organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-n-Butyl-1,2-benziso­thia­zol-3(2H)-one 1,1-dioxide

aXinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, Urumqi, 830011, People's Republic of China, bGraduate School of the Chinese Academy of Science, Beijing, 100039, People's Republic of China, and cCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
*Correspondence e-mail: qknhs@yahoo.com.cn

(Received 2 March 2008; accepted 20 March 2008; online 4 April 2008)

The crystal packing of the title compound, C11H13NO3S, exhibits weak inter­molecular C—H⋯O hydrogen bonding, which links mol­ecules related by translation along the b axis into chains, and ππ inter­actions [centroid–centroid distance of 3.778 (2) Å between benzene rings].

Related literature

For similar crystal structures, see: Feeder & Jones (1994[Feeder, N. & Jones, W. (1994). Acta Cryst. C50, 1118-1122.], 1996[Feeder, N. & Jones, W. (1996). Acta Cryst. C52, 2323-2326.]); Glidewell et al. (2000[Glidewell, C., Low, J. N. & Wardell, J. L. (2000). Acta Cryst. C56, 1462-1464.]). For related literature, see: Xiong (2004[Xiong, L. Z. (2004). Jingxi Huaxuepin, 21, 9-11.]); Rice & Pettit (1954[Rice, H. L. & Pettit, G. R. (1954). J. Am. Chem. Soc. 76, 302-303.]).

[Scheme 1]

Experimental

Crystal data
  • C11H13NO3S

  • Mr = 239.28

  • Triclinic, [P \overline 1]

  • a = 7.3130 (15) Å

  • b = 7.7219 (15) Å

  • c = 11.416 (2) Å

  • α = 102.76 (3)°

  • β = 94.23 (3)°

  • γ = 109.75 (3)°

  • V = 584.0 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 153 (2) K

  • 0.30 × 0.24 × 0.18 mm

Data collection
  • Rigaku R-AXIS RAPID IP area-detector diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.924, Tmax = 0.953

  • 4589 measured reflections

  • 2061 independent reflections

  • 1712 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.109

  • S = 1.08

  • 2061 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯O3ii 0.95 2.35 3.279 (2) 165
Symmetry code: (ii) x, y-1, z.

Data collection: RAPID-AUTO (Rigaku, 2004[Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Takyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, (I), also called THIAZONE, is a new skin penetration enhancer. The tests of penetration enhancing behaviors to berberine, ciclopirox olamino and cypermethrin show that penetration enhancing effect ofTHIAZONE is 2.99 times higher than that of AZONE. THIAZONE is widely applied in pharmaceutic industry, cosmetic and health care industry, agriculture and forest industry, and many others (Xiong, 2004). Herewith we report the crystal structure of (I).

In (I) (Fig. 1), all bond lengths and angles within the saccharin group are similar to those observed in the series of N-saccharin acids (Feeder & Jones, 1996), N-saccharin peracids (Feeder & Jones, 1994) and saccharin (Glidewell et al., 2000).

In the crystal, the relatively short distance between the centroids of benzene rings from neighbouring molecules (Table 1) suggests an existence of π···π interactions. The crystal packing exhibits also exhibits weak intermolecular C—H···O hydrogen bonds (Table 2), which link the molecules related by translation along b axis into chains.

Related literature top

For similar crystal structures, see: Feeder & Jones (1994, 1996); Glidewell et al. (2000). For related literature, see: Xiong (2004); Rice & Pettit (1954).

Experimental top

The title compound has been synthesized following the known procedure (Rice & Pettit, 1954). Saccharin sodium 2.65 g (0.011 mol) was dissolved in 20 ml of dried DMF. To the solution,1-butyl bromide 1.37 g (0.01 mol) was added. The mixture was stirred for half an hour at room temperature and then the mixture was heated with strring for 2 h at 100° C. The mixture was poured into water, and 2.50 g of the product were obtained (yield 95.7%). Single crystals suitable for X-ray measurement were obtained by recrystallization from dichloromethane at room temperature.

Refinement top

All H atoms were placed in idealized positions and constrained to ride on their parent atoms,with C—H distances of 0.95 (aromatic), 0.98 (CH3) and 0.99 Å (CH2),and with Uiso(H) values set at 1.5 Ueq(C)(for CH3) or 1.2 Ueq(C)(for CH2, aromatic CH).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO (Rigaku, 2004); data reduction: RAPID-AUTO (Rigaku, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering and displacement ellipsoids drawn at the 40% probability level.
2-n-Butyl-1,2-benzisothiazol-3(2H)-one 1,1-dioxide top
Crystal data top
C11H13NO3SZ = 2
Mr = 239.28F(000) = 252
Triclinic, P1Dx = 1.361 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3130 (15) ÅCell parameters from 1494 reflections
b = 7.7219 (15) Åθ = 2.6–26.4°
c = 11.416 (2) ŵ = 0.27 mm1
α = 102.76 (3)°T = 153 K
β = 94.23 (3)°Block, colourless
γ = 109.75 (3)°0.30 × 0.24 × 0.18 mm
V = 584.0 (2) Å3
Data collection top
Rigaku R-Axis Rapid IP area-detector
diffractometer
2061 independent reflections
Radiation source: Rotating Anode1712 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω Oscillation scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 88
Tmin = 0.924, Tmax = 0.953k = 99
4589 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0554P)2 + 0.1349P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2061 reflectionsΔρmax = 0.23 e Å3
146 parametersΔρmin = 0.27 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.129 (10)
Crystal data top
C11H13NO3Sγ = 109.75 (3)°
Mr = 239.28V = 584.0 (2) Å3
Triclinic, P1Z = 2
a = 7.3130 (15) ÅMo Kα radiation
b = 7.7219 (15) ŵ = 0.27 mm1
c = 11.416 (2) ÅT = 153 K
α = 102.76 (3)°0.30 × 0.24 × 0.18 mm
β = 94.23 (3)°
Data collection top
Rigaku R-Axis Rapid IP area-detector
diffractometer
2061 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1712 reflections with I > 2σ(I)
Tmin = 0.924, Tmax = 0.953Rint = 0.017
4589 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.08Δρmax = 0.23 e Å3
2061 reflectionsΔρmin = 0.27 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.42409 (7)0.81664 (7)0.72568 (5)0.0606 (2)
O10.3065 (2)0.7267 (2)0.80490 (15)0.0795 (5)
O20.6279 (2)0.8432 (2)0.74251 (17)0.0828 (5)
O30.3009 (2)1.1828 (2)0.60625 (15)0.0757 (5)
N10.4016 (2)1.0256 (2)0.73053 (15)0.0597 (4)
C10.3124 (3)0.7195 (3)0.57339 (18)0.0521 (5)
C20.2711 (3)0.5368 (3)0.5017 (2)0.0624 (5)
H2B0.30560.44550.53270.075*
C30.1780 (3)0.4928 (3)0.3836 (2)0.0685 (6)
H3A0.14890.36910.33170.082*
C40.1262 (3)0.6256 (3)0.3393 (2)0.0675 (6)
H4A0.06050.59100.25800.081*
C50.1682 (3)0.8068 (3)0.41115 (19)0.0603 (5)
H5A0.13320.89770.38000.072*
C60.2625 (3)0.8541 (3)0.52964 (18)0.0506 (4)
C70.3201 (3)1.0391 (3)0.62121 (19)0.0555 (5)
C80.4943 (3)1.1887 (3)0.8376 (2)0.0770 (7)
H8A0.53021.30730.81030.092*
H8B0.61781.18050.87310.092*
C90.3700 (4)1.2038 (4)0.9357 (2)0.0828 (7)
H9A0.33411.08510.96280.099*
H9B0.45091.31011.00610.099*
C100.1870 (4)1.2355 (4)0.9009 (3)0.0896 (8)
H10A0.09641.12050.83920.108*
H10B0.21961.34340.86290.108*
C110.0818 (5)1.2781 (4)1.0081 (3)0.1019 (9)
H11A0.03691.29870.97940.153*
H11B0.16981.39301.06900.153*
H11C0.04491.17011.04460.153*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0564 (3)0.0666 (4)0.0714 (4)0.0257 (3)0.0102 (2)0.0377 (3)
O10.0874 (11)0.0866 (11)0.0758 (10)0.0256 (9)0.0202 (8)0.0509 (9)
O20.0591 (9)0.0988 (12)0.1038 (12)0.0374 (8)0.0022 (8)0.0426 (10)
O30.0906 (11)0.0589 (9)0.0971 (12)0.0388 (8)0.0214 (9)0.0387 (8)
N10.0593 (10)0.0567 (10)0.0665 (10)0.0210 (8)0.0087 (8)0.0232 (8)
C10.0454 (10)0.0560 (11)0.0688 (12)0.0231 (8)0.0181 (8)0.0338 (9)
C20.0565 (11)0.0555 (11)0.0927 (16)0.0284 (9)0.0287 (11)0.0358 (11)
C30.0599 (13)0.0654 (13)0.0783 (15)0.0195 (10)0.0227 (11)0.0166 (11)
C40.0589 (12)0.0796 (15)0.0638 (13)0.0218 (11)0.0142 (10)0.0228 (11)
C50.0533 (11)0.0721 (13)0.0695 (13)0.0275 (10)0.0156 (9)0.0368 (11)
C60.0439 (9)0.0530 (10)0.0669 (11)0.0209 (8)0.0164 (8)0.0319 (9)
C70.0512 (11)0.0544 (11)0.0736 (13)0.0235 (9)0.0196 (9)0.0322 (9)
C80.0637 (14)0.0725 (15)0.0824 (16)0.0144 (11)0.0050 (12)0.0142 (12)
C90.0883 (17)0.0833 (16)0.0685 (14)0.0276 (14)0.0029 (12)0.0141 (12)
C100.0831 (17)0.0983 (19)0.0853 (17)0.0308 (15)0.0070 (14)0.0255 (14)
C110.104 (2)0.095 (2)0.107 (2)0.0410 (17)0.0282 (18)0.0150 (16)
Geometric parameters (Å, º) top
S1—O11.4243 (15)C5—C61.383 (3)
S1—O21.4265 (16)C5—H5A0.9500
S1—N11.6661 (17)C6—C71.476 (3)
S1—C11.747 (2)C8—C91.503 (3)
O3—C71.210 (2)C8—H8A0.9900
N1—C71.383 (3)C8—H8B0.9900
N1—C81.470 (3)C9—C101.481 (4)
C1—C21.384 (3)C9—H9A0.9900
C1—C61.386 (2)C9—H9B0.9900
C2—C31.381 (3)C10—C111.527 (4)
C2—H2B0.9500C10—H10A0.9900
C3—C41.383 (3)C10—H10B0.9900
C3—H3A0.9500C11—H11A0.9800
C4—C51.375 (3)C11—H11B0.9800
C4—H4A0.9500C11—H11C0.9800
Cg1···Cg1i3.778 (2)
O1—S1—O2117.55 (10)O3—C7—N1123.7 (2)
O1—S1—N1109.67 (10)O3—C7—C6126.81 (19)
O2—S1—N1109.17 (10)N1—C7—C6109.45 (16)
O1—S1—C1111.98 (10)N1—C8—C9115.25 (19)
O2—S1—C1112.60 (10)N1—C8—H8A108.5
N1—S1—C193.09 (9)C9—C8—H8A108.5
C7—N1—C8123.88 (18)N1—C8—H8B108.5
C7—N1—S1114.58 (14)C9—C8—H8B108.5
C8—N1—S1120.69 (15)H8A—C8—H8B107.5
C2—C1—C6121.99 (19)C10—C9—C8115.6 (2)
C2—C1—S1128.18 (16)C10—C9—H9A108.4
C6—C1—S1109.81 (15)C8—C9—H9A108.4
C3—C2—C1117.30 (19)C10—C9—H9B108.4
C3—C2—H2B121.3C8—C9—H9B108.4
C1—C2—H2B121.3H9A—C9—H9B107.4
C2—C3—C4121.1 (2)C9—C10—C11113.4 (2)
C2—C3—H3A119.4C9—C10—H10A108.9
C4—C3—H3A119.4C11—C10—H10A108.9
C5—C4—C3121.1 (2)C9—C10—H10B108.9
C5—C4—H4A119.4C11—C10—H10B108.9
C3—C4—H4A119.4H10A—C10—H10B107.7
C4—C5—C6118.64 (19)C10—C11—H11A109.5
C4—C5—H5A120.7C10—C11—H11B109.5
C6—C5—H5A120.7H11A—C11—H11B109.5
C5—C6—C1119.82 (19)C10—C11—H11C109.5
C5—C6—C7127.23 (17)H11A—C11—H11C109.5
C1—C6—C7112.96 (17)H11B—C11—H11C109.5
O1—S1—N1—C7117.32 (15)C4—C5—C6—C7179.82 (17)
O2—S1—N1—C7112.58 (16)C2—C1—C6—C50.2 (3)
C1—S1—N1—C72.65 (15)S1—C1—C6—C5178.69 (14)
O1—S1—N1—C872.84 (17)C2—C1—C6—C7179.99 (16)
O2—S1—N1—C857.26 (18)S1—C1—C6—C71.14 (19)
C1—S1—N1—C8172.49 (16)C8—N1—C7—O37.0 (3)
O1—S1—C1—C265.33 (19)S1—N1—C7—O3176.51 (15)
O2—S1—C1—C269.76 (19)C8—N1—C7—C6173.10 (17)
N1—S1—C1—C2177.99 (17)S1—N1—C7—C63.63 (19)
O1—S1—C1—C6113.43 (14)C5—C6—C7—O33.0 (3)
O2—S1—C1—C6111.48 (14)C1—C6—C7—O3177.15 (18)
N1—S1—C1—C60.77 (14)C5—C6—C7—N1176.82 (17)
C6—C1—C2—C30.2 (3)C1—C6—C7—N13.0 (2)
S1—C1—C2—C3178.82 (14)C7—N1—C8—C9101.9 (2)
C1—C2—C3—C40.7 (3)S1—N1—C8—C989.2 (2)
C2—C3—C4—C50.9 (3)N1—C8—C9—C1063.7 (3)
C3—C4—C5—C60.5 (3)C8—C9—C10—C11171.7 (2)
C4—C5—C6—C10.0 (3)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O3ii0.952.353.279 (2)165
Symmetry code: (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC11H13NO3S
Mr239.28
Crystal system, space groupTriclinic, P1
Temperature (K)153
a, b, c (Å)7.3130 (15), 7.7219 (15), 11.416 (2)
α, β, γ (°)102.76 (3), 94.23 (3), 109.75 (3)
V3)584.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.30 × 0.24 × 0.18
Data collection
DiffractometerRigaku R-Axis Rapid IP area-detector
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.924, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
4589, 2061, 1712
Rint0.017
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.109, 1.08
No. of reflections2061
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.27

Computer programs: RAPID-AUTO (Rigaku, 2004), SHELXTL (Sheldrick, 2008).

Selected interatomic distances (Å) top
Cg1···Cg1i3.778 (2)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O3ii0.952.353.279 (2)164.9
Symmetry code: (ii) x, y1, z.
 

Acknowledgements

We thank the Xinjiang Laboratory of Plant Resources and Natural Products Chemistry.

References

First citationFeeder, N. & Jones, W. (1994). Acta Cryst. C50, 1118–1122.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFeeder, N. & Jones, W. (1996). Acta Cryst. C52, 2323–2326.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N. & Wardell, J. L. (2000). Acta Cryst. C56, 1462–1464.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRice, H. L. & Pettit, G. R. (1954). J. Am. Chem. Soc. 76, 302–303.  CrossRef CAS Web of Science Google Scholar
First citationRigaku (2004). RAPID-AUTO. Rigaku Corporation, Takyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiong, L. Z. (2004). Jingxi Huaxuepin, 21, 9–11.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds