metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m738-m739

(Acetone-κO){6,6′-di-tert-butyl-2,2′-[1,2-phenyl­enebis(nitrilo­methyl­­idyne)]diphenolato-κ4O,N,N′,O′}zinc(II)

aSchool of Chemical Science, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 19 April 2008; accepted 20 April 2008; online 30 April 2008)

The mol­ecule of the title compound, [Zn(C28H30N2O2)(CH3COCH3)], lies across a mirror plane with the ZnII ion and the acetone mol­ecule on the mirror plane. The ZnII ion is in a five-coordinate distorted square-pyramidal N2O3 environment, with the two imine N and two phenolic O atoms of the tetra­dentate Schiff base dianion in the basal plane and the acetone mol­ecule in the apical position. The central benzene ring makes a dihedral angle of 16.5 (2)° with the two outer phenolate rings. In the crystal structure, the mol­ecules are arranged into anti­parallel columns along the a axis.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For related structures, see: Eltayeb et al. (2007a[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007a). Acta Cryst. E63, m1633-m1634.],b[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007b). Acta Cryst. E63, m1672-m1673.],c[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007c). Acta Cryst. E63, m2024-m2025.]); Reglinski et al. (2002[Reglinski, J., Morris, S. & Stevenson, D. E. (2002). Polyhedron, 21, 2175-2182.]). For background to the applications of zinc complexes, see, for example: Assaf & Chung (1984[Assaf, S. Y. & Chung, S. H. (1984). Nature (London), 308, 734-736.]); Basak et al. (2007[Basak, S., Sen, S., Banerjee, S., Mitra, S., Rosair, G. & Rodriguez, M. T. G. (2007). Polyhedron, 26, 5104-5112.]); Berg & Shi (1996[Berg, J. M. & Shi, Y. (1996). Science, 271, 1081-1085.]); Tarafder et al. (2002[Tarafder, M. T. H., Chew, K.-B., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2683-2690.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C28H30N2O2)(C3H6O)]

  • Mr = 550.11

  • Monoclinic, C 2/m

  • a = 10.5803 (16) Å

  • b = 16.3602 (19) Å

  • c = 15.729 (2) Å

  • β = 94.446 (10)°

  • V = 2714.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 100.0 (1) K

  • 0.57 × 0.24 × 0.07 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.616, Tmax = 0.935

  • 29567 measured reflections

  • 2756 independent reflections

  • 2613 reflections with I > 2σ(I)

  • Rint = 0.089

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.190

  • S = 1.20

  • 2756 reflections

  • 178 parameters

  • H-atom parameters constrained

  • Δρmax = 1.50 e Å−3

  • Δρmin = −1.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13B⋯O1 0.96 2.37 3.022 (7) 124
C14—H14C⋯O1 0.96 2.41 2.983 (6) 118

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Schiff base ligands containing oxygen and imine nitrogen atoms and their metal complexes have gained increased interest in the field of synthetic chemistry due to their variety of applications. Zinc complexes play important roles in various biological systems such as neurotransmission, signal transduction and gene expression (Assaf & Chung, 1984; Berg & Shi, 1996). It is well known that certain zinc complexes with Schiff-bases are biologically active and show very good cytotoxicity against leukemic cells (Tarafder et al., 2002). Previously, we reported the crystal structures of five coordination ZnII complexes with Schiff base ligands (Eltayeb et al., 2007a;2007b; 2007c. As a continuation of our research on Schiff base complexes, we report here the crystal structure of a ZnII complex of a closely-related ligand.

The asymmetric unit of the title compound contain one-half of the [Zn(C28H30N2O2)(CH3COCH3)] complex, with the other half generated by a crystallographic mirror plane. Atoms Zn1, O2, C15, C16, C17, H16A and H17A lie on the mirror plane. The ZnII ion is five-coordinate and adopts a distorted square-pyramidal geometry, with the two imine N (N1 and N1A) and two phenolic O (O1 and O1A) atoms of the tetradentate Schiff base dianion forming a square base, while the acetone molecule occupies the apical coordination site. The two phenolic O atoms and two imine N atoms are in mutually cis positions. The Zn—O and Zn—N distances in the N2O2 coordination plane [1.949 (4) and 2.078 (4) Å, respectively] are in the same ranges as those observed in the other closely related ZnII complexes of N2O2 Schiff base ligands (Eltayeb et al., 2007a; 2007b; 2007c; Reglinski et al. (2002). The apical Zn—O(acetone) distance is 2.182 (4) Å. Other bond lengths and angles observed in the structure are also normal (Allen et al., 1987). The ZnII ion is displaced from the O1/N1/O1A/N1A plane by 0.023 Å toward the apical acetone molecule. The basal bond angles O–Zn–N [O1–Zn1–N1 = 90.24 (15) °] are close to 90° whereas the O–Zn–O [O1–Zn1–O1A = 97.4 (2)°] angle is bigger than 90° and the N–Mn–N [N1–Zn1–N1A = 78.9 (2)°] angle is smaller than 90°. The bond angles between the O2 atom of the acetone molecule and the atoms in the basal plane are in the range 91.02 (13) to 101.67 (13)°, indicating a distorted square-pyramidal geometry. Coordination of the the N2O2 chelate ligand to the ZnII ion results in the formation of a five-membered ring (Zn1/N1/C8/C8A/N1A) and two six-membered rings viz. Zn1/O1/C1/C6/C7/N1 and Zn1/O1A/C1A/C6A/C7A/N1A. The central benzene ring (C8–C9–C10–C8A–C9A–C10A) makes a dihedral angle of 16.5 (2)° with the outer phenolate rings.

Intramolecular C—H···O weak interactions are observed (Table 1). In the crystal packing (Fig. 2), the molecules are arranged into antiparallel columns along the a axis.

Related literature top

For bond-length data, see: Allen et al. (1987). For related structures, see: Eltayeb et al. (2007a,b,c); Reglinski et al. (2002). For background to the applications of zinc complexes, see, for example: Assaf & Chung (1984); Basak et al. (2007); Berg & Shi (1996); Tarafder et al. (2002).

Experimental top

The title compound was synthesized by adding 3-tert-butyl-2-hydroxybenzaldehyde (0.7 ml, 4 mmol) to a solution of o-phenylenediamine (0.216 g, 2 mmol) in ethanol 95% (20 ml). The mixture was refluxed with stirring for half an hour. Zinc chloride (0.272 g, 2 mmol) in ethanol (10 ml) was then added, followed by triethylamine (0.5 ml, 3.6 mmol). The mixture was refluxed at room temperature for two hours. A yellow-orange precipitate was obtained. Yellow single crystals of the title compound suitable for X-ray structure determination were recrystallized from acetone by slow evaporation of the solvent at room temperature after a few days.

Refinement top

All H atoms were placed in calculated positions with d(C—H) = 0.93 Å, Uiso = 1.2Ueq(C) for aromatic and 0.96 Å, Uiso = 1.5Ueq(C) for CH3 atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 1.03 Å from Zn1 and the deepest hole is located at 0.84 Å from Zn1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The structure of the title complex, showing 50% probability displacement ellipsoids and the atomic numbering. Atoms labeled with the suffix A are generated by the symmetry operation (x, -y, z). Atoms Zn1, O2, C15, C16 and C17 lie on the crystallographic mirror plane.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed approximately along the b axis.
(Acetone-κO){6,6'-di-tert-butyl- 2,2'-[1,2-phenylenebis(nitrilomethylidyne)]diphenolato- κ4O,N,N',O'}zinc(II) top
Crystal data top
[Zn(C28H30N2O2)(C3H6O)]F(000) = 1160
Mr = 550.11Dx = 1.346 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 2756 reflections
a = 10.5803 (16) Åθ = 2.3–26.0°
b = 16.3602 (19) ŵ = 0.94 mm1
c = 15.729 (2) ÅT = 100 K
β = 94.446 (10)°Plate, yellow
V = 2714.4 (6) Å30.57 × 0.24 × 0.07 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2756 independent reflections
Radiation source: fine-focus sealed tube2613 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.090
Detector resolution: 8.33 pixels mm-1θmax = 26.0°, θmin = 2.3°
ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 2020
Tmin = 0.616, Tmax = 0.935l = 1919
29567 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.190H-atom parameters constrained
S = 1.20 w = 1/[σ2(Fo2) + (0.0669P)2 + 29.8359P]
where P = (Fo2 + 2Fc2)/3
2756 reflections(Δ/σ)max = 0.001
178 parametersΔρmax = 1.50 e Å3
0 restraintsΔρmin = 1.15 e Å3
Crystal data top
[Zn(C28H30N2O2)(C3H6O)]V = 2714.4 (6) Å3
Mr = 550.11Z = 4
Monoclinic, C2/mMo Kα radiation
a = 10.5803 (16) ŵ = 0.94 mm1
b = 16.3602 (19) ÅT = 100 K
c = 15.729 (2) Å0.57 × 0.24 × 0.07 mm
β = 94.446 (10)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2756 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2613 reflections with I > 2σ(I)
Tmin = 0.616, Tmax = 0.935Rint = 0.090
29567 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0730 restraints
wR(F2) = 0.190H-atom parameters constrained
S = 1.20 w = 1/[σ2(Fo2) + (0.0669P)2 + 29.8359P]
where P = (Fo2 + 2Fc2)/3
2756 reflectionsΔρmax = 1.50 e Å3
178 parametersΔρmin = 1.15 e Å3
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50605 (6)0.00000.18490 (4)0.0170 (3)
O10.6013 (3)0.0895 (2)0.2409 (2)0.0271 (8)
O20.3336 (4)0.00000.2526 (3)0.0231 (11)
N10.4250 (3)0.0807 (3)0.0944 (2)0.0208 (9)
C10.6146 (4)0.1649 (3)0.2177 (3)0.0185 (10)
C20.7084 (4)0.2160 (3)0.2638 (3)0.0213 (10)
C30.7224 (5)0.2950 (3)0.2378 (3)0.0264 (11)
H3A0.78450.32690.26660.032*
C40.6474 (5)0.3306 (4)0.1694 (3)0.0316 (12)
H4A0.65890.38490.15430.038*
C50.5578 (4)0.2836 (3)0.1261 (3)0.0251 (11)
H5A0.50690.30640.08140.030*
C60.5411 (4)0.2014 (3)0.1477 (3)0.0197 (10)
C70.4485 (4)0.1576 (3)0.0931 (3)0.0186 (10)
H7A0.40080.18840.05260.022*
C80.3366 (4)0.0429 (3)0.0341 (3)0.0206 (10)
C90.2534 (4)0.0848 (4)0.0238 (3)0.0227 (10)
H9A0.25200.14170.02340.027*
C100.1733 (4)0.0427 (4)0.0815 (3)0.0260 (11)
H10A0.11710.07170.12170.031*
C110.7916 (4)0.1815 (3)0.3403 (3)0.0230 (11)
C120.8813 (6)0.2459 (5)0.3807 (4)0.0481 (18)
H12A0.83290.29070.40050.072*
H12B0.93610.26530.33920.072*
H12C0.93140.22230.42790.072*
C130.8731 (6)0.1118 (5)0.3111 (4)0.057 (2)
H13A0.93170.13250.27270.086*
H13B0.81980.07120.28250.086*
H13C0.91920.08770.35980.086*
C140.7089 (5)0.1515 (5)0.4096 (3)0.0411 (17)
H14A0.64840.19300.42120.062*
H14B0.76140.13990.46070.062*
H14C0.66490.10270.39050.062*
C150.3125 (6)0.00000.3276 (4)0.0202 (14)
C160.4167 (6)0.00000.3977 (4)0.0337 (19)
H16A0.49750.00000.37380.051*
H16B0.40880.04790.43250.051*
C170.1792 (7)0.00000.3533 (5)0.037 (2)
H17A0.12130.00000.30310.055*
H17B0.16460.04790.38680.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0076 (4)0.0354 (5)0.0077 (4)0.0000.0021 (2)0.000
O10.0237 (17)0.040 (2)0.0163 (16)0.0073 (15)0.0093 (13)0.0022 (15)
O20.013 (2)0.041 (3)0.015 (2)0.0000.0024 (17)0.000
N10.0078 (16)0.047 (3)0.0077 (16)0.0002 (17)0.0016 (13)0.0003 (16)
C10.0103 (19)0.035 (3)0.0099 (19)0.0010 (18)0.0022 (15)0.0028 (18)
C20.0092 (19)0.048 (3)0.0070 (19)0.004 (2)0.0026 (15)0.0035 (19)
C30.022 (2)0.041 (3)0.017 (2)0.010 (2)0.0006 (18)0.001 (2)
C40.032 (3)0.045 (3)0.018 (2)0.010 (2)0.000 (2)0.001 (2)
C50.022 (2)0.042 (3)0.012 (2)0.000 (2)0.0012 (17)0.002 (2)
C60.0091 (19)0.042 (3)0.0086 (19)0.0013 (19)0.0027 (15)0.0027 (19)
C70.0098 (19)0.036 (3)0.010 (2)0.0016 (18)0.0002 (15)0.0029 (18)
C80.0071 (18)0.048 (3)0.0069 (18)0.0005 (19)0.0013 (15)0.0008 (18)
C90.015 (2)0.041 (3)0.012 (2)0.000 (2)0.0003 (16)0.0039 (19)
C100.015 (2)0.050 (3)0.012 (2)0.004 (2)0.0046 (17)0.002 (2)
C110.012 (2)0.047 (3)0.010 (2)0.002 (2)0.0007 (16)0.002 (2)
C120.039 (3)0.079 (5)0.023 (3)0.027 (3)0.017 (2)0.010 (3)
C130.037 (3)0.112 (7)0.021 (3)0.041 (4)0.015 (2)0.018 (3)
C140.015 (2)0.094 (5)0.014 (2)0.010 (3)0.0021 (18)0.015 (3)
C150.009 (3)0.036 (4)0.016 (3)0.0000.002 (2)0.000
C160.016 (3)0.069 (6)0.016 (3)0.0000.001 (3)0.000
C170.015 (3)0.075 (6)0.021 (4)0.0000.007 (3)0.000
Geometric parameters (Å, º) top
Zn1—O1i1.949 (4)C9—C101.378 (7)
Zn1—O11.949 (4)C9—H9A0.93
Zn1—N12.078 (4)C10—C10i1.396 (12)
Zn1—N1i2.078 (4)C10—H10A0.96
Zn1—O22.182 (4)C11—C131.522 (8)
O1—C11.296 (6)C11—C121.523 (8)
O2—C151.218 (8)C11—C141.532 (6)
N1—C71.283 (7)C12—H12A0.96
N1—C81.420 (6)C12—H12B0.96
C1—C61.430 (6)C12—H12C0.96
C1—C21.449 (6)C13—H13A0.96
C2—C31.367 (8)C13—H13B0.96
C2—C111.541 (6)C13—H13C0.96
C3—C41.412 (7)C14—H14A0.96
C3—H3A0.93C14—H14B0.96
C4—C51.362 (7)C14—H14C0.96
C4—H4A0.93C15—C171.497 (9)
C5—C61.401 (8)C15—C161.498 (9)
C5—H5A0.93C16—H16A0.96
C6—C71.442 (6)C16—H16B0.96
C7—H7A0.93C17—H17A0.96
C8—C91.396 (6)C17—H17B0.96
C8—C8i1.404 (11)
O1i—Zn1—O197.4 (2)C10—C9—C8120.5 (5)
O1i—Zn1—N1163.48 (15)C10—C9—H9A119.7
O1—Zn1—N190.24 (15)C8—C9—H9A119.7
O1i—Zn1—N1i90.23 (15)C9—C10—C10i120.0 (3)
O1—Zn1—N1i163.48 (15)C9—C10—H10A120.3
N1—Zn1—N1i78.9 (2)C10i—C10—H10A119.7
O1i—Zn1—O2101.67 (13)C13—C11—C12107.2 (5)
O1—Zn1—O2101.67 (13)C13—C11—C14110.0 (6)
N1—Zn1—O291.02 (13)C12—C11—C14107.2 (4)
N1i—Zn1—O291.02 (13)C13—C11—C2110.0 (4)
C1—O1—Zn1130.6 (3)C12—C11—C2111.9 (5)
C15—O2—Zn1134.1 (4)C14—C11—C2110.5 (4)
C7—N1—C8122.3 (4)C11—C12—H12A109.5
C7—N1—Zn1124.3 (3)C11—C12—H12B109.5
C8—N1—Zn1113.4 (3)H12A—C12—H12B109.5
O1—C1—C6123.4 (4)C11—C12—H12C109.5
O1—C1—C2119.6 (4)H12A—C12—H12C109.5
C6—C1—C2117.0 (4)H12B—C12—H12C109.5
C3—C2—C1118.8 (4)C11—C13—H13A109.5
C3—C2—C11120.7 (4)C11—C13—H13B109.5
C1—C2—C11120.4 (5)H13A—C13—H13B109.5
C2—C3—C4123.5 (5)C11—C13—H13C109.5
C2—C3—H3A118.3H13A—C13—H13C109.5
C4—C3—H3A118.3H13B—C13—H13C109.5
C5—C4—C3118.4 (5)C11—C14—H14A109.5
C5—C4—H4A120.8C11—C14—H14B109.5
C3—C4—H4A120.8H14A—C14—H14B109.5
C4—C5—C6121.2 (5)C11—C14—H14C109.5
C4—C5—H5A119.4H14A—C14—H14C109.5
C6—C5—H5A119.4H14B—C14—H14C109.5
C5—C6—C1121.1 (4)O2—C15—C17120.6 (6)
C5—C6—C7115.2 (4)O2—C15—C16122.2 (6)
C1—C6—C7123.7 (5)C17—C15—C16117.2 (6)
N1—C7—C6127.0 (4)C15—C16—H16A109.8
N1—C7—H7A116.5C15—C16—H16B109.1
C6—C7—H7A116.5H16A—C16—H16B110.0
C9—C8—C8i119.4 (3)C15—C17—H17A109.4
C9—C8—N1124.8 (5)C15—C17—H17B110.0
C8i—C8—N1115.8 (3)H17A—C17—H17B109.4
O1i—Zn1—O1—C1157.2 (3)C4—C5—C6—C12.1 (7)
N1—Zn1—O1—C18.1 (4)C4—C5—C6—C7176.2 (4)
N1i—Zn1—O1—C140.3 (8)O1—C1—C6—C5179.0 (4)
O2—Zn1—O1—C199.2 (4)C2—C1—C6—C51.3 (6)
O1i—Zn1—O2—C1550.10 (11)O1—C1—C6—C72.9 (7)
O1—Zn1—O2—C1550.10 (11)C2—C1—C6—C7176.8 (4)
N1—Zn1—O2—C15140.55 (12)C8—N1—C7—C6176.1 (4)
N1i—Zn1—O2—C15140.55 (12)Zn1—N1—C7—C65.7 (6)
O1i—Zn1—N1—C7117.8 (6)C5—C6—C7—N1172.7 (4)
O1—Zn1—N1—C70.1 (4)C1—C6—C7—N15.5 (7)
N1i—Zn1—N1—C7167.4 (3)C7—N1—C8—C910.0 (6)
O2—Zn1—N1—C7101.8 (4)Zn1—N1—C8—C9168.4 (3)
O1i—Zn1—N1—C863.9 (6)C7—N1—C8—C8i169.4 (3)
O1—Zn1—N1—C8178.2 (3)Zn1—N1—C8—C8i12.2 (3)
N1i—Zn1—N1—C814.3 (3)C8i—C8—C9—C101.1 (5)
O2—Zn1—N1—C876.6 (3)N1—C8—C9—C10178.3 (4)
Zn1—O1—C1—C610.3 (6)C8—C9—C10—C10i1.1 (5)
Zn1—O1—C1—C2169.4 (3)C3—C2—C11—C13117.0 (6)
O1—C1—C2—C3179.1 (4)C1—C2—C11—C1362.5 (6)
C6—C1—C2—C30.6 (6)C3—C2—C11—C122.0 (6)
O1—C1—C2—C110.4 (6)C1—C2—C11—C12178.6 (4)
C6—C1—C2—C11179.9 (4)C3—C2—C11—C14121.3 (5)
C1—C2—C3—C41.9 (7)C1—C2—C11—C1459.2 (6)
C11—C2—C3—C4178.6 (4)Zn1—O2—C15—C17180.0
C2—C3—C4—C51.1 (8)Zn1—O2—C15—C160.000 (1)
C3—C4—C5—C60.9 (7)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13B···O10.962.373.022 (7)124
C14—H14C···O10.962.412.983 (6)118

Experimental details

Crystal data
Chemical formula[Zn(C28H30N2O2)(C3H6O)]
Mr550.11
Crystal system, space groupMonoclinic, C2/m
Temperature (K)100
a, b, c (Å)10.5803 (16), 16.3602 (19), 15.729 (2)
β (°) 94.446 (10)
V3)2714.4 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.94
Crystal size (mm)0.57 × 0.24 × 0.07
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.616, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
29567, 2756, 2613
Rint0.090
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.190, 1.20
No. of reflections2756
No. of parameters178
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0669P)2 + 29.8359P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.50, 1.15

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13B···O10.962.373.022 (7)124
C14—H14C···O10.962.412.983 (6)118
 

Footnotes

On study leave from International University of Africa, Sudan. E-mail: nasertaha90@hotmail.com.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th.

Acknowledgements

The authors thank the Malaysian Government, the Ministry of Science, Technology and Innovation (MOSTI) and Universiti Sains Malaysia for the E-Science Fund and RU research grants (PKIMIA/613308, PKIMIA/815002, 203/PKIMIA/671083) and facilities. The International University of Africa (Sudan) is acknowledged for providing study leave to NEE. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose Grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationAssaf, S. Y. & Chung, S. H. (1984). Nature (London), 308, 734–736.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBasak, S., Sen, S., Banerjee, S., Mitra, S., Rosair, G. & Rodriguez, M. T. G. (2007). Polyhedron, 26, 5104–5112.  Web of Science CSD CrossRef CAS Google Scholar
First citationBerg, J. M. & Shi, Y. (1996). Science, 271, 1081–1085.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007a). Acta Cryst. E63, m1633–m1634.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007b). Acta Cryst. E63, m1672–m1673.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007c). Acta Cryst. E63, m2024–m2025.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationReglinski, J., Morris, S. & Stevenson, D. E. (2002). Polyhedron, 21, 2175–2182.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarafder, M. T. H., Chew, K.-B., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2683–2690.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m738-m739
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds