metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m646-m647

Bis{2-meth­­oxy-6-[3-(methyl­amino)propyl­imino­meth­yl]phenolato}nickel(II) bis­­(perchlorate)

aZhoukou Vocational and Technical College, Zhoukou Henan 466600, People's Republic of China
*Correspondence e-mail: yinting_he@163.com

(Received 7 April 2008; accepted 7 April 2008; online 10 April 2008)

The asymmetric unit of the title compound, [Ni(C12H18N2O2)2](ClO4)2, consists of one-half of a centrosymmetric mononuclear Schiff base nickel(II) complex cation and one perchlorate anion. The NiII ion, lying on the inversion center, is coordinated by two N atoms and two O atoms from two Schiff base ligands, forming a square-planar geometry. The crystal packing is stabilized by N—H⋯O hydrogen bonds.

Related literature

For related structures, see: Arıcı et al. (2005[Arıcı, C., Yüzer, D., Atakol, O., Fuess, H. & Svoboda, I. (2005). Acta Cryst. E61, m919-m921.]); Bian et al. (2004[Bian, H.-D., Yang, X.-E., Yu, Q., Liang, H. & Wang, H.-G. (2004). Acta Cryst. E60, m685-m686.]); Chen et al. (2008[Chen, Z., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170-2171.]); Holm (1960[Holm, R. H. (1960). J. Am. Chem. Soc. 82, 5632-5636.]); Ma, Gu et al. (2006[Ma, J.-Y., Gu, S.-H., Guo, J.-W., Lv, B.-L. & Yin, W.-P. (2006). Acta Cryst. E62, m1437-m1438.]); Ma, Lv et al. (2006[Ma, J.-Y., Lv, B.-L., Gu, S.-H., Guo, J.-W. & Yin, W.-P. (2006). Acta Cryst. E62, m1322-m1323.]); Ma, Wu et al. (2006[Ma, J.-Y., Wu, T.-X., She, X.-G. & Pan, X.-F. (2006). Z. Kristallogr. New Cryst. Struct, 221, 53-54.]); Ma et al. (2005[Ma, J.-Y., Wu, T.-X., She, X.-G. & Pan, X.-F. (2005). Acta Cryst. E61, m695-m696.]); Skovsgaard et al. (2005[Skovsgaard, S., Bond, A. D. & McKenzie, C. J. (2005). Acta Cryst. E61, m135-m137.]); Zhao (2007[Zhao, X.-F. (2007). Acta Cryst. E63, m704-m705.]); Zhu et al. (2004[Zhu, B., Ruang, W. & Zhu, Z. (2004). Acta Cryst. E60, m634-m636.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C12H18N2O2)2](ClO4)2

  • Mr = 702.18

  • Orthorhombic, P b c a

  • a = 13.557 (5) Å

  • b = 13.302 (5) Å

  • c = 17.371 (7) Å

  • V = 3133 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.85 mm−1

  • T = 298 (2) K

  • 0.33 × 0.28 × 0.27 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.766, Tmax = 0.802

  • 16728 measured reflections

  • 3276 independent reflections

  • 2125 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.188

  • S = 1.04

  • 3276 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.97 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—O1 1.922 (3)
Ni1—N1 2.018 (3)
O1i—Ni1—O1 180
O1—Ni1—N1 90.30 (14)
O1—Ni1—N1i 89.70 (13)
N1—Ni1—N1i 180
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.90 1.80 2.691 (4) 170
N2—H2A⋯O2i 0.90 2.44 2.929 (5) 114
N2—H2B⋯O4ii 0.90 2.23 3.075 (8) 157
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Nickel(II) complexes with Schiff base ligands have been of great interest in coordination chemistry related to molecular structures and catalytical applications (Chen et al., 2008; Holm, 1960; Arıcı et al., 2005). Metal complexes derived from Schiff bases have been widely studied (Ma, Lv et al., 2006; Ma, Gu et al., 2006; Ma, Wu et al., 2006; Ma et al., 2005). However, the complexes derived from the Schiff base ligand 2-methoxy-6-[(3-methylaminopropylimino)methyl]phenol have never been reported. The author reports herein the title mononuclear nickel(II) complex.

The title compound consists of a centrosymmetric nickel(II) complex cation and two perchlorate anions (Fig. 1). The NiII ion, lying on the inversion center, is coordinated by two nitrogen atoms and two oxygen atoms from two Schiff base ligands, giving a square planar geometry. All the bond lengths and angles (Table 1) involving the NiII atom are within normal ranges, and comparable to values observed in other Schiff base nickel(II) complexes (Zhu et al., 2004; Zhao, 2007; Bian et al., 2004; Skovsgaard et al., 2005). The N1—C8—C9—C10 and C9—C10—N2—C11 torsion angles are 55.0 (3) and 2.7 (3)°, respectively. The crystal packing is stabilized by N—H···O hydrogen bonds (Table 2).

Related literature top

For related structures, see: Arıcı et al. (2005); Bian et al. (2004); Chen et al. (2008); Holm (1960); Ma, Gu et al. (2006); Ma, Lv et al. (2006); Ma, Wu et al. (2006); Ma, Wu et al. (2005); Skovsgaard et al. (2005); Zhao (2007); Zhu et al. (2004).

Experimental top

N-Methylpropane-1,3-diamine (0.5 mmol, 44.0 mg) and 3-methoxysalicylaldehyde (0.5 mmol, 76.0 mg) were dissolved in methanol (30 ml). The mixture was stirred for 1 h to obtain a clear yellow solution. To the solution was added with stirring a methanol solution (20 ml) of nickel(II) perchlorate (0.5 mmol, 192.0 mg). After keeping the resulting solution in air for a few days, red block-shaped crystals were formed.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C-H = 0.93–0.97 Å, N-H = 0.90 Å, and with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids. Unlabelled atoms are related to labelled atoms by the symmetry operation (1 - x, 1 - y, 1 - z).
Bis{2-methoxy-6-[3-(methylamino)propyliminomethyl]phenolato}nickel(II) bis(perchlorate) top
Crystal data top
[Ni(C12H18N2O2)2](ClO4)2F(000) = 1464
Mr = 702.18Dx = 1.489 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3048 reflections
a = 13.557 (5) Åθ = 2.3–25.3°
b = 13.302 (5) ŵ = 0.86 mm1
c = 17.371 (7) ÅT = 298 K
V = 3133 (2) Å3Block, red
Z = 40.33 × 0.28 × 0.27 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3276 independent reflections
Radiation source: fine-focus sealed tube2125 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 26.6°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 817
Tmin = 0.766, Tmax = 0.802k = 1615
16728 measured reflectionsl = 1921
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.188 w = 1/[σ2(Fo2) + (0.0892P)2 + 4.466P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3276 reflectionsΔρmax = 0.97 e Å3
199 parametersΔρmin = 0.55 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0023 (6)
Crystal data top
[Ni(C12H18N2O2)2](ClO4)2V = 3133 (2) Å3
Mr = 702.18Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 13.557 (5) ŵ = 0.86 mm1
b = 13.302 (5) ÅT = 298 K
c = 17.371 (7) Å0.33 × 0.28 × 0.27 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3276 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2125 reflections with I > 2σ(I)
Tmin = 0.766, Tmax = 0.802Rint = 0.042
16728 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.188H-atom parameters constrained
S = 1.04Δρmax = 0.97 e Å3
3276 reflectionsΔρmin = 0.55 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.50000.50000.0412 (3)
Cl10.39978 (9)0.29292 (9)0.63654 (7)0.0623 (4)
O10.5954 (2)0.5558 (2)0.56985 (16)0.0550 (8)
O20.6861 (3)0.7085 (3)0.6382 (2)0.0792 (11)
O30.4646 (5)0.3472 (5)0.5938 (4)0.178 (3)
O40.4518 (5)0.2905 (5)0.7084 (4)0.169 (3)
O50.3852 (5)0.1987 (5)0.6207 (7)0.260 (6)
O60.3118 (3)0.3474 (4)0.6470 (3)0.1112 (15)
N10.6046 (3)0.4103 (3)0.45407 (18)0.0497 (8)
N20.4565 (3)0.4199 (3)0.2818 (2)0.0604 (10)
H2A0.43510.42110.33080.072*
H2B0.43630.36150.26080.072*
C10.7430 (4)0.5058 (3)0.5061 (2)0.0549 (11)
C20.6908 (3)0.5687 (3)0.5551 (2)0.0495 (10)
C30.7427 (4)0.6482 (4)0.5911 (2)0.0586 (11)
C40.8418 (4)0.6607 (4)0.5796 (3)0.0715 (14)
H40.87470.71320.60400.086*
C50.8935 (4)0.5960 (5)0.5320 (4)0.0797 (16)
H50.96110.60440.52510.096*
C60.8456 (4)0.5204 (4)0.4957 (3)0.0715 (15)
H60.88060.47740.46340.086*
C70.6969 (3)0.4249 (3)0.4641 (2)0.0563 (11)
H70.73910.37800.44180.068*
C80.5803 (4)0.3206 (3)0.4076 (3)0.0633 (12)
H8A0.51020.30740.41180.076*
H8B0.61500.26300.42860.076*
C90.6073 (4)0.3317 (4)0.3228 (3)0.0731 (15)
H9A0.67860.33480.31870.088*
H9B0.58580.27160.29590.088*
C100.5648 (4)0.4214 (4)0.2820 (3)0.0713 (14)
H10A0.58740.48230.30720.086*
H10B0.58860.42260.22940.086*
C110.4092 (6)0.5042 (4)0.2391 (4)0.099 (2)
H11A0.43230.56710.25940.149*
H11B0.33890.50020.24500.149*
H11C0.42600.49970.18560.149*
C120.7201 (6)0.8047 (4)0.6537 (4)0.113 (2)
H12A0.77550.80100.68800.169*
H12B0.66840.84330.67710.169*
H12C0.74000.83630.60650.169*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0409 (4)0.0501 (4)0.0326 (4)0.0002 (3)0.0013 (3)0.0056 (3)
Cl10.0584 (7)0.0553 (6)0.0733 (8)0.0012 (5)0.0005 (6)0.0103 (5)
O10.0486 (17)0.073 (2)0.0437 (15)0.0064 (14)0.0031 (13)0.0133 (14)
O20.082 (3)0.078 (2)0.078 (2)0.0215 (19)0.0081 (19)0.0288 (19)
O30.144 (5)0.192 (6)0.197 (6)0.044 (4)0.085 (5)0.123 (5)
O40.184 (6)0.177 (6)0.146 (5)0.022 (5)0.090 (5)0.013 (4)
O50.145 (6)0.115 (5)0.519 (17)0.000 (4)0.079 (7)0.150 (8)
O60.081 (3)0.119 (4)0.133 (4)0.035 (3)0.008 (3)0.024 (3)
N10.057 (2)0.0515 (19)0.0406 (18)0.0053 (16)0.0010 (15)0.0024 (14)
N20.078 (3)0.061 (2)0.0424 (19)0.008 (2)0.0029 (18)0.0111 (17)
C10.047 (2)0.069 (3)0.049 (2)0.009 (2)0.0043 (19)0.009 (2)
C20.046 (2)0.063 (3)0.039 (2)0.0010 (19)0.0043 (17)0.0042 (18)
C30.062 (3)0.067 (3)0.046 (2)0.009 (2)0.004 (2)0.000 (2)
C40.059 (3)0.083 (4)0.072 (3)0.016 (3)0.012 (3)0.008 (3)
C50.044 (3)0.100 (4)0.095 (4)0.006 (3)0.007 (3)0.010 (4)
C60.047 (3)0.094 (4)0.073 (3)0.012 (3)0.002 (2)0.005 (3)
C70.054 (3)0.066 (3)0.049 (2)0.015 (2)0.000 (2)0.001 (2)
C80.073 (3)0.049 (2)0.069 (3)0.008 (2)0.004 (2)0.006 (2)
C90.071 (3)0.083 (4)0.065 (3)0.005 (3)0.004 (2)0.034 (3)
C100.082 (4)0.082 (4)0.049 (3)0.019 (3)0.016 (2)0.019 (2)
C110.140 (6)0.083 (4)0.075 (4)0.011 (4)0.027 (4)0.002 (3)
C120.159 (7)0.066 (4)0.114 (5)0.024 (4)0.037 (5)0.007 (4)
Geometric parameters (Å, º) top
Ni1—O1i1.922 (3)C3—C41.369 (7)
Ni1—O11.922 (3)C4—C51.385 (8)
Ni1—N12.018 (3)C4—H40.93
Ni1—N1i2.018 (3)C5—C61.353 (8)
Cl1—O51.298 (6)C5—H50.93
Cl1—O31.358 (5)C6—H60.93
Cl1—O61.408 (4)C7—H70.93
Cl1—O41.434 (5)C8—C91.525 (7)
O1—C21.329 (5)C8—H8A0.97
O2—C31.378 (6)C8—H8B0.97
O2—C121.386 (6)C9—C101.502 (8)
N1—C71.278 (5)C9—H9A0.97
N1—C81.477 (5)C9—H9B0.97
N2—C101.469 (7)C10—H10A0.97
N2—C111.489 (6)C10—H10B0.97
N2—H2A0.90C11—H11A0.96
N2—H2B0.90C11—H11B0.96
C1—C21.389 (6)C11—H11C0.96
C1—C61.416 (7)C12—H12A0.96
C1—C71.443 (6)C12—H12B0.96
C2—C31.416 (6)C12—H12C0.96
O1i—Ni1—O1180C4—C5—H5120.1
O1i—Ni1—N189.70 (13)C5—C6—C1120.9 (5)
O1—Ni1—N190.30 (14)C5—C6—H6119.5
O1i—Ni1—N1i90.30 (14)C1—C6—H6119.5
O1—Ni1—N1i89.70 (13)N1—C7—C1127.3 (4)
N1—Ni1—N1i180N1—C7—H7116.3
O5—Cl1—O3119.7 (6)C1—C7—H7116.3
O5—Cl1—O6113.3 (4)N1—C8—C9113.3 (4)
O3—Cl1—O6110.2 (3)N1—C8—H8A108.9
O5—Cl1—O4103.7 (6)C9—C8—H8A108.9
O3—Cl1—O499.8 (5)N1—C8—H8B108.9
O6—Cl1—O4108.4 (4)C9—C8—H8B108.9
C2—O1—Ni1125.7 (2)H8A—C8—H8B107.7
C3—O2—C12117.8 (4)C10—C9—C8116.1 (4)
C7—N1—C8114.5 (4)C10—C9—H9A108.3
C7—N1—Ni1123.0 (3)C8—C9—H9A108.3
C8—N1—Ni1122.5 (3)C10—C9—H9B108.3
C10—N2—C11114.9 (5)C8—C9—H9B108.3
C10—N2—H2A108.5H9A—C9—H9B107.4
C11—N2—H2A108.5N2—C10—C9111.9 (4)
C10—N2—H2B108.5N2—C10—H10A109.2
C11—N2—H2B108.5C9—C10—H10A109.2
H2A—N2—H2B107.5N2—C10—H10B109.2
C2—C1—C6119.8 (4)C9—C10—H10B109.2
C2—C1—C7122.6 (4)H10A—C10—H10B107.9
C6—C1—C7117.6 (4)N2—C11—H11A109.5
O1—C2—C1122.4 (4)N2—C11—H11B109.5
O1—C2—C3119.7 (4)H11A—C11—H11B109.5
C1—C2—C3117.9 (4)N2—C11—H11C109.5
C4—C3—O2124.2 (4)H11A—C11—H11C109.5
C4—C3—C2120.9 (5)H11B—C11—H11C109.5
O2—C3—C2114.8 (4)O2—C12—H12A109.5
C3—C4—C5120.6 (5)O2—C12—H12B109.5
C3—C4—H4119.7H12A—C12—H12B109.5
C5—C4—H4119.7O2—C12—H12C109.5
C6—C5—C4119.8 (5)H12A—C12—H12C109.5
C6—C5—H5120.1H12B—C12—H12C109.5
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.901.802.691 (4)170
N2—H2A···O2i0.902.442.929 (5)114
N2—H2B···O4ii0.902.233.075 (8)157
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Ni(C12H18N2O2)2](ClO4)2
Mr702.18
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)13.557 (5), 13.302 (5), 17.371 (7)
V3)3133 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.86
Crystal size (mm)0.33 × 0.28 × 0.27
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.766, 0.802
No. of measured, independent and
observed [I > 2σ(I)] reflections
16728, 3276, 2125
Rint0.042
(sin θ/λ)max1)0.630
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.188, 1.04
No. of reflections3276
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.97, 0.55

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ni1—O11.922 (3)Ni1—N12.018 (3)
O1i—Ni1—O1180O1—Ni1—N1i89.70 (13)
O1—Ni1—N190.30 (14)N1—Ni1—N1i180
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.901.802.691 (4)170
N2—H2A···O2i0.902.442.929 (5)114
N2—H2B···O4ii0.902.233.075 (8)157
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z1/2.
 

Acknowledgements

The author acknowledges the Zhoukou Vocational and Technical College for a research grant.

References

First citationArıcı, C., Yüzer, D., Atakol, O., Fuess, H. & Svoboda, I. (2005). Acta Cryst. E61, m919–m921.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBian, H.-D., Yang, X.-E., Yu, Q., Liang, H. & Wang, H.-G. (2004). Acta Cryst. E60, m685–m686.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Z., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170–2171.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHolm, R. H. (1960). J. Am. Chem. Soc. 82, 5632–5636.  CrossRef CAS Web of Science Google Scholar
First citationMa, J.-Y., Gu, S.-H., Guo, J.-W., Lv, B.-L. & Yin, W.-P. (2006). Acta Cryst. E62, m1437–m1438.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, J.-Y., Lv, B.-L., Gu, S.-H., Guo, J.-W. & Yin, W.-P. (2006). Acta Cryst. E62, m1322–m1323.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, J.-Y., Wu, T.-X., She, X.-G. & Pan, X.-F. (2005). Acta Cryst. E61, m695–m696.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, J.-Y., Wu, T.-X., She, X.-G. & Pan, X.-F. (2006). Z. Kristallogr. New Cryst. Struct, 221, 53–54.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSkovsgaard, S., Bond, A. D. & McKenzie, C. J. (2005). Acta Cryst. E61, m135–m137.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, X.-F. (2007). Acta Cryst. E63, m704–m705.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, B., Ruang, W. & Zhu, Z. (2004). Acta Cryst. E60, m634–m636.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m646-m647
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds