organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(3,5-Di­chloro-2-hy­droxy­benzyl­­idene)-3-meth­oxy­benzohydrazide methanol solvate

aRespiratory Department, The First Affiliated Hospital of Soochow University, Suzhou Jiangsu 215006, People's Republic of China, and bCollege of Chemistry, Liaoning Teacher University, Dalian 116029, People's Republic of China
*Correspondence e-mail: jicheng_sz@163.com

(Received 26 April 2008; accepted 28 April 2008; online 30 April 2008)

In the title compound, C15H12Cl2N2O3·CH3OH, the Schiff base mol­ecule is nearly planar, with a dihedral angle of 4.5 (2)° between the two benzene rings. An intra­molecular O—H⋯N hydrogen bond is observed. The methanol solvent mol­ecule is linked to the Schiff base mol­ecule through inter­molecular N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For the synthesis of Schiff base compounds, see: Herrick et al. (2008[Herrick, R. S., Ziegler, C. J., Precopio, M., Crandall, K., Shaw, J. & Jarret, R. M. (2008). J. Organomet. Chem. 693, 619-624.]); Suresh et al. (2007[Suresh, P., Srimurugan, S. & Pati, H. N. (2007). Chem. Lett. 36, 1332-1333.]); Liu et al. (2007[Liu, H.-B., Wang, M., Wang, Y. & Gu, Q. (2007). Synth. Commun. 37, 3815-3826.]). For the background on biological activities, see: Bhandari et al. (2008[Bhandari, S. V., Bothara, K. G., Raut, M. K., Patil, A. A., Sarkate, A. P. & Mokale, V. J. (2008). Bioorg. Med. Chem. 16, 1822-1831.]); Sinha et al. (2008[Sinha, D., Tiwari, A. K., Singh, S., Shukla, G., Mishra, P., Chandra, H. & Mishra, A. K. (2008). Eur. J. Med. Chem. 43, 160-165.]); Sun et al. (2008[Sun, X.-H., Tao, Y., Liu, Y.-F., Jia, Y.-Q., Chen, B. & Yang, J.-W. (2008). Chin. J. Org. Chem. 28, 155-159.]). For related structures, see: Wang et al. (2008[Wang, Y.-Z., Wang, M.-D., Diao, Y.-P. & Cai, Q. (2008). Acta Cryst. E64, o668.]); Tang (2008a[Tang, C.-B. (2008a). Acta Cryst. E64, o767.],b[Tang, C.-B. (2008b). Acta Cryst. E64, o768.]); Yang & Zheng (2007[Yang, M.-H. & Zheng, Y.-F. (2007). Acta Cryst. E63, o4732.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12Cl2N2O3·CH4O

  • Mr = 371.21

  • Triclinic, [P \overline 1]

  • a = 7.742 (3) Å

  • b = 9.070 (3) Å

  • c = 12.296 (4) Å

  • α = 92.422 (5)°

  • β = 98.948 (5)°

  • γ = 96.954 (5)°

  • V = 845.0 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 298 (2) K

  • 0.27 × 0.23 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.898, Tmax = 0.923

  • 6888 measured reflections

  • 3452 independent reflections

  • 2253 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.131

  • S = 1.04

  • 3452 reflections

  • 224 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4i 0.899 (10) 1.997 (12) 2.881 (3) 167 (3)
O4—H4⋯O2 0.82 2.35 2.989 (3) 135
O4—H4⋯O2ii 0.82 2.34 3.023 (3) 141
O1—H1⋯N1 0.82 1.84 2.557 (3) 145
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Schiff base compounds can be easily synthesized from the reaction of aldehydes with primary amines (Herrick et al., 2008; Suresh et al., 2007; Liu et al., 2007). These compounds show interesting biological activities, especially antimicrobial activities (Bhandari et al., 2008; Sinha et al., 2008; Sun et al., 2008). Recently, the crystal structures of a few Schiff base compounds obtained from the derivatives of salicylaldehyde with benzohydrazide have been reported (Wang et al., 2008; Tang, 2008a,b; Yang & Zheng, 2007). We report here the crystal structure of a new Schiff base compound, derived from 3,5-dichlorosalicylaldehyde and 3-methoxybenzohydrazide.

The asymmetric unit consists of a Schiff base molecule and a methanol molecule of crystallization (Fig. 1). The Schiff base molecule is nearly planar, with a maximum deviation of 0.133 (1) Å for atom Cl1. The dihedral angle between the two benzene rings is 4.5 (2)°. An intramolecular O—H···N hydrogen bond is observed in the Schiff base molecule. The methanol molecule of crystallization is linked to the Schiff base molecule through intermolecular N—H···O and O—H···O hydrogen bonds (Table 1 and Fig.2).

Related literature top

For the synthesis of Schiff base compounds, see: Herrick et al. (2008); Suresh et al. (2007); Liu et al. (2007). For the background on biological activities, see: Bhandari et al. (2008); Sinha et al. (2008); Sun et al. (2008). For related structures, see: Wang et al. (2008); Tang (2008a,b); Yang & Zheng (2007).

Experimental top

3,5-Dichlorosalicylaldehyde (0.1 mmol, 19.0 mg) and 3-methoxybenzohydrazide (0.1 mmol, 16.6 mg) were dissolved in methanol (20 ml). The mixture was stirred at room temperature to give a clear yellow solution. Yellow block-shaped crystals were formed after a week.

Refinement top

Atom H2 was located in a difference Fourier map and refined isotropically, with the N2—H2 distance restrained to 0.90 (1) Å, and with Uiso(H) set to 0.08 Å2. All other H atoms were constrained to idealized geometries, with C–H = 0.93–0.96 Å, O–H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O and methyl C). A rotating group model was used for the methyl and hydroxyl groups.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids. Intramolecular hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The molecular packing of the title compound, viewed along the a axis. Intermolecular hydrogen bonds are shown as dashed lines. H atoms not involved in the hydrogen bonds have been omitted for clarity.
N'-(3,5-Dichloro-2-hydroxybenzylidene)-3-methoxybenzohydrazide methanol solvate top
Crystal data top
C15H12Cl2N2O3·CH4OZ = 2
Mr = 371.21F(000) = 384
Triclinic, P1Dx = 1.459 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.742 (3) ÅCell parameters from 1304 reflections
b = 9.070 (3) Åθ = 2.4–24.5°
c = 12.296 (4) ŵ = 0.41 mm1
α = 92.422 (5)°T = 298 K
β = 98.948 (5)°Block, yellow
γ = 96.954 (5)°0.27 × 0.23 × 0.20 mm
V = 845.0 (5) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3452 independent reflections
Radiation source: fine-focus sealed tube2253 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 26.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.898, Tmax = 0.923k = 1111
6888 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0565P)2]
where P = (Fo2 + 2Fc2)/3
3452 reflections(Δ/σ)max = 0.001
224 parametersΔρmax = 0.27 e Å3
1 restraintΔρmin = 0.24 e Å3
Crystal data top
C15H12Cl2N2O3·CH4Oγ = 96.954 (5)°
Mr = 371.21V = 845.0 (5) Å3
Triclinic, P1Z = 2
a = 7.742 (3) ÅMo Kα radiation
b = 9.070 (3) ŵ = 0.41 mm1
c = 12.296 (4) ÅT = 298 K
α = 92.422 (5)°0.27 × 0.23 × 0.20 mm
β = 98.948 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3452 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2253 reflections with I > 2σ(I)
Tmin = 0.898, Tmax = 0.923Rint = 0.029
6888 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0511 restraint
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.27 e Å3
3452 reflectionsΔρmin = 0.24 e Å3
224 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.29231 (9)0.03639 (9)0.10217 (6)0.0659 (3)
Cl20.37695 (9)0.28076 (8)0.09465 (6)0.0636 (3)
O10.2383 (2)0.14041 (19)0.29003 (15)0.0532 (5)
H10.22190.18520.34610.080*
O20.3328 (2)0.3979 (2)0.51936 (17)0.0729 (6)
O30.0405 (3)0.5968 (2)0.88407 (15)0.0659 (6)
O40.3034 (2)0.6965 (2)0.42945 (18)0.0677 (6)
H40.36790.63280.44580.102*
N10.0576 (3)0.2173 (2)0.43529 (16)0.0432 (5)
N20.0515 (3)0.3093 (2)0.52560 (17)0.0455 (5)
C10.0641 (3)0.0367 (3)0.2932 (2)0.0408 (6)
C20.0927 (3)0.0466 (3)0.2486 (2)0.0406 (6)
C30.0983 (3)0.0464 (3)0.1565 (2)0.0432 (6)
C40.0443 (3)0.1470 (3)0.1091 (2)0.0474 (6)
H4A0.03750.20830.04770.057*
C50.1966 (3)0.1549 (3)0.1541 (2)0.0448 (6)
C60.2080 (3)0.0639 (3)0.2446 (2)0.0460 (6)
H60.31270.06990.27330.055*
C70.0786 (3)0.1315 (3)0.3889 (2)0.0483 (7)
H70.18480.12950.41560.058*
C80.2044 (3)0.3995 (3)0.5653 (2)0.0438 (6)
C90.2074 (3)0.4983 (3)0.66579 (19)0.0419 (6)
C100.0683 (3)0.4953 (3)0.7255 (2)0.0422 (6)
H100.03510.43070.70290.051*
C110.0864 (3)0.5898 (3)0.8188 (2)0.0469 (6)
C120.2406 (4)0.6849 (3)0.8525 (2)0.0557 (7)
H120.25230.74720.91590.067*
C130.3750 (4)0.6877 (3)0.7933 (2)0.0596 (8)
H130.47780.75300.81610.072*
C140.3607 (3)0.5946 (3)0.6997 (2)0.0505 (7)
H140.45350.59660.65980.061*
C150.2031 (4)0.5035 (4)0.8545 (3)0.0710 (9)
H15A0.25750.52410.78210.107*
H15B0.27960.52180.90660.107*
H15C0.18240.40120.85470.107*
C160.3991 (5)0.8175 (4)0.3948 (4)0.1132 (15)
H16A0.32650.89560.38220.170*
H16B0.43880.78990.32740.170*
H16C0.49920.85150.45030.170*
H20.052 (2)0.307 (3)0.551 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0460 (4)0.0854 (6)0.0652 (5)0.0006 (4)0.0214 (3)0.0269 (4)
Cl20.0477 (4)0.0620 (5)0.0732 (5)0.0078 (3)0.0037 (3)0.0223 (4)
O10.0428 (10)0.0569 (11)0.0563 (12)0.0079 (9)0.0142 (8)0.0200 (9)
O20.0505 (12)0.0888 (15)0.0777 (15)0.0132 (11)0.0315 (11)0.0309 (12)
O30.0605 (12)0.0825 (14)0.0529 (12)0.0024 (11)0.0200 (10)0.0229 (10)
O40.0470 (12)0.0815 (15)0.0784 (15)0.0085 (10)0.0202 (11)0.0104 (12)
N10.0435 (12)0.0456 (12)0.0397 (12)0.0026 (10)0.0100 (9)0.0096 (10)
N20.0402 (12)0.0526 (13)0.0425 (12)0.0005 (10)0.0118 (10)0.0158 (10)
C10.0434 (14)0.0383 (13)0.0404 (14)0.0037 (11)0.0092 (11)0.0040 (11)
C20.0353 (13)0.0410 (13)0.0438 (15)0.0014 (11)0.0064 (11)0.0044 (11)
C30.0396 (14)0.0501 (15)0.0410 (14)0.0070 (11)0.0121 (11)0.0071 (12)
C40.0487 (15)0.0480 (15)0.0437 (15)0.0070 (12)0.0053 (12)0.0125 (12)
C50.0385 (14)0.0426 (14)0.0492 (16)0.0004 (11)0.0013 (11)0.0053 (12)
C60.0401 (14)0.0469 (15)0.0502 (16)0.0013 (11)0.0104 (12)0.0080 (12)
C70.0466 (15)0.0508 (15)0.0485 (16)0.0016 (13)0.0175 (13)0.0084 (13)
C80.0391 (14)0.0456 (15)0.0461 (15)0.0019 (12)0.0098 (12)0.0052 (12)
C90.0404 (14)0.0446 (14)0.0388 (14)0.0048 (11)0.0030 (11)0.0046 (11)
C100.0357 (13)0.0455 (14)0.0418 (14)0.0018 (11)0.0031 (11)0.0072 (11)
C110.0487 (15)0.0491 (15)0.0419 (15)0.0061 (12)0.0063 (12)0.0059 (12)
C120.0621 (18)0.0551 (17)0.0444 (16)0.0004 (14)0.0028 (14)0.0153 (13)
C130.0510 (17)0.0602 (18)0.0581 (19)0.0117 (14)0.0029 (14)0.0109 (15)
C140.0427 (15)0.0538 (16)0.0524 (17)0.0013 (12)0.0076 (12)0.0038 (13)
C150.0575 (19)0.083 (2)0.075 (2)0.0027 (17)0.0269 (16)0.0150 (18)
C160.090 (3)0.103 (3)0.148 (4)0.001 (2)0.025 (3)0.045 (3)
Geometric parameters (Å, º) top
Cl1—C31.730 (2)C5—C61.377 (3)
Cl2—C51.736 (2)C6—H60.93
O1—C21.344 (3)C7—H70.93
O1—H10.82C8—C91.490 (3)
O2—C81.219 (3)C9—C141.382 (3)
O3—C111.367 (3)C9—C101.393 (3)
O3—C151.417 (3)C10—C111.381 (3)
O4—C161.369 (4)C10—H100.93
O4—H40.82C11—C121.381 (3)
N1—C71.273 (3)C12—C131.358 (4)
N1—N21.371 (3)C12—H120.93
N2—C81.364 (3)C13—C141.381 (4)
N2—H20.899 (10)C13—H130.93
C1—C61.390 (3)C14—H140.93
C1—C21.402 (3)C15—H15A0.96
C1—C71.455 (3)C15—H15B0.96
C2—C31.393 (3)C15—H15C0.96
C3—C41.379 (3)C16—H16A0.96
C4—C51.374 (3)C16—H16B0.96
C4—H4A0.93C16—H16C0.96
C2—O1—H1109.5C14—C9—C10120.3 (2)
C11—O3—C15118.7 (2)C14—C9—C8116.0 (2)
C16—O4—H4109.5C10—C9—C8123.7 (2)
C7—N1—N2120.9 (2)C11—C10—C9119.0 (2)
C8—N2—N1115.25 (19)C11—C10—H10120.5
C8—N2—H2127.0 (19)C9—C10—H10120.5
N1—N2—H2117.7 (19)O3—C11—C10124.3 (2)
C6—C1—C2119.6 (2)O3—C11—C12115.3 (2)
C6—C1—C7119.6 (2)C10—C11—C12120.4 (2)
C2—C1—C7120.8 (2)C13—C12—C11120.3 (2)
O1—C2—C3118.0 (2)C13—C12—H12119.9
O1—C2—C1123.7 (2)C11—C12—H12119.9
C3—C2—C1118.2 (2)C12—C13—C14120.7 (2)
C4—C3—C2122.0 (2)C12—C13—H13119.7
C4—C3—Cl1119.52 (18)C14—C13—H13119.7
C2—C3—Cl1118.44 (18)C13—C14—C9119.5 (2)
C5—C4—C3118.8 (2)C13—C14—H14120.3
C5—C4—H4A120.6C9—C14—H14120.3
C3—C4—H4A120.6O3—C15—H15A109.5
C4—C5—C6120.9 (2)O3—C15—H15B109.5
C4—C5—Cl2119.08 (19)H15A—C15—H15B109.5
C6—C5—Cl2119.97 (19)O3—C15—H15C109.5
C5—C6—C1120.4 (2)H15A—C15—H15C109.5
C5—C6—H6119.8H15B—C15—H15C109.5
C1—C6—H6119.8O4—C16—H16A109.5
N1—C7—C1118.4 (2)O4—C16—H16B109.5
N1—C7—H7120.8H16A—C16—H16B109.5
C1—C7—H7120.8O4—C16—H16C109.5
O2—C8—N2120.4 (2)H16A—C16—H16C109.5
O2—C8—C9122.0 (2)H16B—C16—H16C109.5
N2—C8—C9117.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.90 (1)2.00 (1)2.881 (3)167 (3)
O4—H4···O20.822.352.989 (3)135
O4—H4···O2ii0.822.343.023 (3)141
O1—H1···N10.821.842.557 (3)145
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H12Cl2N2O3·CH4O
Mr371.21
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.742 (3), 9.070 (3), 12.296 (4)
α, β, γ (°)92.422 (5), 98.948 (5), 96.954 (5)
V3)845.0 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.27 × 0.23 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.898, 0.923
No. of measured, independent and
observed [I > 2σ(I)] reflections
6888, 3452, 2253
Rint0.029
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.131, 1.04
No. of reflections3452
No. of parameters224
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.24

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.899 (10)1.997 (12)2.881 (3)167 (3)
O4—H4···O20.822.352.989 (3)135
O4—H4···O2ii0.822.343.023 (3)141
O1—H1···N10.821.842.557 (3)145
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1.
 

References

First citationBhandari, S. V., Bothara, K. G., Raut, M. K., Patil, A. A., Sarkate, A. P. & Mokale, V. J. (2008). Bioorg. Med. Chem. 16, 1822–1831.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHerrick, R. S., Ziegler, C. J., Precopio, M., Crandall, K., Shaw, J. & Jarret, R. M. (2008). J. Organomet. Chem. 693, 619–624.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, H.-B., Wang, M., Wang, Y. & Gu, Q. (2007). Synth. Commun. 37, 3815–3826.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSinha, D., Tiwari, A. K., Singh, S., Shukla, G., Mishra, P., Chandra, H. & Mishra, A. K. (2008). Eur. J. Med. Chem. 43, 160–165.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSun, X.-H., Tao, Y., Liu, Y.-F., Jia, Y.-Q., Chen, B. & Yang, J.-W. (2008). Chin. J. Org. Chem. 28, 155–159.  CAS Google Scholar
First citationSuresh, P., Srimurugan, S. & Pati, H. N. (2007). Chem. Lett. 36, 1332–1333.  Web of Science CrossRef CAS Google Scholar
First citationTang, C.-B. (2008a). Acta Cryst. E64, o767.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTang, C.-B. (2008b). Acta Cryst. E64, o768.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, Y.-Z., Wang, M.-D., Diao, Y.-P. & Cai, Q. (2008). Acta Cryst. E64, o668.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYang, M.-H. & Zheng, Y.-F. (2007). Acta Cryst. E63, o4732.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds