organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Benzyl­sulfan­yl)pyridine N-oxide

aDepartment of Chemistry, Popes College, Sawyerpuram 628 251, Tamil Nadu, India, bDepartment of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India, cDepartment of Physics, Popes College, Sawyerpuram 628 251, Tamil Nadu, India, and dInstitut für Organische Chemie, Universität Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: b_ravidurai@yahoo.com

(Received 19 April 2008; accepted 22 April 2008; online 26 April 2008)

In the title compound, C12H11NOS, the dihedral angle between the oxopyridinium and phenyl rings is 58.40 (1)°. The crystal structure is stabilized by C—H⋯O hydrogen bonds, ππ stacking inter­actions involving the pyridinium rings [centroid–centroid distance = 3.6891 (9) Å] and C—H⋯π inter­actions.

Related literature

For bond-length data, see: Allen et al.(1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For biological activities of N-oxide derivatives, see: Bovin et al. (1992[Bovin, D. H. R., Crepon, E. & Zard, S. Z. (1992). Bull. Soc. Chim. Fr. 129, 145-150.]); Katsuyuki et al. (1991[Katsuyuki, N., Carter, B. J., Xu, J. & Hetch, S. M. (1991). J. Am. Chem. Soc. 113, 5099-5100.]); Leonard et al. (1955[Leonard, F., Barklay, F. A., Brown, E. V., Anderson, F. E. & Green, D. M. (1955). Antibiot. Chemother. pp. 261-264.]); Lobana & Bhatia (1989[Lobana, T. S. & Bhatia, P. K. (1989). J. Sci. Ind. Res. 48, 394-401.]); Symons & West (1985[Symons, M. C. R. & West, D.-X. (1985). J. Chem. Soc. Dalton Trans. pp. 379-381.]). For related literature, see: Jebas et al. (2005[Jebas, S. R., Balasubramanian, T., Ravidurai, B. & Kumaresan, S. (2005). Acta Cryst. E61, o2677-o2678.]); Ravindran et al. (2008[Ravindran Durai Nayagam, B., Jebas, S. R., Grace, S. & Schollmeyer, D. (2008). Acta Cryst. E64, o409.]).

[Scheme 1]

Experimental

Crystal data
  • C12H11NOS

  • Mr = 217.28

  • Monoclinic, P 21 /c

  • a = 5.7277 (2) Å

  • b = 15.8760 (3) Å

  • c = 11.6498 (4) Å

  • β = 97.816 (2)°

  • V = 1049.51 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.49 mm−1

  • T = 298 (2) K

  • 0.6 × 0.32 × 0.16 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: numerical (CORINC; Draeger & Gattow, 1971[Draeger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]) Tmin = 0.423, Tmax = 0.676

  • 2183 measured reflections

  • 1979 independent reflections

  • 1865 reflections with I > 2σ(I)

  • Rint = 0.020

  • 3 standard reflections frequency: 60 min intensity decay: 3%

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.088

  • S = 1.05

  • 1979 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O7i 0.93 2.42 3.323 (2) 164
C14—H14⋯Cg1ii 0.93 2.92 3.560 (2) 127
C4—H4⋯Cg2iii 0.93 2.99 3.777 (2) 143
Symmetry codes: (i) -x-1, -y+1, -z; (ii) -x, -y+1, -z+1; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg1 is the centroid of the ring C1–C5/N6 and Cg2 is the centroid of the ring C10–C15.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CORINC (Draeger & Gattow, 1971[Draeger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

N-Oxides and their derivatives show a broad spectrum of biological activity, such as antifungal, antibacterial, antimicrobial and antibacterial activities (Lobana & Bhatia, 1989; Symons et al., 1985). These compounds are also found to be involved in DNA strand scission under physiological conditions (Katsuyuki et al., 1991; Bovin et al., 1992). Pyridine N-oxides bearing a sulfur group in position 2 display significant antimicrobial activity (Leonard et al., 1955). In view of the importance of N-oxides, we have previously reported the crystal structures of N-oxide derivatives (Jebas et al., 2005; Ravindran Durai Nayagam et al., 2008). As an extension of our work on these derivatives, we report here the crystal structure of the title compound (Fig. 1).

The bond lengths and angles agree well with the N-oxide derivatives reported earlier (Jebas et al., 2005; Ravindran Durai Nayagam et al., 2008). The N—O bond length is in good agreement with the mean value of 1.304 (15) Å reported in the literature for pyridine N–oxides (Allen et al.,1987).

The oxopyridinium and benzene rings are planar to within ±0.002 (2) Å and ±0.005 (2) Å, respectively, and they form a dihedral angle of 58.40 (1)°. Atom O7 deviates from the plane of the pyridinium ring by -0.012 (1) Å.

In the crystal structure, inversion related molecules at (x, y, z) and (-1-x, 1-y, -z) are linked by C—H···O hydrogen bonds to form a R22(8) ring (Fig. 2). In addition, the crystal packing is stabilized by a π-π interaction between the pyridinium rings of adjacent molecules at (x, y, z) and (-x, 2-y, -z), with a ring centroid to centroid distance of 3.6891 (9) Å. Weak C—H···π interactions involving the two aromatic rings are also observed.

Related literature top

For bond-length data, see: Allen et al.(1987). For biological activities of N-oxide derivatives, see: Bovin et al. (1992); Katsuyuki et al. (1991); Leonard et al. (1955); Lobana & Bhatia (1989); Symons & West (1985). For related literature, see: Jebas et al. (2005); Ravindran et al. (2008). Cg1 is the centroid of the ring C1–C5/N6 and Cg2 is the centroid of the ring C10–C15.

Experimental top

A mixture of benzyl chloride, (0.126 g, 1 mmol) and 1-hydroxypyridine-2-thione sodium salt (0.149 g, 1 mmol) in water and methanol (30 ml each) was heated at 333 K with stirring for 30 min. The compound formed was filtered off, and dried (0.20 g, 92%). The compound was recrystallized from chloroform-methanol (1:1 v/v).

Refinement top

H atoms were positioned geometrically [C-H = 0.93 (aromatic) or 0.97 Å (methylene)] and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CORINC (Draeger & Gattow, 1971); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.
2-(Benzylsulfanyl)pyridine N-oxide top
Crystal data top
C12H11NOSF(000) = 456
Mr = 217.28Dx = 1.375 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 5.7277 (2) Åθ = 65–70°
b = 15.8760 (3) ŵ = 2.49 mm1
c = 11.6498 (4) ÅT = 298 K
β = 97.816 (2)°Plate, colourless
V = 1049.51 (6) Å30.6 × 0.32 × 0.16 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1865 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.020
Graphite monochromatorθmax = 69.9°, θmin = 4.7°
ω/2θ scansh = 06
Absorption correction: numerical
(CORINC; Draeger & Gattow, 1971)
k = 019
Tmin = 0.423, Tmax = 0.676l = 1414
2183 measured reflections3 standard reflections every 60 min
1979 independent reflections intensity decay: 3%
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0468P)2 + 0.3205P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.032(Δ/σ)max = 0.001
wR(F2) = 0.088Δρmax = 0.23 e Å3
S = 1.05Δρmin = 0.23 e Å3
1979 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
137 parametersExtinction coefficient: 0.0138 (9)
0 restraints
Crystal data top
C12H11NOSV = 1049.51 (6) Å3
Mr = 217.28Z = 4
Monoclinic, P21/cCu Kα radiation
a = 5.7277 (2) ŵ = 2.49 mm1
b = 15.8760 (3) ÅT = 298 K
c = 11.6498 (4) Å0.6 × 0.32 × 0.16 mm
β = 97.816 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1865 reflections with I > 2σ(I)
Absorption correction: numerical
(CORINC; Draeger & Gattow, 1971)
Rint = 0.020
Tmin = 0.423, Tmax = 0.6763 standard reflections every 60 min
2183 measured reflections intensity decay: 3%
1979 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.05Δρmax = 0.23 e Å3
1979 reflectionsΔρmin = 0.23 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0305 (2)0.50000 (9)0.21475 (12)0.0323 (3)
C20.2020 (3)0.55970 (10)0.20485 (13)0.0397 (4)
H20.34460.55750.25360.048*
C30.1620 (3)0.62241 (11)0.12302 (14)0.0462 (4)
H30.27680.66290.11650.055*
C40.0502 (3)0.62477 (11)0.05064 (14)0.0456 (4)
H40.07880.66680.0050.055*
C50.2179 (3)0.56490 (11)0.06128 (13)0.0426 (4)
H50.36050.56640.01250.051*
N60.1782 (2)0.50342 (8)0.14226 (10)0.0358 (3)
O70.33607 (19)0.44536 (8)0.15290 (11)0.0507 (3)
S80.04017 (6)0.41513 (2)0.31047 (3)0.03918 (16)
C90.3207 (3)0.43634 (10)0.39937 (14)0.0415 (4)
H9A0.44750.43380.35220.05*
H9B0.3190.49230.43270.05*
C100.3594 (2)0.37147 (9)0.49432 (12)0.0348 (3)
C110.5483 (3)0.31656 (10)0.50101 (13)0.0404 (4)
H110.65170.31970.44620.049*
C120.5852 (3)0.25699 (10)0.58820 (15)0.0465 (4)
H120.71380.22080.59190.056*
C130.4330 (3)0.25101 (11)0.66927 (14)0.0481 (4)
H130.45650.21030.72710.058*
C140.2452 (3)0.30575 (13)0.66418 (15)0.0527 (4)
H140.14260.30240.71940.063*
C150.2084 (3)0.36542 (11)0.57771 (14)0.0461 (4)
H150.0810.4020.57520.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0293 (7)0.0344 (7)0.0321 (7)0.0014 (5)0.0005 (5)0.0014 (5)
C20.0311 (7)0.0454 (8)0.0407 (8)0.0045 (6)0.0019 (6)0.0043 (6)
C30.0422 (9)0.0470 (9)0.0482 (9)0.0091 (7)0.0021 (7)0.0095 (7)
C40.0481 (9)0.0473 (9)0.0397 (8)0.0013 (7)0.0004 (7)0.0105 (7)
C50.0381 (8)0.0479 (9)0.0382 (8)0.0026 (7)0.0073 (6)0.0031 (7)
N60.0298 (6)0.0378 (6)0.0377 (6)0.0022 (5)0.0027 (5)0.0023 (5)
O70.0360 (6)0.0504 (7)0.0612 (7)0.0139 (5)0.0092 (5)0.0073 (6)
S80.0355 (2)0.0354 (2)0.0437 (2)0.00537 (13)0.00524 (15)0.00604 (14)
C90.0362 (8)0.0388 (8)0.0459 (8)0.0033 (6)0.0075 (6)0.0058 (6)
C100.0342 (7)0.0324 (7)0.0355 (7)0.0012 (6)0.0035 (5)0.0015 (6)
C110.0370 (8)0.0444 (8)0.0397 (7)0.0034 (6)0.0044 (6)0.0004 (6)
C120.0460 (9)0.0408 (8)0.0502 (9)0.0109 (7)0.0024 (7)0.0025 (7)
C130.0590 (10)0.0445 (9)0.0374 (8)0.0046 (7)0.0054 (7)0.0064 (7)
C140.0543 (10)0.0660 (11)0.0393 (8)0.0035 (9)0.0121 (7)0.0004 (8)
C150.0421 (9)0.0505 (9)0.0458 (8)0.0107 (7)0.0065 (7)0.0034 (7)
Geometric parameters (Å, º) top
C1—N61.3678 (18)C9—H9A0.97
C1—C21.381 (2)C9—H9B0.97
C1—S81.7450 (14)C10—C111.383 (2)
C2—C31.376 (2)C10—C151.389 (2)
C2—H20.93C11—C121.383 (2)
C3—C41.382 (2)C11—H110.93
C3—H30.93C12—C131.373 (2)
C4—C51.369 (2)C12—H120.93
C4—H40.93C13—C141.378 (3)
C5—N61.355 (2)C13—H130.93
C5—H50.93C14—C151.378 (2)
N6—O71.3090 (16)C14—H140.93
S8—C91.8205 (15)C15—H150.93
C9—C101.505 (2)
N6—C1—C2119.53 (13)C10—C9—H9B109.9
N6—C1—S8111.98 (10)S8—C9—H9B109.9
C2—C1—S8128.49 (11)H9A—C9—H9B108.3
C3—C2—C1120.09 (14)C11—C10—C15118.26 (14)
C3—C2—H2120C11—C10—C9120.56 (14)
C1—C2—H2120C15—C10—C9121.18 (14)
C2—C3—C4119.47 (15)C12—C11—C10120.85 (14)
C2—C3—H3120.3C12—C11—H11119.6
C4—C3—H3120.3C10—C11—H11119.6
C5—C4—C3119.71 (15)C13—C12—C11120.29 (15)
C5—C4—H4120.1C13—C12—H12119.9
C3—C4—H4120.1C11—C12—H12119.9
N6—C5—C4120.65 (14)C12—C13—C14119.47 (15)
N6—C5—H5119.7C12—C13—H13120.3
C4—C5—H5119.7C14—C13—H13120.3
O7—N6—C5121.37 (12)C13—C14—C15120.39 (16)
O7—N6—C1118.08 (12)C13—C14—H14119.8
C5—N6—C1120.55 (12)C15—C14—H14119.8
C1—S8—C999.76 (7)C14—C15—C10120.73 (15)
C10—C9—S8108.78 (10)C14—C15—H15119.6
C10—C9—H9A109.9C10—C15—H15119.6
S8—C9—H9A109.9
N6—C1—C2—C30.4 (2)C2—C1—S8—C95.82 (16)
S8—C1—C2—C3179.80 (13)C1—S8—C9—C10177.00 (11)
C1—C2—C3—C40.4 (3)S8—C9—C10—C11117.36 (14)
C2—C3—C4—C50.1 (3)S8—C9—C10—C1563.08 (17)
C3—C4—C5—N60.1 (3)C15—C10—C11—C120.2 (2)
C4—C5—N6—O7179.46 (15)C9—C10—C11—C12179.81 (14)
C4—C5—N6—C10.1 (2)C10—C11—C12—C130.5 (3)
C2—C1—N6—O7179.21 (13)C11—C12—C13—C141.0 (3)
S8—C1—N6—O70.28 (16)C12—C13—C14—C150.8 (3)
C2—C1—N6—C50.2 (2)C13—C14—C15—C100.0 (3)
S8—C1—N6—C5179.65 (11)C11—C10—C15—C140.5 (2)
N6—C1—S8—C9174.73 (11)C9—C10—C15—C14179.91 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O7i0.932.423.323 (2)164
C14—H14···Cg1ii0.932.923.560 (2)127
C4—H4···Cg2iii0.932.993.777 (2)143
Symmetry codes: (i) x1, y+1, z; (ii) x, y+1, z+1; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H11NOS
Mr217.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)5.7277 (2), 15.8760 (3), 11.6498 (4)
β (°) 97.816 (2)
V3)1049.51 (6)
Z4
Radiation typeCu Kα
µ (mm1)2.49
Crystal size (mm)0.6 × 0.32 × 0.16
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionNumerical
(CORINC; Draeger & Gattow, 1971)
Tmin, Tmax0.423, 0.676
No. of measured, independent and
observed [I > 2σ(I)] reflections
2183, 1979, 1865
Rint0.020
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.088, 1.05
No. of reflections1979
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.23

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CORINC (Draeger & Gattow, 1971), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O7i0.932.423.323 (2)164
C14—H14···Cg1ii0.932.923.560 (2)127
C4—H4···Cg2iii0.932.993.777 (2)143
Symmetry codes: (i) x1, y+1, z; (ii) x, y+1, z+1; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

RDN thanks the University Grants Commission, India, for a Teacher Fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBovin, D. H. R., Crepon, E. & Zard, S. Z. (1992). Bull. Soc. Chim. Fr. 129, 145–150.  Google Scholar
First citationDraeger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762.  CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationJebas, S. R., Balasubramanian, T., Ravidurai, B. & Kumaresan, S. (2005). Acta Cryst. E61, o2677–o2678.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKatsuyuki, N., Carter, B. J., Xu, J. & Hetch, S. M. (1991). J. Am. Chem. Soc. 113, 5099–5100.  Google Scholar
First citationLeonard, F., Barklay, F. A., Brown, E. V., Anderson, F. E. & Green, D. M. (1955). Antibiot. Chemother. pp. 261–264.  Google Scholar
First citationLobana, T. S. & Bhatia, P. K. (1989). J. Sci. Ind. Res. 48, 394–401.  CAS Google Scholar
First citationRavindran Durai Nayagam, B., Jebas, S. R., Grace, S. & Schollmeyer, D. (2008). Acta Cryst. E64, o409.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSymons, M. C. R. & West, D.-X. (1985). J. Chem. Soc. Dalton Trans. pp. 379–381.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds