metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­(benzyl­oxyacetato)copper(II)

aMonitoring Center of Marine Resources and the Environment, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China, and bDepartment of Applied Chemistry, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China
*Correspondence e-mail: liujiwei0706@163.com

(Received 7 April 2008; accepted 17 April 2008; online 23 April 2008)

In the title mononuclear complex, [Cu(C9H9O3)2(H2O)2], the CuII ion, located on an inversion center, is hexa­coordinated by four O atoms from two benzyl­oxyacetate ligands [Cu—O = 1.9420 (14) and 2.2922 (14) Å] and two water mol­ecules [Cu—O = 2.0157 (15) Å] in a distorted octa­hedral geometry. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into layers parallel to the bc plane.

Related literature

For general background, see: Eddaoudi et al. (2005[Eddaoudi, M., Chen, B., O'Keeffe, M. & Yaghi, O. M. (2005). J. Am. Chem. Soc. 127, 1504-1510.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C9H9O3)2(H2O)2]

  • Mr = 429.91

  • Monoclinic, P 21 /c

  • a = 11.8847 (4) Å

  • b = 7.1509 (2) Å

  • c = 11.6564 (5) Å

  • β = 110.283 (3)°

  • V = 929.21 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.22 mm−1

  • T = 296 (2) K

  • 0.32 × 0.24 × 0.18 mm

Data collection
  • Bruker P4/APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.711, Tmax = 0.803

  • 7991 measured reflections

  • 2144 independent reflections

  • 1606 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.082

  • S = 1.03

  • 2144 reflections

  • 130 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O2i 0.839 (9) 1.978 (12) 2.796 (2) 165 (2)
O1W—H1W2⋯O2ii 0.83 (2) 1.964 (10) 2.788 (2) 173 (2)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Current interests in supramolecular chemistry are rapidly expanding for their intriguing architectures and potential applications (Eddaoudi et al., 2005). The organic aromatic carboxylate ligand, benzyloxyacetate, has various coordination modes and can link metal centres through carboxylate groups or/and benzyloxy group into different extended architectures. Therefore, benzyloxyacetate can be considered as a good candidate to construct various metal-organic complexes. Herein we report the crystal structure of the title mononuclear complex of benzyloxyacetate, [Cu(C9H9O3)2(H2O)2], (I).

As illustrated in Fig. 1, the CuII ion lies on an inversion center and displays an octahedral geometry defined by four carboxylate O atoms from two different benzyloxyacetate ligands and two water molecules. The Cu—O and Cu—Ow bond lengths are 1.942 (1), 2.292 (1) and 2.016 (2) Å, respectively. The characteristic CO(carboxylate) bond lengths suggest electron localization of the carboxylate groups of the anionic ligands. In the crystal structure, intermolecular hydrogen bonds (Table 1) give rise to a supramolecular structure.

Related literature top

For general background, see: Eddaoudi et al. (2005).

Experimental top

The ligand, benzyloxyacetic acid was commercially available and used without further purification. The title complex was prepared by the addition of Cu(Ac)2.H2O (4.00 g, 20 mmol) to a hot aqueous solution of benzyloxyacetic acid (1.66 g, 10 mmol); the pH was adjusted to 6 with 0.1M sodium hydroxide. The solution was allowed to evaporate at room temperature. Blue prismatic crystals were separated from the filtered solution after several days. C&H analysis. Calc. for C18H22CuO8: C 50.28, H 5.16%. Found: C 50.26, H 5.17%.

Refinement top

The C-bound H atoms were placed in calculated positions, with C—H = 0.93 or 0.97 Å, and were refined in the riding-model approximation, with Uiso(H) = 1.2Ueq(C). The H atoms of the water molecule were located in a difference Fourier map and refined with bond restrint O—H = 0.84 (2) Å in the riding-model approximation, with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering and 30% probability displacement ellipsoids [symmetry code: (i) -x+1, -y, -z+1].
Diaquabis(benzyloxyacetato)copper(II) top
Crystal data top
[Cu(C9H9O3)2(H2O)2]F(000) = 446
Mr = 429.91Dx = 1.536 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7991 reflections
a = 11.8847 (4) Åθ = 1.8–27.6°
b = 7.1509 (2) ŵ = 1.22 mm1
c = 11.6564 (5) ÅT = 296 K
β = 110.283 (3)°Prism, blue
V = 929.21 (6) Å30.32 × 0.24 × 0.18 mm
Z = 2
Data collection top
Bruker P4
diffractometer
2144 independent reflections
Radiation source: fine-focus sealed tube1606 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 10.000 pixels mm-1θmax = 27.6°, θmin = 1.8°
ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 98
Tmin = 0.711, Tmax = 0.803l = 1510
7991 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0429P)2]
where P = (Fo2 + 2Fc2)/3
2144 reflections(Δ/σ)max < 0.001
130 parametersΔρmax = 0.40 e Å3
3 restraintsΔρmin = 0.57 e Å3
Crystal data top
[Cu(C9H9O3)2(H2O)2]V = 929.21 (6) Å3
Mr = 429.91Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.8847 (4) ŵ = 1.22 mm1
b = 7.1509 (2) ÅT = 296 K
c = 11.6564 (5) Å0.32 × 0.24 × 0.18 mm
β = 110.283 (3)°
Data collection top
Bruker P4
diffractometer
2144 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1606 reflections with I > 2σ(I)
Tmin = 0.711, Tmax = 0.803Rint = 0.035
7991 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0343 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.40 e Å3
2144 reflectionsΔρmin = 0.57 e Å3
130 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.00000.50000.02860 (13)
O10.47417 (14)0.2249 (2)0.58090 (13)0.0345 (4)
O20.53762 (17)0.4957 (2)0.67150 (14)0.0417 (4)
O30.66880 (13)0.1742 (2)0.52517 (14)0.0407 (4)
O1W0.42562 (15)0.1187 (2)0.33393 (14)0.0374 (4)
C10.5503 (2)0.3554 (3)0.61482 (17)0.0325 (5)
C20.6644 (2)0.3444 (3)0.5852 (2)0.0376 (5)
C30.7506 (2)0.1723 (4)0.4603 (2)0.0442 (6)
C40.8798 (2)0.1745 (3)0.54208 (19)0.0341 (5)
C50.9166 (2)0.0908 (4)0.6556 (2)0.0427 (6)
C61.0355 (3)0.0908 (4)0.7283 (2)0.0510 (7)
C71.1196 (2)0.1751 (4)0.6891 (2)0.0513 (7)
C81.0844 (2)0.2568 (4)0.5758 (3)0.0507 (7)
C90.9650 (2)0.2583 (4)0.5025 (2)0.0430 (6)
H1W10.425 (2)0.2360 (13)0.335 (2)0.056*
H1W20.457 (2)0.075 (3)0.286 (2)0.056*
H2A0.66750.44860.53310.045*
H2B0.73330.35300.66010.045*
H3A0.73520.28030.40670.053*
H3B0.73610.06120.40940.053*
H5A0.86040.03390.68330.051*
H6A1.05930.03330.80450.061*
H7A1.19980.17680.73920.062*
H8A1.14140.31150.54820.061*
H9A0.94160.31570.42620.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0348 (2)0.0229 (2)0.03073 (19)0.00185 (16)0.01464 (16)0.00319 (15)
O10.0435 (9)0.0261 (8)0.0393 (8)0.0028 (7)0.0212 (7)0.0052 (7)
O20.0643 (11)0.0267 (9)0.0400 (8)0.0002 (8)0.0254 (8)0.0066 (7)
O1W0.0465 (10)0.0316 (9)0.0357 (8)0.0020 (8)0.0160 (7)0.0004 (7)
C10.0444 (13)0.0287 (12)0.0245 (9)0.0028 (10)0.0122 (10)0.0021 (9)
C20.0400 (13)0.0300 (13)0.0423 (12)0.0057 (10)0.0136 (11)0.0086 (10)
O30.0369 (9)0.0375 (9)0.0537 (9)0.0061 (7)0.0234 (8)0.0147 (8)
C30.0414 (14)0.0559 (17)0.0389 (12)0.0013 (12)0.0188 (11)0.0086 (11)
C40.0382 (12)0.0335 (12)0.0347 (11)0.0017 (10)0.0178 (10)0.0028 (9)
C50.0493 (16)0.0419 (14)0.0427 (12)0.0061 (12)0.0233 (12)0.0054 (11)
C60.0590 (18)0.0537 (17)0.0393 (13)0.0205 (14)0.0158 (13)0.0053 (12)
C70.0400 (14)0.0482 (17)0.0584 (15)0.0070 (13)0.0077 (13)0.0118 (13)
C80.0413 (15)0.0456 (16)0.0726 (18)0.0036 (12)0.0289 (14)0.0005 (14)
C90.0453 (14)0.0432 (15)0.0459 (13)0.0038 (11)0.0225 (12)0.0055 (11)
Geometric parameters (Å, º) top
Cu1—O11.9420 (14)C3—C41.500 (3)
Cu1—O32.2922 (14)C3—H3A0.9700
Cu1—O1W2.0157 (15)C3—H3B0.9700
O1—C11.264 (3)C4—C51.379 (3)
O2—C11.239 (2)C4—C91.386 (3)
Cu1—O1i1.9420 (14)C5—C61.372 (4)
Cu1—O3i2.2922 (14)C5—H5A0.9300
Cu1—O1Wi2.0157 (15)C6—C71.374 (4)
O3—C31.424 (2)C6—H6A0.9300
O1W—H1W10.839 (9)C7—C81.370 (4)
O1W—H1W20.83 (2)C7—H7A0.9300
C1—C21.512 (3)C8—C91.380 (4)
C2—O31.414 (2)C8—H8A0.9300
C2—H2A0.9700C9—H9A0.9300
C2—H2B0.9700
O1i—Cu1—O1180.00 (7)C1—C2—H2B109.6
O1i—Cu1—O3103.51 (6)C2—O3—C3114.88 (17)
O1—Cu1—O376.49 (6)C2—O3—Cu1110.48 (12)
O1i—Cu1—O1W88.45 (6)C3—O3—Cu1130.94 (13)
O1—Cu1—O1W91.55 (6)C4—C3—H3A108.9
O3—Cu1—O3i180.0C4—C3—H3B108.9
O1W—Cu1—O388.11 (6)C4—C5—H5A119.7
O1Wi—Cu1—O391.89 (6)C4—C9—H9A119.9
O1W—Cu1—O1Wi180.0C5—C4—C9118.8 (2)
Cu1—O1W—H1W1114.0 (18)C5—C4—C3121.3 (2)
Cu1—O1W—H1W2109.5 (18)C5—C6—C7120.4 (2)
O1i—Cu1—O3i76.49 (6)C5—C6—H6A119.8
O1—Cu1—O3i103.51 (6)C6—C5—C4120.6 (2)
O1i—Cu1—O1Wi91.55 (6)C6—C5—H5A119.7
O1—Cu1—O1Wi88.45 (6)C6—C7—H7A120.2
O1—C1—C2119.44 (18)C7—C6—H6A119.8
O2—C1—O1123.9 (2)C7—C8—C9120.3 (2)
O2—C1—C2116.6 (2)C7—C8—H8A119.9
O3—C2—C1110.35 (18)C8—C7—C6119.6 (2)
O3—C2—H2A109.6C8—C7—H7A120.2
O3—C2—H2B109.6C8—C9—C4120.3 (2)
O3—C3—C4113.51 (18)C8—C9—H9A119.9
O3—C3—H3A108.9C9—C8—H8A119.9
O3—C3—H3B108.9C9—C4—C3119.9 (2)
O1W—Cu1—O3i91.89 (6)H1W1—O1W—H1W2113.6 (15)
O1Wi—Cu1—O3i88.11 (6)H2A—C2—H2B108.1
C1—O1—Cu1123.14 (13)H3A—C3—H3B107.7
C1—C2—H2A109.6
Cu1—O1—C1—O2176.53 (15)O1W—Cu1—O3—C292.76 (14)
Cu1—O1—C1—C23.9 (3)O1Wi—Cu1—O3—C287.24 (14)
Cu1—O3—C3—C4134.22 (17)O1W—Cu1—O3—C363.95 (19)
O1i—Cu1—O3—C2179.29 (13)O1Wi—Cu1—O3—C3116.05 (19)
O1—Cu1—O3—C20.71 (13)C1—C2—O3—C3161.48 (18)
O1i—Cu1—O3—C324.0 (2)C1—C2—O3—Cu10.7 (2)
O1—Cu1—O3—C3156.0 (2)C2—O3—C3—C469.9 (3)
O1—C1—C2—O32.8 (3)C3—C4—C5—C6178.6 (2)
O2—C1—C2—O3177.60 (17)C3—C4—C9—C8178.3 (2)
O3—Cu1—O1—C12.51 (15)C4—C5—C6—C70.3 (4)
O3i—Cu1—O1—C1177.49 (15)C5—C4—C9—C80.2 (3)
O3—C3—C4—C531.9 (3)C5—C6—C7—C81.2 (4)
O3—C3—C4—C9149.7 (2)C6—C7—C8—C91.5 (4)
O1W—Cu1—O1—C190.19 (16)C7—C8—C9—C41.0 (4)
O1Wi—Cu1—O1—C189.81 (16)C9—C4—C5—C60.1 (3)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O2ii0.84 (1)1.98 (1)2.796 (2)165 (2)
O1W—H1W2···O2iii0.83 (2)1.96 (1)2.788 (2)173 (2)
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu(C9H9O3)2(H2O)2]
Mr429.91
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.8847 (4), 7.1509 (2), 11.6564 (5)
β (°) 110.283 (3)
V3)929.21 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.22
Crystal size (mm)0.32 × 0.24 × 0.18
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.711, 0.803
No. of measured, independent and
observed [I > 2σ(I)] reflections
7991, 2144, 1606
Rint0.035
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.082, 1.03
No. of reflections2144
No. of parameters130
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.57

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O2i0.839 (9)1.978 (12)2.796 (2)165 (2)
O1W—H1W2···O2ii0.83 (2)1.964 (10)2.788 (2)173 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z1/2.
 

Acknowledgements

This work was supported by Guangdong Ocean University (Project Nos. 0612178 and 0612179) and Zhanjiang City Technology Tender (Project No. 0810014).

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEddaoudi, M., Chen, B., O'Keeffe, M. & Yaghi, O. M. (2005). J. Am. Chem. Soc. 127, 1504–1510.  CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds