organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(3-Chloro­prop­yl)-7,8-dimeth­­oxy-1H-3-benzazepin-2(3H)-one at 125 K

aZhejiang Police College Experience Center, Zhejiang Police College, Hangzhou 310053, People's Republic of China
*Correspondence e-mail: zpccxw@126.com

(Received 14 April 2008; accepted 21 April 2008; online 26 April 2008)

In the title compound, C15H18ClNO3, the seven-membered ring has a mirror plane passing through the methyl­ene C atom and bis­ecting the C=C bond. It adopts a bent conformation, inter­mediate between the boat and chair forms. Both meth­oxy groups are coplanar with the attached benzene ring [C—C—O—C = −0.5 (3) and 2.2 (3)°]. In the crystal structure, inversion-related mol­ecules are linked via C—H⋯O hydrogen bonds and ππ inter­actions involving the benzene ring [centroid–centroid distance = 3.6393 (12)Å].

Related literature

For the synthesis, see: Reiffen et al. (1990[Reiffen, M., Eberlein, W., Muller, P., Psiorz, M., Noll, K., Heider, J., Lillie, C., Kobinger, W. & Lugerl, P. (1990). J. Med. Chem. 33, 1496-1504.]). For general background, see: Franke et al. (1987[Franke, H., Su, C. A., Schumacher, K. & Seiberling, M. (1987). Eur. Heart J. 8, 91-98.]); Ishihara et al. (1994[Ishihara, Y., Tanaka, S. T., Miwatashi, B. S., Fujishimab, A. A. & Gotoa, G. (1994). J. Chem. Soc. Perkin Trans. 1, pp. 2293-2298.]). For a related structure, see: Cheng (2008[Cheng, X.-W. (2008). Acta Cryst. E64, o802.]). For asymmetry parameters, see: Duax et al. (1976[Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. Allinger, pp. 271-383. New York: John Wiley.]).

[Scheme 1]

Experimental

Crystal data
  • C15H18ClNO3

  • Mr = 295.75

  • Triclinic, [P \overline 1]

  • a = 9.3141 (17) Å

  • b = 9.5924 (17) Å

  • c = 9.6359 (17) Å

  • α = 103.667 (6)°

  • β = 114.701 (6)°

  • γ = 94.460 (6)°

  • V = 744.7 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 123 (2) K

  • 0.29 × 0.26 × 0.21 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.928, Tmax = 0.947

  • 7023 measured reflections

  • 2574 independent reflections

  • 2092 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.115

  • S = 1.01

  • 2574 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O3i 0.93 2.56 3.473 (2) 169
Symmetry code: (i) -x, -y+1, -z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzazepine derivatives have been of considerable medicinal interest, partly because the skeleton is a component of amaryllydaceae alkaloids such as galanthamine as well as of ribasine alkaloids represented by ribasine (Ishihara et al., 1994). Many benzazepine derivatives have been reported to possess interesting biological activities. The title compound is an important intermediate of ivabradine, which was listed in market in 2006 as the representative of a novel pharmacological class termed reducing heart rate without concomitant negative inotropic or hypotensive effects (Franke et al., 1987). Rencently, in our previous research, a crystal structure of another important intermediate of ivabradine, 7,8-Dimethoxy-3-(3-chloropropyl)- 2,3,4,5-tetrahydro-1H-3-benzazepin-2-one was reported (Cheng, 2008). Here the crystal structure of the title compound is reported.

In the title molecule (Fig.1), the seven-membered ring adopts a bent conformation, intermediate between the boat and chair forms. The seven-membered ring possesses a mirror symmetry about the plane passing through atom C10 and bisecting the C7—C8 bond. The asymmetry parameter (Duax et al., 1976), ΔCs(C10), is 2.9 (2)°. The dihedral angle between the C1-C7/C10/C14/C15/O1/O2 and C8-C11/N1/O3 planes is 59.17 (6)°. The chloropropyl substituent group is in a (-)-synclinal conformation, as evidenced by the torsion angle N1—C11—C12—C13 of -63.4 (3)°, similar to that in a related structure (-68.9 (2)°, Cheng, 2008). The methoxy groups are coplanar with the benzene ring [C14—C1—O1—C6 = -0.5 (3)° and C15—C2—O2—C3 = 2.2 (3)°].

An intermolecular C—H···O hydrogen bond is observed in the crystal structure. Also, a π-π interaction involving the benzene ring is observed [centroid to centroid distance = 3.6393 (12) Å].

Related literature top

For the synthesis, see: Reiffen et al. (1990). For general background, see: Franke et al. (1987); Ishihara et al. (1994). For a related structure, see: Cheng (2008). For asymmetry parameters, see: Duax et al. (1976).

Experimental top

The title compound was prepared according to the literature method (Reiffen et al., 1990). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at 295 K.

Refinement top

H atoms were positioned geometrically (C-H = 0.93-0.97 Å) and refined using a riding model, with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed approximately down the b axis. Dashed lines indicate intermolecular hydrogen bonds.
3-(3-Chloropropyl)-7,8-dimethoxy-1H-3-benzazepin-2(3H)-one top
Crystal data top
C15H18ClNO3Z = 2
Mr = 295.75F(000) = 312
Triclinic, P1Dx = 1.319 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3141 (17) ÅCell parameters from 2574 reflections
b = 9.5924 (17) Åθ = 2.2–25.0°
c = 9.6359 (17) ŵ = 0.26 mm1
α = 103.667 (6)°T = 123 K
β = 114.701 (6)°Block, yellow
γ = 94.460 (6)°0.29 × 0.26 × 0.21 mm
V = 744.7 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2574 independent reflections
Radiation source: fine-focus sealed tube2092 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1111
Tmin = 0.928, Tmax = 0.947k = 1110
7023 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0542P)2 + 0.2173P]
where P = (Fo2 + 2Fc2)/3
2574 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C15H18ClNO3γ = 94.460 (6)°
Mr = 295.75V = 744.7 (2) Å3
Triclinic, P1Z = 2
a = 9.3141 (17) ÅMo Kα radiation
b = 9.5924 (17) ŵ = 0.26 mm1
c = 9.6359 (17) ÅT = 123 K
α = 103.667 (6)°0.29 × 0.26 × 0.21 mm
β = 114.701 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2574 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2092 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 0.947Rint = 0.019
7023 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.02Δρmax = 0.21 e Å3
2574 reflectionsΔρmin = 0.34 e Å3
181 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.40282 (11)0.14655 (9)0.18804 (11)0.1048 (3)
O10.20936 (16)0.23306 (15)0.46481 (17)0.0598 (4)
O20.31187 (14)0.39739 (15)0.28346 (16)0.0535 (3)
O30.15852 (19)0.32805 (18)0.03080 (19)0.0722 (4)
N10.31547 (18)0.24927 (17)0.17583 (19)0.0513 (4)
C20.16173 (19)0.37032 (18)0.3119 (2)0.0422 (4)
C40.0877 (2)0.39343 (19)0.2909 (2)0.0445 (4)
C60.0472 (2)0.2518 (2)0.4511 (2)0.0476 (4)
H60.08580.19490.51960.057*
C10.1044 (2)0.28198 (19)0.4125 (2)0.0447 (4)
C100.1945 (2)0.4592 (2)0.2308 (3)0.0557 (5)
H10A0.29800.50930.32030.067*
H10B0.14520.53060.17970.067*
C30.0662 (2)0.42458 (19)0.2514 (2)0.0450 (4)
H30.10460.48230.18390.054*
C50.1450 (2)0.30533 (19)0.3888 (2)0.0455 (4)
C70.3048 (2)0.2705 (2)0.4297 (2)0.0536 (5)
H70.36130.26250.53210.064*
C90.2193 (2)0.3412 (2)0.1127 (3)0.0540 (5)
C80.3789 (2)0.2489 (2)0.3359 (2)0.0556 (5)
H80.48310.23180.38150.067*
C110.3610 (2)0.1450 (2)0.0693 (3)0.0623 (6)
H11A0.46570.12570.13240.075*
H11B0.37070.18940.00780.075*
C150.3741 (2)0.4838 (2)0.1797 (3)0.0607 (5)
H15A0.47940.49580.16840.091*
H15B0.38140.43610.07680.091*
H15C0.30370.57800.22340.091*
C140.1591 (3)0.1435 (3)0.5654 (4)0.0892 (8)
H14A0.24260.11690.59340.134*
H14B0.06300.19570.66070.134*
H14C0.13730.05660.51070.134*
C120.2402 (3)0.0012 (3)0.0196 (3)0.0729 (7)
H12A0.13580.02150.08190.088*
H12B0.27230.05810.09400.088*
C130.2220 (3)0.0865 (3)0.0846 (3)0.0822 (7)
H13A0.13510.17100.01880.099*
H13B0.19320.02700.16180.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1226 (6)0.1022 (6)0.1229 (7)0.0475 (5)0.0735 (5)0.0491 (5)
O10.0562 (8)0.0706 (9)0.0752 (10)0.0200 (7)0.0406 (7)0.0384 (8)
O20.0394 (7)0.0670 (8)0.0629 (8)0.0175 (6)0.0249 (6)0.0286 (7)
O30.0810 (10)0.0901 (11)0.0677 (10)0.0291 (9)0.0454 (9)0.0361 (9)
N10.0452 (8)0.0567 (9)0.0566 (10)0.0119 (7)0.0297 (8)0.0114 (7)
C20.0367 (9)0.0438 (9)0.0426 (10)0.0078 (7)0.0173 (8)0.0078 (8)
C40.0442 (9)0.0422 (9)0.0490 (10)0.0096 (7)0.0248 (8)0.0092 (8)
C60.0506 (10)0.0504 (10)0.0446 (10)0.0176 (8)0.0214 (8)0.0164 (8)
C10.0455 (9)0.0452 (10)0.0460 (10)0.0091 (8)0.0240 (8)0.0112 (8)
C100.0543 (11)0.0504 (11)0.0753 (14)0.0134 (9)0.0394 (10)0.0208 (10)
C30.0485 (10)0.0426 (9)0.0468 (10)0.0129 (8)0.0232 (8)0.0141 (8)
C50.0428 (9)0.0477 (10)0.0449 (10)0.0115 (8)0.0221 (8)0.0067 (8)
C70.0459 (10)0.0654 (12)0.0476 (11)0.0191 (9)0.0196 (9)0.0135 (9)
C90.0480 (10)0.0581 (12)0.0679 (14)0.0088 (9)0.0358 (10)0.0216 (10)
C80.0384 (9)0.0649 (12)0.0582 (12)0.0154 (9)0.0199 (9)0.0111 (9)
C110.0614 (12)0.0692 (13)0.0696 (14)0.0187 (10)0.0442 (11)0.0145 (11)
C150.0469 (11)0.0752 (14)0.0683 (13)0.0253 (10)0.0250 (10)0.0335 (11)
C140.0905 (18)0.111 (2)0.121 (2)0.0422 (15)0.0707 (17)0.0788 (19)
C120.0688 (14)0.0743 (15)0.0642 (14)0.0169 (11)0.0305 (12)0.0015 (12)
C130.0774 (16)0.0664 (14)0.0969 (19)0.0032 (12)0.0500 (15)0.0006 (13)
Geometric parameters (Å, º) top
Cl1—C131.783 (3)C3—H30.93
O1—C11.372 (2)C5—C71.460 (2)
O1—C141.405 (3)C7—C81.338 (3)
O2—C21.367 (2)C7—H70.93
O2—C151.416 (2)C8—H80.93
O3—C91.225 (2)C11—C121.515 (3)
N1—C91.368 (3)C11—H11A0.97
N1—C81.404 (3)C11—H11B0.97
N1—C111.476 (2)C15—H15A0.96
C2—C31.381 (2)C15—H15B0.96
C2—C11.403 (2)C15—H15C0.96
C4—C51.384 (3)C14—H14A0.96
C4—C31.398 (2)C14—H14B0.96
C4—C101.510 (3)C14—H14C0.96
C6—C11.375 (2)C12—C131.504 (4)
C6—C51.409 (3)C12—H12A0.97
C6—H60.93C12—H12B0.97
C10—C91.510 (3)C13—H13A0.97
C10—H10A0.97C13—H13B0.97
C10—H10B0.97
C1—O1—C14117.58 (15)N1—C9—C10115.85 (18)
C2—O2—C15116.59 (14)C7—C8—N1126.72 (17)
C9—N1—C8125.16 (16)C7—C8—H8116.6
C9—N1—C11117.85 (17)N1—C8—H8116.6
C8—N1—C11116.96 (16)N1—C11—C12112.93 (16)
O2—C2—C3124.88 (16)N1—C11—H11A109.0
O2—C2—C1115.42 (15)C12—C11—H11A109.0
C3—C2—C1119.69 (15)N1—C11—H11B109.0
C5—C4—C3120.30 (16)C12—C11—H11B109.0
C5—C4—C10119.48 (15)H11A—C11—H11B107.8
C3—C4—C10120.20 (16)O2—C15—H15A109.5
C1—C6—C5121.25 (17)O2—C15—H15B109.5
C1—C6—H6119.4H15A—C15—H15B109.5
C5—C6—H6119.4O2—C15—H15C109.5
O1—C1—C6125.56 (16)H15A—C15—H15C109.5
O1—C1—C2114.89 (15)H15B—C15—H15C109.5
C6—C1—C2119.54 (16)O1—C14—H14A109.5
C4—C10—C9110.38 (15)O1—C14—H14B109.5
C4—C10—H10A109.6H14A—C14—H14B109.5
C9—C10—H10A109.6O1—C14—H14C109.5
C4—C10—H10B109.6H14A—C14—H14C109.5
C9—C10—H10B109.6H14B—C14—H14C109.5
H10A—C10—H10B108.1C13—C12—C11115.1 (2)
C2—C3—C4120.54 (16)C13—C12—H12A108.5
C2—C3—H3119.7C11—C12—H12A108.5
C4—C3—H3119.7C13—C12—H12B108.5
C4—C5—C6118.65 (15)C11—C12—H12B108.5
C4—C5—C7120.94 (17)H12A—C12—H12B107.5
C6—C5—C7120.40 (17)C12—C13—Cl1111.93 (17)
C8—C7—C5127.12 (18)C12—C13—H13A109.2
C8—C7—H7116.4Cl1—C13—H13A109.2
C5—C7—H7116.4C12—C13—H13B109.2
O3—C9—N1121.47 (18)Cl1—C13—H13B109.2
O3—C9—C10122.68 (19)H13A—C13—H13B107.9
C15—O2—C2—C32.2 (3)C10—C4—C5—C72.4 (3)
C15—O2—C2—C1178.74 (16)C1—C6—C5—C41.9 (3)
C14—O1—C1—C60.5 (3)C1—C6—C5—C7179.24 (17)
C14—O1—C1—C2179.7 (2)C4—C5—C7—C835.3 (3)
C5—C6—C1—O1178.90 (16)C6—C5—C7—C8145.9 (2)
C5—C6—C1—C21.3 (3)C8—N1—C9—O3174.47 (18)
O2—C2—C1—O11.4 (2)C11—N1—C9—O37.6 (3)
C3—C2—C1—O1179.52 (15)C8—N1—C9—C105.9 (3)
O2—C2—C1—C6178.43 (15)C11—N1—C9—C10172.03 (16)
C3—C2—C1—C60.7 (3)C4—C10—C9—O3109.0 (2)
C5—C4—C10—C968.9 (2)C4—C10—C9—N171.4 (2)
C3—C4—C10—C9112.88 (19)C5—C7—C8—N12.8 (4)
O2—C2—C3—C4178.40 (16)C9—N1—C8—C737.8 (3)
C1—C2—C3—C40.6 (3)C11—N1—C8—C7144.2 (2)
C5—C4—C3—C21.2 (3)C9—N1—C11—C1288.5 (2)
C10—C4—C3—C2176.99 (16)C8—N1—C11—C1293.4 (2)
C3—C4—C5—C61.8 (3)N1—C11—C12—C1363.4 (3)
C10—C4—C5—C6176.41 (16)C11—C12—C13—Cl164.6 (2)
C3—C4—C5—C7179.33 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.932.563.473 (2)169
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H18ClNO3
Mr295.75
Crystal system, space groupTriclinic, P1
Temperature (K)123
a, b, c (Å)9.3141 (17), 9.5924 (17), 9.6359 (17)
α, β, γ (°)103.667 (6), 114.701 (6), 94.460 (6)
V3)744.7 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.29 × 0.26 × 0.21
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.928, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
7023, 2574, 2092
Rint0.019
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.115, 1.02
No. of reflections2574
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.34

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.932.563.473 (2)169
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The author acknowledges financial support from Zhejiang Police College, China.

References

First citationBruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, X.-W. (2008). Acta Cryst. E64, o802.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDuax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. Allinger, pp. 271–383. New York: John Wiley.  Google Scholar
First citationFranke, H., Su, C. A., Schumacher, K. & Seiberling, M. (1987). Eur. Heart J. 8, 91–98.  CrossRef PubMed Google Scholar
First citationIshihara, Y., Tanaka, S. T., Miwatashi, B. S., Fujishimab, A. A. & Gotoa, G. (1994). J. Chem. Soc. Perkin Trans. 1, pp. 2293–2298.  Google Scholar
First citationReiffen, M., Eberlein, W., Muller, P., Psiorz, M., Noll, K., Heider, J., Lillie, C., Kobinger, W. & Lugerl, P. (1990). J. Med. Chem. 33, 1496–1504.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds