260 | 0.4997 | 0.1856 | 0.149* | |
C12 | 0.7201 (6) | 0.8047 (4) | 0.6537 (4) | 0.113 (2) | |
H12A | 0.7755 | 0.8010 | 0.6880 | 0.169* | |
H12B | 0.6684 | 0.8433 | 0.6771 | 0.169* | |
H12C | 0.7400 | 0.8363 | 0.6065 | 0.169* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0409 (4) | 0.0501 (4) | 0.0326 (4) | −0.0002 (3) | 0.0013 (3) | −0.0056 (3) |
Cl1 | 0.0584 (7) | 0.0553 (6) | 0.0733 (8) | −0.0012 (5) | 0.0005 (6) | 0.0103 (5) |
O1 | 0.0486 (17) | 0.073 (2) | 0.0437 (15) | −0.0064 (14) | 0.0031 (13) | −0.0133 (14) |
O2 | 0.082 (3) | 0.078 (2) | 0.078 (2) | −0.0215 (19) | 0.0081 (19) | −0.0288 (19) |
O3 | 0.144 (5) | 0.192 (6) | 0.197 (6) | 0.044 (4) | 0.085 (5) | 0.123 (5) |
O4 | 0.184 (6) | 0.177 (6) | 0.146 (5) | 0.022 (5) | −0.090 (5) | 0.013 (4) |
O5 | 0.145 (6) | 0.115 (5) | 0.519 (17) | 0.000 (4) | −0.079 (7) | −0.150 (8) |
O6 | 0.081 (3) | 0.119 (4) | 0.133 (4) | 0.035 (3) | 0.008 (3) | 0.024 (3) |
N1 | 0.057 (2) | 0.0515 (19) | 0.0406 (18) | 0.0053 (16) | −0.0010 (15) | −0.0024 (14) |
N2 | 0.078 (3) | 0.061 (2) | 0.0424 (19) | −0.008 (2) | 0.0029 (18) | −0.0111 (17) |
C1 | 0.047 (2) | 0.069 (3) | 0.049 (2) | 0.009 (2) | −0.0043 (19) | 0.009 (2) |
C2 | 0.046 (2) | 0.063 (3) | 0.039 (2) | 0.0010 (19) | −0.0043 (17) | 0.0042 (18) |
C3 | 0.062 (3) | 0.067 (3) | 0.046 (2) | −0.009 (2) | −0.004 (2) | 0.000 (2) |
C4 | 0.059 (3) | 0.083 (4) | 0.072 (3) | −0.016 (3) | −0.012 (3) | 0.008 (3) |
C5 | 0.044 (3) | 0.100 (4) | 0.095 (4) | −0.006 (3) | −0.007 (3) | 0.010 (4) |
C6 | 0.047 (3) | 0.094 (4) | 0.073 (3) | 0.012 (3) | 0.002 (2) | 0.005 (3) |
C7 | 0.054 (3) | 0.066 (3) | 0.049 (2) | 0.015 (2) | 0.000 (2) | 0.001 (2) |
C8 | 0.073 (3) | 0.049 (2) | 0.069 (3) | 0.008 (2) | −0.004 (2) | −0.006 (2) |
C9 | 0.071 (3) | 0.083 (4) | 0.065 (3) | 0.005 (3) | 0.004 (2) | −0.034 (3) |
C10 | 0.082 (4) | 0.082 (4) | 0.049 (3) | −0.019 (3) | 0.016 (2) | −0.019 (2) |
C11 | 0.140 (6) | 0.083 (4) | 0.075 (4) | 0.011 (4) | −0.027 (4) | 0.002 (3) |
C12 | 0.159 (7) | 0.066 (4) | 0.114 (5) | −0.024 (4) | 0.037 (5) | 0.007 (4) |
Ni1—O1i | 1.922 (3) | C3—C4 | 1.369 (7) |
Ni1—O1 | 1.922 (3) | C4—C5 | 1.385 (8) |
Ni1—N1 | 2.018 (3) | C4—H4 | 0.93 |
Ni1—N1i | 2.018 (3) | C5—C6 | 1.353 (8) |
Cl1—O5 | 1.298 (6) | C5—H5 | 0.93 |
Cl1—O3 | 1.358 (5) | C6—H6 | 0.93 |
Cl1—O6 | 1.408 (4) | C7—H7 | 0.93 |
Cl1—O4 | 1.434 (5) | C8—C9 | 1.525 (7) |
O1—C2 | 1.329 (5) | C8—H8A | 0.97 |
O2—C3 | 1.378 (6) | C8—H8B | 0.97 |
O2—C12 | 1.386 (6) | C9—C10 | 1.502 (8) |
N1—C7 | 1.278 (5) | C9—H9A | 0.97 |
N1—C8 | 1.477 (5) | C9—H9B | 0.97 |
N2—C10 | 1.469 (7) | C10—H10A | 0.97 |
N2—C11 | 1.489 (6) | C10—H10B | 0.97 |
N2—H2A | 0.90 | C11—H11A | 0.96 |
N2—H2B | 0.90 | C11—H11B | 0.96 |
C1—C2 | 1.389 (6) | C11—H11C | 0.96 |
C1—C6 | 1.416 (7) | C12—H12A | 0.96 |
C1—C7 | 1.443 (6) | C12—H12B | 0.96 |
C2—C3 | 1.416 (6) | C12—H12C | 0.96 |
O1i—Ni1—O1 | 180 | C4—C5—H5 | 120.1 |
O1i—Ni1—N1 | 89.70 (13) | C5—C6—C1 | 120.9 (5) |
O1—Ni1—N1 | 90.30 (14) | C5—C6—H6 | 119.5 |
O1i—Ni1—N1i | 90.30 (14) | C1—C6—H6 | 119.5 |
O1—Ni1—N1i | 89.70 (13) | N1—C7—C1 | 127.3 (4) |
N1—Ni1—N1i | 180 | N1—C7—H7 | 116.3 |
O5—Cl1—O3 | 119.7 (6) | C1—C7—H7 | 116.3 |
O5—Cl1—O6 | 113.3 (4) | N1—C8—C9 | 113.3 (4) |
O3—Cl1—O6 | 110.2 (3) | N1—C8—H8A | 108.9 |
O5—Cl1—O4 | 103.7 (6) | C9—C8—H8A | 108.9 |
O3—Cl1—O4 | 99.8 (5) | N1—C8—H8B | 108.9 |
O6—Cl1—O4 | 108.4 (4) | C9—C8—H8B | 108.9 |
C2—O1—Ni1 | 125.7 (2) | H8A—C8—H8B | 107.7 |
C3—O2—C12 | 117.8 (4) | C10—C9—C8 | 116.1 (4) |
C7—N1—C8 | 114.5 (4) | C10—C9—H9A | 108.3 |
C7—N1—Ni1 | 123.0 (3) | C8—C9—H9A | 108.3 |
C8—N1—Ni1 | 122.5 (3) | C10—C9—H9B | 108.3 |
C10—N2—C11 | 114.9 (5) | C8—C9—H9B | 108.3 |
C10—N2—H2A | 108.5 | H9A—C9—H9B | 107.4 |
C11—N2—H2A | 108.5 | N2—C10—C9 | 111.9 (4) |
C10—N2—H2B | 108.5 | N2—C10—H10A | 109.2 |
C11—N2—H2B | 108.5 | C9—C10—H10A | 109.2 |
H2A—N2—H2B | 107.5 | N2—C10—H10B | 109.2 |
C2—C1—C6 | 119.8 (4) | C9—C10—H10B | 109.2 |
C2—C1—C7 | 122.6 (4) | H10A—C10—H10B | 107.9 |
C6—C1—C7 | 117.6 (4) | N2—C11—H11A | 109.5 |
O1—C2—C1 | 122.4 (4) | N2—C11—H11B | 109.5 |
O1—C2—C3 | 119.7 (4) | H11A—C11—H11B | 109.5 |
C1—C2—C3 | 117.9 (4) | N2—C11—H11C | 109.5 |
C4—C3—O2 | 124.2 (4) | H11A—C11—H11C | 109.5 |
C4—C3—C2 | 120.9 (5) | H11B—C11—H11C | 109.5 |
O2—C3—C2 | 114.8 (4) | O2—C12—H12A | 109.5 |
C3—C4—C5 | 120.6 (5) | O2—C12—H12B | 109.5 |
C3—C4—H4 | 119.7 | H12A—C12—H12B | 109.5 |
C5—C4—H4 | 119.7 | O2—C12—H12C | 109.5 |
C6—C5—C4 | 119.8 (5) | H12A—C12—H12C | 109.5 |
C6—C5—H5 | 120.1 | H12B—C12—H12C | 109.5 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O1i | 0.90 | 1.80 | 2.691 (4) | 170 |
N2—H2A···O2i | 0.90 | 2.44 | 2.929 (5) | 114 |
N2—H2B···O4ii | 0.90 | 2.23 | 3.075 (8) | 157 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C12H18N2O2)2](ClO4)2 |
Mr | 702.18 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 298 |
a, b, c (Å) | 13.557 (5), 13.302 (5), 17.371 (7) |
V (Å3) | 3133 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.86 |
Crystal size (mm) | 0.33 × 0.28 × 0.27 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.766, 0.802 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16728, 3276, 2125 |
Rint | 0.042 |
(sin θ/λ)max (Å−1) | 0.630 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.055, 0.188, 1.04 |
No. of reflections | 3276 |
No. of parameters | 199 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.97, −0.55 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Ni1—O1 | 1.922 (3) | Ni1—N1 | 2.018 (3) |
O1i—Ni1—O1 | 180 | O1—Ni1—N1i | 89.70 (13) |
O1—Ni1—N1 | 90.30 (14) | N1—Ni1—N1i | 180 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O1i | 0.90 | 1.80 | 2.691 (4) | 170 |
N2—H2A···O2i | 0.90 | 2.44 | 2.929 (5) | 114 |
N2—H2B···O4ii | 0.90 | 2.23 | 3.075 (8) | 157 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+1/2, z−1/2. |
Acknowledgements
The author acknowledges the Zhoukou Vocational and Technical College for a research grant.
References
Arıcı, C., Yüzer, D., Atakol, O., Fuess, H. & Svoboda, I. (2005). Acta Cryst. E61, m919–m921. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bian, H.-D., Yang, X.-E., Yu, Q., Liang, H. & Wang, H.-G. (2004). Acta Cryst. E60, m685–m686. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, Z., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170–2171. Web of Science CSD CrossRef PubMed CAS Google Scholar
Holm, R. H. (1960). J. Am. Chem. Soc. 82, 5632–5636. CrossRef CAS Web of Science Google Scholar
Ma, J.-Y., Gu, S.-H., Guo, J.-W., Lv, B.-L. & Yin, W.-P. (2006). Acta Cryst. E62, m1437–m1438. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ma, J.-Y., Lv, B.-L., Gu, S.-H., Guo, J.-W. & Yin, W.-P. (2006). Acta Cryst. E62, m1322–m1323. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ma, J.-Y., Wu, T.-X., She, X.-G. & Pan, X.-F. (2005). Acta Cryst. E61, m695–m696. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ma, J.-Y., Wu, T.-X., She, X.-G. & Pan, X.-F. (2006). Z. Kristallogr. New Cryst. Struct, 221, 53–54. CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Skovsgaard, S., Bond, A. D. & McKenzie, C. J. (2005). Acta Cryst. E61, m135–m137. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhao, X.-F. (2007). Acta Cryst. E63, m704–m705. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhu, B., Ruang, W. & Zhu, Z. (2004). Acta Cryst. E60, m634–m636. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Nickel(II) complexes with Schiff base ligands have been of great interest in coordination chemistry related to molecular structures and catalytical applications (Chen et al., 2008; Holm, 1960; Arıcı et al., 2005). Metal complexes derived from Schiff bases have been widely studied (Ma, Lv et al., 2006; Ma, Gu et al., 2006; Ma, Wu et al., 2006; Ma et al., 2005). However, the complexes derived from the Schiff base ligand 2-methoxy-6-[(3-methylaminopropylimino)methyl]phenol have never been reported. The author reports herein the title mononuclear nickel(II) complex.
The title compound consists of a centrosymmetric nickel(II) complex cation and two perchlorate anions (Fig. 1). The NiII ion, lying on the inversion center, is coordinated by two nitrogen atoms and two oxygen atoms from two Schiff base ligands, giving a square planar geometry. All the bond lengths and angles (Table 1) involving the NiII atom are within normal ranges, and comparable to values observed in other Schiff base nickel(II) complexes (Zhu et al., 2004; Zhao, 2007; Bian et al., 2004; Skovsgaard et al., 2005). The N1—C8—C9—C10 and C9—C10—N2—C11 torsion angles are 55.0 (3) and 2.7 (3)°, respectively. The crystal packing is stabilized by N—H···O hydrogen bonds (Table 2).