metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2-Formyl-6-meth­oxy­phenolato-κ2O1,O2)(perchlorato-κO)(1,10-phenanthroline-κ2N,N′)copper(II)

aMarine Drug and Food Institute, Ocean University of China, Qingdao 266003, People's Republic of China, and bDepartment of Plant Protection, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
*Correspondence e-mail: yantuanli@ouc.edu.cn

(Received 17 March 2008; accepted 11 April 2008; online 16 April 2008)

In the title mol­ecule, [Cu(C8H7O3)(ClO4)(C12H8N2)], the CuII ion is five-coordinated by two N atoms [Cu—N = 1.995 (3) and 2.022 (3) Å] from a 1,10-phenanthroline ligand, two O atoms [Cu—O = 1.908 (2) and 1.927 (2) Å] from an o-vanillin ligand and one O atom [Cu—O = 2.510 (3) Å] from a perchlorate anion in a distorted square-pyramidal geometry. Three O atoms of the perchlorate anion are rotationally disordered between two orientations, with occupancies of 0.525 (13) and 0.475 (13). In the crystal structure, two mol­ecules related by a centre of symmetry are paired in such a way that the phenolate O atom from one mol­ecule completes the distorted octa­hedral Cu coordination in another mol­ecule [Cu⋯O = 2.704 (2) Å].

Related literature

For general background, see: Janzen et al. (2004[Janzen, D. E., Wang, X. L., Carr, P. W. & Mann, K. R. (2004). Inorg. Chim. Acta, 357, 3317-3324.]). For related structures, see: Plieger et al. (2004[Plieger, P. G., Downard, A. J., Moubaraki, B., Murray, K. S. & Booker, S. (2004). Dalton Trans. pp. 2157-2165.]); Lin & Zeng (2006[Lin, Z.-D. & Zeng, W. (2006). Acta Cryst. E62, m1074-m1076.]); Youngme et al. (2005[Youngme, S., Phuengphai, P., Pakawatchai, C., van Albada, G. A., Tanase, S., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2005). Inorg. Chem. Commun. 8, 335-338.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C8H7O3)(ClO4)(C12H8N2)]

  • Mr = 494.33

  • Monoclinic, C 2/c

  • a = 22.332 (2) Å

  • b = 9.3986 (9) Å

  • c = 18.339 (2) Å

  • β = 96.733 (2)°

  • V = 3822.7 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.33 mm−1

  • T = 298 (2) K

  • 0.26 × 0.17 × 0.13 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.723, Tmax = 0.846

  • 9561 measured reflections

  • 3374 independent reflections

  • 2731 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.109

  • S = 1.00

  • 3374 reflections

  • 309 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.53 e Å−3

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Studies of complexes containing salicylaldehyde and its derivatives have been reported by Janzen et al. (2004) and other groups. The five-coordinated CuII complexes have been extensively investigated and the relationship between their structures and reactivities is of major importance. We report here the synthesis and structure of the title complex, (I).

In complex (I), the CuII ion is five-coordinated by N1 and N2 atoms from 1,10-phenanthroline ligand, O1 and O2 atoms from o-vanillin and O4 atom from perchlorate anion in a distorted square-pyramidal geometry. Atom O4 lies in the axial position and the equatorial positions are occupied by the other four donor atoms. The bond distances for Cu1—N1 and Cu1—N2 of 2.022 (3)Å and 1.995 (3)Å, respectively, are nearly as long as those found for the similar auxiliary phen ligand (Youngme et al., 2005). The bond lengths for Cu1—O1 and Cu1—O2 of 1.927 (2)Å and 1.908 (2) Å, respectively, are slightly shorter than those of reported o-vanillin complex [1.965 (2) and 1.9201 (17) Å; Lin & Zeng, 2006]. The Cu1—O4 bond distance of 2.510 (3)Å is in the range observed in analogous compound [2.381 (4)Å and 2.559 (4) Å; Plieger et al., 2004]. The larger angles around Cu are near 180°, so the ligands form a satisfactory N2 O2 square, with atom O4 inhabiting the axial position. In this way, a distorted square-pyramid is formed (Fig. 1). Three O atoms of perchlorate anion are rotationally disordered between two orientations with the occupancies of 0.525 (13) and 0.475 (13), respectively.

In the crystal, two molecules related by centre of symmetry are paired in such a way, that phenolate O atom from one molecule complete the distorted octahedral Cu coordination [Cu—O 2.704 (2) Å] in another molecule (Fig. 2).

Related literature top

For general background, see: Janzen et al. (2004). For related structures, see: Plieger et al. (2004); Lin & Zeng (2006); Youngme et al. (2005).

Experimental top

To a solution of Cu(ClO4)2.6H2O (2 mmol, 741 mg) in water (25 ml) was added the mixture of 1,10-phenanthroline (2 mmol, 396 mg), o-vanillin (2 mmol, 304 mg) and NaOH (2 mmol, 40 mg) in ethanol (30 ml) and water (10 ml). The resulting solution was refluxed for 3 h and then concentrated to 40 ml. On standing for a week at room temperature complex (I) formed as green crystals. The crystals were isolated, washed three times with methanol and dried in a vacuum desiccator using anhydrous CaCl2 (yield 86%). Analysis; calculated for C20H15ClN2O7Cu: C, 48.59; H, 3.06; N, 5.67%; Found: C, 48.61; H, 3.08; N, 5.64%.

Refinement top

H atoms were positioned geometrically [0.93 (CH) and 0.96 (CH3) Å] and constrained to ride on their parent atoms with Uiso(H) = 1.2 (1.5 for methyl) Ueq. Atoms of O5, O6 and O7 appeared to be disordered, and were refined as two parts (occupancy factors are 0.525 (13) and 0.475 (13), respectively).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-numbering scheme and 30% probability displacement ellipsoids. Only major part of the disordered perchlorate anion is drawn. H atoms omitted for clarity.
[Figure 2] Fig. 2. A portion of the crystal packing showing the paired molecules with the short intermolecular Cu···O distances (dashed lines) of 2.704 (2) Å. For disordered perchlorate anions, only major parts are drawn. H atoms omitted for clarity.
(2-Formyl-6-methoxyphenolato-κ2O1,O2)(perchlorato-κO)(1,10- phenanthroline-κ2N,N')copper(II) top
Crystal data top
[Cu(C8H7O3)(ClO4)(C12H8N2)]F(000) = 2008
Mr = 494.33Dx = 1.718 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3881 reflections
a = 22.332 (2) Åθ = 2.2–27.3°
b = 9.3986 (9) ŵ = 1.33 mm1
c = 18.339 (2) ÅT = 298 K
β = 96.733 (2)°Block, green
V = 3822.7 (7) Å30.26 × 0.17 × 0.13 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
3374 independent reflections
Radiation source: fine-focus sealed tube2731 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2622
Tmin = 0.723, Tmax = 0.846k = 911
9561 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0555P)2 + 9.3448P]
where P = (Fo2 + 2Fc2)/3
3374 reflections(Δ/σ)max = 0.001
309 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Cu(C8H7O3)(ClO4)(C12H8N2)]V = 3822.7 (7) Å3
Mr = 494.33Z = 8
Monoclinic, C2/cMo Kα radiation
a = 22.332 (2) ŵ = 1.33 mm1
b = 9.3986 (9) ÅT = 298 K
c = 18.339 (2) Å0.26 × 0.17 × 0.13 mm
β = 96.733 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3374 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2731 reflections with I > 2σ(I)
Tmin = 0.723, Tmax = 0.846Rint = 0.026
9561 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.01Δρmax = 0.52 e Å3
3374 reflectionsΔρmin = 0.53 e Å3
309 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.188504 (18)0.31643 (4)0.04538 (2)0.03647 (16)
Cl10.10243 (5)0.11761 (11)0.16636 (6)0.0566 (3)
N10.13385 (12)0.4848 (3)0.01905 (15)0.0371 (6)
N20.13152 (12)0.2220 (3)0.03161 (14)0.0335 (6)
O10.23634 (11)0.4265 (2)0.11935 (13)0.0423 (6)
O20.23876 (10)0.1526 (2)0.06151 (12)0.0384 (6)
O30.27110 (11)0.1131 (2)0.08481 (13)0.0454 (6)
O40.12199 (17)0.2487 (3)0.14103 (19)0.0820 (10)
O50.0588 (4)0.0750 (10)0.1043 (5)0.109 (4)0.525 (13)
O60.0777 (7)0.1165 (15)0.2296 (6)0.133 (6)0.525 (13)
O70.1471 (4)0.0082 (10)0.1615 (7)0.115 (5)0.525 (13)
O5'0.1432 (5)0.1020 (11)0.2320 (6)0.116 (5)0.475 (13)
O6'0.1046 (7)0.0038 (12)0.1247 (6)0.125 (5)0.475 (13)
O7'0.0456 (5)0.1427 (13)0.1921 (8)0.107 (5)0.475 (13)
C10.27125 (15)0.3732 (4)0.17002 (19)0.0397 (8)
H10.28730.43520.20680.048*
C20.28934 (14)0.2287 (4)0.17814 (18)0.0343 (7)
C30.27120 (14)0.1246 (4)0.12378 (17)0.0327 (7)
C40.29105 (15)0.0172 (4)0.13831 (17)0.0355 (7)
C50.32785 (15)0.0494 (4)0.20140 (19)0.0427 (8)
H50.34080.14270.20980.051*
C60.34618 (16)0.0553 (4)0.2532 (2)0.0471 (9)
H60.37140.03140.29540.057*
C70.32762 (16)0.1911 (4)0.24245 (19)0.0446 (9)
H70.34000.26010.27730.054*
C80.2885 (2)0.2566 (4)0.0982 (2)0.0574 (11)
H8A0.33170.26310.10470.086*
H8B0.27270.31430.05710.086*
H8C0.27290.28980.14170.086*
C90.13505 (17)0.6141 (4)0.0476 (2)0.0461 (9)
H90.16480.63640.08570.055*
C100.09285 (19)0.7191 (4)0.0221 (2)0.0562 (11)
H100.09450.80880.04360.067*
C110.04975 (18)0.6887 (4)0.0340 (2)0.0554 (11)
H110.02170.75770.05110.067*
C120.04740 (16)0.5535 (4)0.0665 (2)0.0470 (9)
C130.09052 (14)0.4546 (4)0.03700 (18)0.0362 (8)
C140.08937 (15)0.3117 (4)0.06422 (18)0.0360 (8)
C150.04546 (16)0.2703 (4)0.12121 (19)0.0451 (9)
C160.04672 (17)0.1275 (5)0.1436 (2)0.0528 (10)
H160.01860.09440.18110.063*
C170.08918 (18)0.0381 (4)0.1103 (2)0.0505 (9)
H170.09030.05630.12530.061*
C180.13112 (16)0.0874 (4)0.05372 (19)0.0420 (8)
H180.15950.02450.03090.050*
C190.00371 (17)0.5082 (5)0.1256 (2)0.0576 (11)
H190.02460.57320.14680.069*
C200.00277 (18)0.3747 (5)0.1509 (2)0.0582 (11)
H200.02650.34890.18900.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0394 (3)0.0299 (2)0.0376 (2)0.00616 (17)0.00553 (17)0.00138 (18)
Cl10.0526 (6)0.0501 (6)0.0662 (7)0.0052 (5)0.0029 (5)0.0124 (5)
N10.0390 (15)0.0334 (16)0.0393 (15)0.0047 (12)0.0065 (13)0.0045 (13)
N20.0315 (14)0.0320 (15)0.0366 (15)0.0019 (11)0.0017 (12)0.0044 (12)
O10.0485 (14)0.0300 (13)0.0458 (14)0.0028 (10)0.0058 (12)0.0011 (11)
O20.0459 (14)0.0338 (13)0.0321 (12)0.0084 (10)0.0096 (10)0.0003 (10)
O30.0582 (16)0.0298 (13)0.0453 (14)0.0069 (11)0.0066 (12)0.0024 (11)
O40.116 (3)0.054 (2)0.083 (2)0.0084 (19)0.041 (2)0.0074 (18)
O50.086 (6)0.104 (7)0.124 (7)0.020 (5)0.037 (5)0.023 (5)
O60.161 (17)0.153 (11)0.092 (8)0.031 (10)0.047 (8)0.032 (7)
O70.093 (7)0.081 (6)0.167 (12)0.014 (5)0.003 (6)0.038 (7)
O5'0.134 (10)0.098 (7)0.099 (8)0.017 (6)0.061 (6)0.027 (6)
O6'0.165 (16)0.085 (7)0.120 (9)0.016 (9)0.001 (9)0.035 (7)
O7'0.072 (7)0.105 (7)0.149 (13)0.001 (5)0.032 (6)0.031 (8)
C10.0415 (19)0.039 (2)0.0375 (19)0.0060 (16)0.0003 (16)0.0054 (16)
C20.0345 (17)0.0327 (18)0.0351 (17)0.0034 (14)0.0017 (14)0.0042 (14)
C30.0284 (16)0.0364 (18)0.0325 (17)0.0007 (13)0.0002 (13)0.0021 (15)
C40.0354 (17)0.0359 (19)0.0350 (18)0.0014 (14)0.0032 (14)0.0034 (15)
C50.042 (2)0.040 (2)0.045 (2)0.0049 (16)0.0004 (16)0.0116 (17)
C60.042 (2)0.057 (2)0.0379 (19)0.0005 (18)0.0116 (16)0.0134 (18)
C70.046 (2)0.050 (2)0.0356 (19)0.0080 (17)0.0036 (16)0.0003 (16)
C80.069 (3)0.033 (2)0.068 (3)0.0084 (19)0.000 (2)0.001 (2)
C90.052 (2)0.039 (2)0.048 (2)0.0036 (17)0.0075 (17)0.0036 (17)
C100.067 (3)0.036 (2)0.068 (3)0.0133 (19)0.020 (2)0.004 (2)
C110.051 (2)0.046 (2)0.071 (3)0.0207 (18)0.012 (2)0.019 (2)
C120.040 (2)0.050 (2)0.053 (2)0.0131 (17)0.0121 (17)0.0177 (19)
C130.0325 (17)0.041 (2)0.0352 (17)0.0056 (14)0.0064 (14)0.0131 (15)
C140.0327 (17)0.041 (2)0.0346 (17)0.0029 (14)0.0062 (14)0.0078 (15)
C150.0359 (19)0.057 (2)0.041 (2)0.0003 (17)0.0000 (15)0.0052 (18)
C160.046 (2)0.063 (3)0.046 (2)0.0093 (19)0.0073 (18)0.002 (2)
C170.055 (2)0.046 (2)0.050 (2)0.0061 (18)0.0014 (18)0.0046 (18)
C180.046 (2)0.037 (2)0.043 (2)0.0028 (16)0.0035 (16)0.0057 (16)
C190.040 (2)0.071 (3)0.060 (3)0.019 (2)0.0037 (18)0.018 (2)
C200.040 (2)0.078 (3)0.053 (2)0.007 (2)0.0105 (18)0.007 (2)
Geometric parameters (Å, º) top
Cu1—O21.908 (2)C5—H50.9300
Cu1—O11.927 (2)C6—C71.349 (5)
Cu1—N21.995 (3)C6—H60.9300
Cu1—N12.022 (3)C7—H70.9300
Cu1—O42.510 (3)C8—H8A0.9600
Cl1—O6'1.319 (10)C8—H8B0.9600
Cl1—O61.342 (11)C8—H8C0.9600
Cl1—O41.405 (3)C9—C101.406 (5)
Cl1—O7'1.424 (11)C9—H90.9300
Cl1—O5'1.429 (8)C10—C111.355 (6)
Cl1—O71.442 (9)C10—H100.9300
Cl1—O51.465 (8)C11—C121.402 (6)
N1—C91.322 (5)C11—H110.9300
N1—C131.357 (4)C12—C131.401 (5)
N2—C181.329 (4)C12—C191.436 (6)
N2—C141.350 (4)C13—C141.432 (5)
O1—C11.246 (4)C14—C151.402 (5)
O2—C31.305 (4)C15—C161.404 (6)
O3—C41.368 (4)C15—C201.431 (5)
O3—C81.417 (4)C16—C171.358 (5)
C1—C21.419 (5)C16—H160.9300
C1—H10.9300C17—C181.393 (5)
C2—C71.418 (5)C17—H170.9300
C2—C31.422 (5)C18—H180.9300
C3—C41.420 (5)C19—C201.337 (6)
C4—C51.372 (5)C19—H190.9300
C5—C61.395 (5)C20—H200.9300
O2—Cu1—O193.25 (9)C5—C4—C3120.6 (3)
O2—Cu1—N293.76 (10)C4—C5—C6121.1 (3)
O1—Cu1—N2172.89 (10)C4—C5—H5119.4
O2—Cu1—N1175.03 (10)C6—C5—H5119.4
O1—Cu1—N190.98 (11)C7—C6—C5120.5 (3)
N2—Cu1—N182.08 (11)C7—C6—H6119.7
O2—Cu1—O494.16 (11)C5—C6—H6119.7
O1—Cu1—O488.20 (11)C6—C7—C2120.1 (3)
N2—Cu1—O490.07 (12)C6—C7—H7119.9
N1—Cu1—O488.58 (11)C2—C7—H7119.9
O6'—Cl1—O6122.8 (8)O3—C8—H8A109.5
O6'—Cl1—O4119.1 (5)O3—C8—H8B109.5
O6—Cl1—O4117.9 (6)H8A—C8—H8B109.5
O6'—Cl1—O7'114.9 (8)O3—C8—H8C109.5
O6—Cl1—O7'40.6 (6)H8A—C8—H8C109.5
O4—Cl1—O7'106.8 (5)H8B—C8—H8C109.5
O6'—Cl1—O5'110.0 (7)N1—C9—C10122.1 (4)
O6—Cl1—O5'63.8 (8)N1—C9—H9118.9
O4—Cl1—O5'100.1 (5)C10—C9—H9118.9
O7'—Cl1—O5'104.0 (8)C11—C10—C9119.6 (4)
O6'—Cl1—O746.6 (6)C11—C10—H10120.2
O6—Cl1—O7114.0 (8)C9—C10—H10120.2
O4—Cl1—O7111.2 (4)C10—C11—C12120.1 (3)
O7'—Cl1—O7141.9 (6)C10—C11—H11119.9
O5'—Cl1—O766.6 (6)C12—C11—H11119.9
O6'—Cl1—O552.7 (6)C13—C12—C11116.6 (4)
O6—Cl1—O5111.5 (7)C13—C12—C19118.0 (4)
O4—Cl1—O5100.8 (4)C11—C12—C19125.3 (4)
O7'—Cl1—O576.5 (7)N1—C13—C12123.4 (3)
O5'—Cl1—O5157.9 (5)N1—C13—C14116.3 (3)
O7—Cl1—O599.1 (7)C12—C13—C14120.3 (3)
C9—N1—C13118.2 (3)N2—C14—C15123.2 (3)
C9—N1—Cu1129.9 (3)N2—C14—C13116.6 (3)
C13—N1—Cu1111.9 (2)C15—C14—C13120.2 (3)
C18—N2—C14118.7 (3)C14—C15—C16116.6 (3)
C18—N2—Cu1128.4 (2)C14—C15—C20118.1 (4)
C14—N2—Cu1112.9 (2)C16—C15—C20125.4 (4)
C1—O1—Cu1123.8 (2)C17—C16—C15119.8 (3)
C3—O2—Cu1123.7 (2)C17—C16—H16120.1
C4—O3—C8116.3 (3)C15—C16—H16120.1
Cl1—O4—Cu1133.3 (2)C16—C17—C18120.2 (4)
O1—C1—C2127.5 (3)C16—C17—H17119.9
O1—C1—H1116.3C18—C17—H17119.9
C2—C1—H1116.3N2—C18—C17121.6 (3)
C7—C2—C1117.5 (3)N2—C18—H18119.2
C7—C2—C3120.4 (3)C17—C18—H18119.2
C1—C2—C3122.1 (3)C20—C19—C12121.5 (4)
O2—C3—C4118.8 (3)C20—C19—H19119.3
O2—C3—C2123.9 (3)C12—C19—H19119.3
C4—C3—C2117.2 (3)C19—C20—C15121.9 (4)
O3—C4—C5124.9 (3)C19—C20—H20119.0
O3—C4—C3114.6 (3)C15—C20—H20119.0

Experimental details

Crystal data
Chemical formula[Cu(C8H7O3)(ClO4)(C12H8N2)]
Mr494.33
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)22.332 (2), 9.3986 (9), 18.339 (2)
β (°) 96.733 (2)
V3)3822.7 (7)
Z8
Radiation typeMo Kα
µ (mm1)1.33
Crystal size (mm)0.26 × 0.17 × 0.13
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.723, 0.846
No. of measured, independent and
observed [I > 2σ(I)] reflections
9561, 3374, 2731
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.109, 1.01
No. of reflections3374
No. of parameters309
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.53

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This project was supported by the National Natural Science Foundation of China (grant No. 20471056) and the PhD Program Foundation of the Ministry of Education of China (grant No. 20060423005).

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJanzen, D. E., Wang, X. L., Carr, P. W. & Mann, K. R. (2004). Inorg. Chim. Acta, 357, 3317–3324.  Web of Science CSD CrossRef CAS Google Scholar
First citationLin, Z.-D. & Zeng, W. (2006). Acta Cryst. E62, m1074–m1076.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPlieger, P. G., Downard, A. J., Moubaraki, B., Murray, K. S. & Booker, S. (2004). Dalton Trans. pp. 2157–2165.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoungme, S., Phuengphai, P., Pakawatchai, C., van Albada, G. A., Tanase, S., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2005). Inorg. Chem. Commun. 8, 335–338.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds