metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido(2-chloro-9-mesityl-1,10-phenanthroline-κ2N,N′)cobalt(II) di­chloro­methane hemisolvate

aState Key Laboratory for Oxo Synthesis & Selective Oxidation, Lanzhou Institute of Chemical Physics, CAS, Lanzhou 730000, People's Republic of China, and bGraduate University of the Chinese Academy of Sciences, Beijing 100049, People's Republic of China
*Correspondence e-mail: wubiao@lzb.ac.cn

(Received 21 February 2008; accepted 17 March 2008; online 4 April 2008)

The title compound, [CoCl2(C21H17ClN2)]·0.5CH2Cl2, crystallizes from dichloro­methane as a 2:1 solvate [CoCl2L]2·CH2Cl2 (L is 2-chloro-9-mesityl-1,10-phenanthroline). There are two independent CoCl2L mol­ecules in the asymmetric unit and both mol­ecules have similar conformations. They are connected by a weak C—H⋯π inter­action involving the mesityl ring. The cobalt center is four-coordinated by the two N-atom donors of the bidentate ligand and two chloride ions in a distorted tetra­hedral geometry. The packing of the mol­ecules is stabilized by weak slipped ππ stacking inter­actions between symmetry-related phenanthroline groups.

Related literature

For related literature, see: Britovsek et al. (1998[Britovsek, G. J. P., Gibson, V. C., McTavish, S. J., Solan, G. A., White, A. J. P., Williams, D. J., Kimberley, B. S. & Maddox, P. J. (1998). Chem. Commun. pp. 849-850.]); Garas & Vagg (2000[Garas, A. M. S. & Vagg, R. S. (2000). J. Heterocycl. Chem. 37, 151-158.]); Gibson & Spitzmesser (2003[Gibson, V. C. & Spitzmesser, S. K. (2003). Chem. Rev. 103, 283-315.]); Sauvage (1990[Sauvage, J. P. (1990). Acc. Chem. Res. 23, 319-327.]); Small & Brookhart (1998[Small, B. L. & Brookhart, M. (1998). J. Am. Chem. Soc. 120, 7143-7144.]).

[Scheme 1]

Experimental

Crystal data
  • [CoCl2(C21H17ClN2)]·0.5CH2Cl2

  • Mr = 505.11

  • Triclinic, [P \overline 1]

  • a = 9.8830 (3) Å

  • b = 15.3591 (5) Å

  • c = 15.6544 (5) Å

  • α = 79.964 (1)°

  • β = 78.094 (1)°

  • γ = 74.515 (1)°

  • V = 2222.75 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.26 mm−1

  • T = 293 (2) K

  • 0.45 × 0.36 × 0.25 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.688, Tmax = 1.000 (expected range = 0.501–0.729)

  • 13275 measured reflections

  • 9215 independent reflections

  • 5134 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.159

  • S = 1.02

  • 9215 reflections

  • 520 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯Cg1i 0.93 2.59 3.470 (5) 157
Symmetry code: (i) x-1, y, z. Cg1 is the centroid of the mesityl ring.

Table 2
Possible ππ stacking interactions (Å, °)

  Centroid–centroid α CgI-perp CgJ-perp slippage
Cg2 – Cg2i 3.877 (3) 0.0 3.712 3.712 1.12
Cg2 – Cg3i 3.923 (3) 0.49 3.712 3.701 1.23
Cg4 – Cg4ii 3.992 (3) 0.02 3.490 3.490 1.94
Symmetry codes: (i) -x, 2-y, -z; (ii) 2-x, -y, 1-z. CgICgJ = distance between ring centroids; α = dihedral angle between planes I and J; CgI–perp = perpendicular distance of Cg(I) from ring J; CgJ-perp = perpendicular distance of Cg(J) from ring I; slippage = distance between Cg(I) and perpendicular projection of Cg(J) on ring I. Cg2 is the centroid of atoms N1,C1–C4,C12; Cg3 is the centroid of atoms C4–C7,C11,C12; Cg4 is the centroid of atoms N3,C22–C25,C33.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Since CoII complexes have been found to have high catalytic activities for the ethylene polymerization, much research interest has been inspired in cobalt metal catalysis systems over the past decade (Small & Brookhart, 1998; Britovsek et al.,1998). Research in this area frequently involves the design of new ancillary ligands to support and activate the metal center toward polymerization (Gibson & Spitzmesser, 2003). 1,10-Phenanthroline and its derivatives are well established ligands in transition metal coordination chemistry because their steric and electronic environment can be conveniently tailored by varying the substituents (Sauvage,1990). The title complex is one of cobaltII dihalide complexes which we have designed and its crystal structure is presented here.

The asymmetric unit contains two independent CoCl2L molecules with similar conformation and a CH2Cl2 solvent molecule (Fig. 1). The two CoCl2L units are connected by a weak C—H···π interaction involving the mesityl ring (Table 1). The cobalt center is four-coordinated by the two nitrogen donors of the bidentate ligand and two chloride ions forming a distorted tetrahedron, with the dihedral angle of the N—Co—N and Cl—Co—Cl planes being 88.53/88.52°. The dihedral angle between the phenanthroline moiety and the attached mesityl substituent is 85.51/83.42°.

The packing of the molecules is stabilized by weak slipped π-π stacking interactions between symmetry related phenanthroline rings (Table 2).

Related literature top

For related literature, see: Britovsek et al. (1998); Garas & Vagg (2000); Gibson & Spitzmesser (2003); Sauvage (1990); Small & Brookhart (1998).

Experimental top

The ligand 2-chloro-9-mesityl-1,10-phenanthroline was synthesized according to a modified procedure (Garas & Vagg, 2000) as a pale yellow solid in 62.0% yield. M.p.: 515–516 K. ESI-MS: m/z 333.3 [M+H]+. 1H NMR (CDCl3, δ/p.p.m.): 8.28 (1H, d, J = 8.4 Hz, H4), 8.20 (1H, d, J = 8.8 Hz, H7), 7.86 (1H, d, J = 8.8 Hz, H3), 7.80 (1H, d, J = 8.8 Hz, H8), 7.61 (1H, d, J = 8.8 Hz, H5), 7.59 (1H, d, J = 8.8 Hz, H6), 6.97 (2H, s, Ph—H), 2.35 (3H, s, p-CH3), 2.13 (6H, s, o-CH3). And the title compound was readily synthesized in excellent yield through the following method: a solution of CoCl2.6H2O (0.80 g, 0.0034 mol) and the ligand (1.12 g, 0.0034 mol) in tetrahydrofuran was stirred at room temperature for 12 h, giving a light green suspension. The precipitate was collected, washed repeatedly with diethyl ether and dried under vacuum to yield the title compound (1.48 g, 95.6%). Mp: > 573 K. Anal. Calcd for C21H17N2CoCl3 (462.66): C 54.52, H 3.70, N 6.05%; Found: C 54.46, H 3.68, N 6.10%.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97Å (methylene) or 0.93 Å (aromatic) with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(methyl).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms and the solvent molecule have been omitted for clarity.
Dichlorido(2-chloro-9-mesityl-1,10-phenanthroline-κ2N,N')cobalt(II) dichloromethane hemisolvate top
Crystal data top
[CoCl2(C21H17ClN2)]·0.5CH2Cl2Z = 4
Mr = 505.11F(000) = 1024
Triclinic, P1Dx = 1.509 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.8830 (3) ÅCell parameters from 2211 reflections
b = 15.3591 (5) Åθ = 2.4–20.6°
c = 15.6544 (5) ŵ = 1.26 mm1
α = 79.964 (1)°T = 293 K
β = 78.094 (1)°Prism, blue
γ = 74.515 (1)°0.45 × 0.36 × 0.25 mm
V = 2222.75 (12) Å3
Data collection top
Bruker APEXII
diffractometer
9215 independent reflections
Radiation source: fine-focus sealed tube5134 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 26.8°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 129
Tmin = 0.688, Tmax = 1.000k = 1918
13275 measured reflectionsl = 1917
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0717P)2]
where P = (Fo2 + 2Fc2)/3
9215 reflections(Δ/σ)max = 0.002
520 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.69 e Å3
Crystal data top
[CoCl2(C21H17ClN2)]·0.5CH2Cl2γ = 74.515 (1)°
Mr = 505.11V = 2222.75 (12) Å3
Triclinic, P1Z = 4
a = 9.8830 (3) ÅMo Kα radiation
b = 15.3591 (5) ŵ = 1.26 mm1
c = 15.6544 (5) ÅT = 293 K
α = 79.964 (1)°0.45 × 0.36 × 0.25 mm
β = 78.094 (1)°
Data collection top
Bruker APEXII
diffractometer
9215 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
5134 reflections with I > 2σ(I)
Tmin = 0.688, Tmax = 1.000Rint = 0.025
13275 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.02Δρmax = 0.44 e Å3
9215 reflectionsΔρmin = 0.69 e Å3
520 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.32238 (6)0.79829 (4)0.05811 (4)0.04711 (18)
Co20.80414 (6)0.23178 (4)0.34801 (4)0.0570 (2)
Cl10.41735 (14)0.98271 (9)0.08111 (9)0.0757 (4)
Cl20.31739 (13)0.86836 (8)0.17136 (8)0.0665 (3)
Cl30.52745 (12)0.71461 (9)0.00237 (9)0.0693 (4)
Cl40.7295 (2)0.02459 (11)0.43135 (13)0.1119 (6)
Cl50.66100 (16)0.23526 (12)0.25601 (12)0.0995 (5)
Cl60.72549 (15)0.27227 (9)0.48148 (9)0.0774 (4)
Cl70.7761 (2)0.26354 (17)0.52141 (14)0.1424 (8)
Cl80.6046 (3)0.16227 (19)0.3978 (2)0.2024 (14)
N10.2218 (3)0.8907 (2)0.0376 (2)0.0470 (8)
N20.1439 (3)0.7478 (2)0.0720 (2)0.0404 (8)
N30.9359 (4)0.1022 (2)0.3618 (2)0.0610 (10)
N40.9946 (3)0.2638 (2)0.2955 (2)0.0459 (8)
C10.2594 (5)0.9605 (3)0.0895 (3)0.0565 (12)
C20.1767 (5)1.0170 (3)0.1498 (3)0.0645 (13)
H20.20791.06510.18600.077*
C30.0504 (5)1.0002 (3)0.1544 (3)0.0630 (13)
H30.00621.03770.19340.076*
C40.0039 (5)0.9259 (3)0.1000 (3)0.0495 (11)
C50.1263 (5)0.9048 (3)0.1012 (3)0.0559 (11)
H50.18650.94080.13900.067*
C60.1641 (5)0.8330 (3)0.0479 (3)0.0570 (12)
H60.24930.81940.05040.068*
C70.0754 (4)0.7777 (3)0.0121 (3)0.0486 (10)
C80.1120 (5)0.7038 (3)0.0705 (3)0.0597 (12)
H80.19700.68830.07120.072*
C90.0219 (5)0.6555 (3)0.1258 (3)0.0561 (12)
H90.04470.60570.16360.067*
C100.1054 (4)0.6791 (3)0.1273 (3)0.0439 (10)
C110.0545 (4)0.7974 (3)0.0149 (3)0.0416 (9)
C120.0954 (4)0.8733 (3)0.0432 (3)0.0453 (10)
C130.1957 (4)0.6275 (3)0.1945 (3)0.0426 (10)
C140.1613 (5)0.6522 (3)0.2786 (3)0.0534 (11)
C150.2371 (5)0.6000 (4)0.3422 (3)0.0643 (13)
H150.21430.61690.39860.077*
C160.3449 (5)0.5241 (3)0.3256 (3)0.0636 (13)
C170.3784 (4)0.5010 (3)0.2401 (3)0.0590 (12)
H170.45140.45010.22740.071*
C180.3066 (4)0.5515 (3)0.1736 (3)0.0468 (10)
C190.0407 (6)0.7335 (4)0.3020 (3)0.0854 (17)
H19A0.03110.73920.36320.128*
H19B0.04650.72500.29070.128*
H19C0.06120.78780.26700.128*
C200.4251 (6)0.4690 (4)0.3969 (4)0.101 (2)
H20A0.48820.50180.40850.152*
H20B0.47940.41180.37810.152*
H20C0.35880.45840.44950.152*
C210.3423 (5)0.5227 (3)0.0829 (3)0.0688 (14)
H21A0.41690.46790.08190.103*
H21B0.37340.57010.04110.103*
H21C0.25930.51190.06790.103*
C220.9067 (6)0.0232 (3)0.3965 (3)0.0731 (15)
C231.0084 (9)0.0587 (4)0.4057 (4)0.094 (2)
H230.98180.11250.43060.113*
C241.1494 (8)0.0579 (4)0.3770 (4)0.091 (2)
H241.21940.11180.38280.109*
C251.1888 (6)0.0243 (3)0.3387 (3)0.0717 (15)
C261.3299 (6)0.0325 (4)0.3070 (4)0.0821 (17)
H261.40420.01940.30920.099*
C271.3598 (6)0.1128 (4)0.2739 (4)0.0818 (17)
H271.45440.11550.25470.098*
C281.2495 (5)0.1951 (3)0.2671 (3)0.0598 (12)
C291.2745 (5)0.2805 (4)0.2325 (3)0.0695 (14)
H291.36660.28730.21070.083*
C301.1608 (5)0.3536 (3)0.2314 (3)0.0642 (13)
H301.17630.41090.20870.077*
C311.0218 (4)0.3453 (3)0.2633 (3)0.0478 (10)
C321.1082 (5)0.1893 (3)0.2975 (3)0.0511 (11)
C331.0767 (5)0.1025 (3)0.3340 (3)0.0558 (12)
C340.8998 (4)0.4272 (3)0.2636 (3)0.0459 (10)
C350.8679 (5)0.4817 (3)0.3307 (3)0.0503 (11)
C360.7599 (5)0.5611 (3)0.3259 (3)0.0579 (12)
H360.73840.59830.37010.069*
C370.6836 (5)0.5861 (3)0.2567 (3)0.0577 (12)
C380.7163 (5)0.5302 (3)0.1918 (3)0.0574 (12)
H380.66480.54580.14570.069*
C390.8230 (5)0.4519 (3)0.1937 (3)0.0537 (11)
C400.9502 (5)0.4564 (3)0.4063 (3)0.0662 (13)
H40A0.94470.39650.43450.099*
H40B0.91020.49940.44790.099*
H40C1.04810.45730.38440.099*
C410.5680 (5)0.6738 (3)0.2527 (4)0.0894 (18)
H41A0.52160.68520.31130.134*
H41B0.49950.66840.21970.134*
H41C0.60980.72340.22450.134*
C420.8605 (6)0.3948 (4)0.1182 (3)0.0828 (16)
H42A0.77960.40590.08930.124*
H42B0.88660.33140.14070.124*
H42C0.93900.41100.07690.124*
C430.6125 (7)0.2104 (6)0.5048 (6)0.152 (3)
H43A0.57460.16300.54310.182*
H43B0.55260.25340.52090.182*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0409 (3)0.0501 (3)0.0512 (4)0.0109 (3)0.0104 (3)0.0055 (3)
Co20.0542 (4)0.0565 (4)0.0653 (4)0.0192 (3)0.0143 (3)0.0068 (3)
Cl10.0669 (8)0.0820 (9)0.0832 (9)0.0381 (7)0.0056 (7)0.0007 (7)
Cl20.0776 (8)0.0572 (7)0.0661 (8)0.0037 (6)0.0261 (7)0.0147 (6)
Cl30.0477 (7)0.0725 (8)0.0851 (9)0.0073 (6)0.0034 (6)0.0230 (7)
Cl40.1371 (15)0.0841 (11)0.1283 (15)0.0663 (10)0.0125 (12)0.0002 (10)
Cl50.0840 (10)0.1128 (12)0.1225 (13)0.0340 (9)0.0530 (10)0.0117 (10)
Cl60.0909 (10)0.0705 (8)0.0697 (8)0.0218 (7)0.0053 (7)0.0116 (7)
Cl70.1138 (15)0.187 (2)0.1112 (15)0.0117 (14)0.0297 (12)0.0040 (14)
Cl80.218 (3)0.149 (2)0.278 (4)0.063 (2)0.165 (3)0.049 (2)
N10.045 (2)0.047 (2)0.047 (2)0.0096 (16)0.0074 (16)0.0038 (17)
N20.0408 (18)0.0408 (18)0.0384 (18)0.0072 (15)0.0076 (15)0.0043 (15)
N30.086 (3)0.045 (2)0.056 (2)0.019 (2)0.016 (2)0.0078 (18)
N40.048 (2)0.044 (2)0.047 (2)0.0085 (17)0.0143 (16)0.0060 (16)
C10.060 (3)0.056 (3)0.051 (3)0.019 (2)0.002 (2)0.001 (2)
C20.080 (4)0.051 (3)0.059 (3)0.019 (3)0.011 (3)0.007 (2)
C30.073 (3)0.056 (3)0.059 (3)0.008 (3)0.026 (3)0.003 (2)
C40.056 (3)0.042 (2)0.049 (3)0.008 (2)0.012 (2)0.002 (2)
C50.057 (3)0.054 (3)0.057 (3)0.004 (2)0.026 (2)0.003 (2)
C60.051 (3)0.056 (3)0.069 (3)0.008 (2)0.028 (2)0.006 (2)
C70.046 (2)0.048 (2)0.052 (3)0.011 (2)0.012 (2)0.003 (2)
C80.046 (3)0.061 (3)0.077 (3)0.020 (2)0.020 (2)0.003 (3)
C90.052 (3)0.054 (3)0.065 (3)0.022 (2)0.019 (2)0.010 (2)
C100.041 (2)0.046 (2)0.043 (2)0.0092 (19)0.0081 (19)0.0029 (19)
C110.036 (2)0.044 (2)0.044 (2)0.0037 (18)0.0097 (19)0.0082 (19)
C120.042 (2)0.045 (2)0.045 (2)0.0051 (19)0.007 (2)0.0073 (19)
C130.046 (2)0.044 (2)0.042 (2)0.0171 (19)0.0109 (19)0.0014 (19)
C140.058 (3)0.057 (3)0.046 (3)0.020 (2)0.003 (2)0.007 (2)
C150.076 (3)0.081 (4)0.041 (3)0.034 (3)0.008 (3)0.001 (3)
C160.070 (3)0.069 (3)0.058 (3)0.031 (3)0.028 (3)0.015 (3)
C170.044 (3)0.048 (3)0.085 (4)0.009 (2)0.020 (3)0.002 (2)
C180.041 (2)0.046 (2)0.052 (3)0.012 (2)0.006 (2)0.003 (2)
C190.099 (4)0.077 (4)0.071 (4)0.010 (3)0.010 (3)0.030 (3)
C200.102 (5)0.123 (5)0.085 (4)0.042 (4)0.056 (4)0.044 (4)
C210.079 (3)0.061 (3)0.060 (3)0.009 (3)0.002 (3)0.017 (2)
C220.107 (4)0.055 (3)0.065 (3)0.027 (3)0.019 (3)0.007 (3)
C230.163 (7)0.044 (3)0.075 (4)0.028 (4)0.019 (4)0.006 (3)
C240.144 (6)0.048 (3)0.072 (4)0.006 (4)0.031 (4)0.012 (3)
C250.098 (4)0.057 (3)0.057 (3)0.006 (3)0.031 (3)0.017 (2)
C260.075 (4)0.078 (4)0.086 (4)0.021 (3)0.033 (3)0.025 (3)
C270.057 (3)0.094 (4)0.093 (4)0.006 (3)0.021 (3)0.035 (4)
C280.050 (3)0.068 (3)0.059 (3)0.003 (2)0.017 (2)0.020 (2)
C290.058 (3)0.079 (4)0.076 (4)0.024 (3)0.011 (3)0.011 (3)
C300.056 (3)0.062 (3)0.077 (4)0.022 (3)0.012 (3)0.002 (3)
C310.049 (3)0.051 (3)0.046 (2)0.011 (2)0.017 (2)0.005 (2)
C320.053 (3)0.055 (3)0.048 (3)0.010 (2)0.014 (2)0.011 (2)
C330.066 (3)0.051 (3)0.052 (3)0.003 (2)0.024 (2)0.011 (2)
C340.051 (2)0.045 (2)0.044 (2)0.016 (2)0.016 (2)0.0045 (19)
C350.055 (3)0.054 (3)0.046 (3)0.019 (2)0.014 (2)0.002 (2)
C360.060 (3)0.050 (3)0.064 (3)0.017 (2)0.005 (3)0.010 (2)
C370.048 (3)0.050 (3)0.073 (3)0.015 (2)0.017 (2)0.007 (2)
C380.050 (3)0.055 (3)0.071 (3)0.016 (2)0.026 (2)0.007 (2)
C390.061 (3)0.059 (3)0.048 (3)0.023 (2)0.017 (2)0.000 (2)
C400.075 (3)0.073 (3)0.059 (3)0.022 (3)0.027 (3)0.006 (3)
C410.064 (3)0.060 (3)0.134 (5)0.002 (3)0.022 (3)0.002 (3)
C420.101 (4)0.087 (4)0.067 (3)0.013 (3)0.036 (3)0.013 (3)
C430.092 (5)0.168 (8)0.167 (8)0.005 (5)0.021 (5)0.014 (7)
Geometric parameters (Å, º) top
Co1—N22.067 (3)C19—H19A0.9600
Co1—N12.090 (3)C19—H19B0.9600
Co1—Cl32.2130 (12)C19—H19C0.9600
Co1—Cl22.2146 (13)C20—H20A0.9600
Co2—N42.043 (3)C20—H20B0.9600
Co2—N32.071 (4)C20—H20C0.9600
Co2—Cl52.2028 (16)C21—H21A0.9600
Co2—Cl62.2092 (15)C21—H21B0.9600
Cl1—C11.719 (5)C21—H21C0.9600
Cl4—C221.719 (6)C22—C231.391 (8)
Cl7—C431.656 (7)C23—C241.376 (8)
Cl8—C431.717 (8)C23—H230.9300
N1—C11.315 (5)C24—C251.418 (8)
N1—C121.369 (5)C24—H240.9300
N2—C101.329 (5)C25—C331.403 (6)
N2—C111.375 (5)C25—C261.412 (7)
N3—C221.319 (6)C26—C271.336 (7)
N3—C331.371 (6)C26—H260.9300
N4—C311.341 (5)C27—C281.436 (7)
N4—C321.373 (5)C27—H270.9300
C1—C21.402 (6)C28—C291.395 (7)
C2—C31.359 (6)C28—C321.401 (6)
C2—H20.9300C29—C301.361 (7)
C3—C41.421 (6)C29—H290.9300
C3—H30.9300C30—C311.393 (6)
C4—C121.397 (6)C30—H300.9300
C4—C51.412 (6)C31—C341.492 (6)
C5—C61.350 (6)C32—C331.443 (6)
C5—H50.9300C34—C351.389 (6)
C6—C71.428 (6)C34—C391.400 (6)
C6—H60.9300C35—C361.392 (6)
C7—C111.405 (5)C35—C401.510 (6)
C7—C81.406 (6)C36—C371.388 (6)
C8—C91.355 (6)C36—H360.9300
C8—H80.9300C37—C381.376 (6)
C9—C101.404 (6)C37—C411.517 (6)
C9—H90.9300C38—C391.372 (6)
C10—C131.500 (5)C38—H380.9300
C11—C121.442 (5)C39—C421.520 (6)
C13—C141.384 (6)C40—H40A0.9600
C13—C181.405 (5)C40—H40B0.9600
C14—C151.380 (6)C40—H40C0.9600
C14—C191.516 (6)C41—H41A0.9600
C15—C161.375 (7)C41—H41B0.9600
C15—H150.9300C41—H41C0.9600
C16—C171.396 (6)C42—H42A0.9600
C16—C201.505 (7)C42—H42B0.9600
C17—C181.386 (6)C42—H42C0.9600
C17—H170.9300C43—H43A0.9700
C18—C211.504 (6)C43—H43B0.9700
N2—Co1—N181.74 (13)C16—C20—H20C109.5
N2—Co1—Cl3117.08 (9)H20A—C20—H20C109.5
N1—Co1—Cl3110.81 (10)H20B—C20—H20C109.5
N2—Co1—Cl2111.88 (9)C18—C21—H21A109.5
N1—Co1—Cl2109.88 (10)C18—C21—H21B109.5
Cl3—Co1—Cl2119.14 (5)H21A—C21—H21B109.5
N4—Co2—N381.41 (15)C18—C21—H21C109.5
N4—Co2—Cl5117.29 (11)H21A—C21—H21C109.5
N3—Co2—Cl5108.36 (12)H21B—C21—H21C109.5
N4—Co2—Cl6111.17 (10)N3—C22—C23124.5 (6)
N3—Co2—Cl6107.10 (11)N3—C22—Cl4116.2 (4)
Cl5—Co2—Cl6122.82 (7)C23—C22—Cl4119.3 (5)
C1—N1—C12117.8 (4)C24—C23—C22118.1 (5)
C1—N1—Co1130.8 (3)C24—C23—H23120.9
C12—N1—Co1111.4 (3)C22—C23—H23120.9
C10—N2—C11118.7 (3)C23—C24—C25120.5 (5)
C10—N2—Co1129.9 (3)C23—C24—H24119.7
C11—N2—Co1111.3 (2)C25—C24—H24119.7
C22—N3—C33117.0 (4)C33—C25—C26119.0 (5)
C22—N3—Co2130.8 (4)C33—C25—C24115.9 (6)
C33—N3—Co2112.0 (3)C26—C25—C24125.0 (5)
C31—N4—C32117.9 (4)C27—C26—C25121.9 (5)
C31—N4—Co2129.3 (3)C27—C26—H26119.1
C32—N4—Co2112.8 (3)C25—C26—H26119.1
N1—C1—C2123.2 (4)C26—C27—C28121.6 (5)
N1—C1—Cl1117.5 (4)C26—C27—H27119.2
C2—C1—Cl1119.2 (4)C28—C27—H27119.2
C3—C2—C1118.8 (4)C29—C28—C32118.0 (4)
C3—C2—H2120.6C29—C28—C27124.0 (5)
C1—C2—H2120.6C32—C28—C27118.0 (5)
C2—C3—C4120.6 (4)C30—C29—C28118.3 (5)
C2—C3—H3119.7C30—C29—H29120.8
C4—C3—H3119.7C28—C29—H29120.8
C12—C4—C5120.7 (4)C29—C30—C31122.0 (5)
C12—C4—C3115.8 (4)C29—C30—H30119.0
C5—C4—C3123.5 (4)C31—C30—H30119.0
C6—C5—C4120.5 (4)N4—C31—C30120.9 (4)
C6—C5—H5119.7N4—C31—C34118.4 (4)
C4—C5—H5119.7C30—C31—C34120.7 (4)
C5—C6—C7121.0 (4)N4—C32—C28122.9 (4)
C5—C6—H6119.5N4—C32—C33116.9 (4)
C7—C6—H6119.5C28—C32—C33120.2 (4)
C11—C7—C8117.4 (4)N3—C33—C25123.9 (5)
C11—C7—C6119.6 (4)N3—C33—C32116.8 (4)
C8—C7—C6123.1 (4)C25—C33—C32119.3 (5)
C9—C8—C7119.1 (4)C35—C34—C39120.1 (4)
C9—C8—H8120.4C35—C34—C31119.9 (4)
C7—C8—H8120.4C39—C34—C31119.9 (4)
C8—C9—C10121.3 (4)C34—C35—C36118.5 (4)
C8—C9—H9119.3C34—C35—C40120.9 (4)
C10—C9—H9119.3C36—C35—C40120.7 (4)
N2—C10—C9120.9 (4)C37—C36—C35121.8 (4)
N2—C10—C13120.1 (3)C37—C36—H36119.1
C9—C10—C13119.0 (4)C35—C36—H36119.1
N2—C11—C7122.5 (4)C38—C37—C36118.5 (4)
N2—C11—C12118.3 (3)C38—C37—C41121.1 (5)
C7—C11—C12119.1 (4)C36—C37—C41120.4 (5)
N1—C12—C4123.8 (4)C39—C38—C37121.5 (4)
N1—C12—C11117.2 (4)C39—C38—H38119.2
C4—C12—C11119.0 (4)C37—C38—H38119.2
C14—C13—C18120.9 (4)C38—C39—C34119.6 (4)
C14—C13—C10118.8 (4)C38—C39—C42119.7 (4)
C18—C13—C10120.1 (4)C34—C39—C42120.6 (4)
C15—C14—C13118.7 (4)C35—C40—H40A109.5
C15—C14—C19120.0 (4)C35—C40—H40B109.5
C13—C14—C19121.3 (4)H40A—C40—H40B109.5
C16—C15—C14122.8 (4)C35—C40—H40C109.5
C16—C15—H15118.6H40A—C40—H40C109.5
C14—C15—H15118.6H40B—C40—H40C109.5
C15—C16—C17117.5 (4)C37—C41—H41A109.5
C15—C16—C20121.1 (5)C37—C41—H41B109.5
C17—C16—C20121.4 (5)H41A—C41—H41B109.5
C18—C17—C16122.1 (4)C37—C41—H41C109.5
C18—C17—H17118.9H41A—C41—H41C109.5
C16—C17—H17118.9H41B—C41—H41C109.5
C17—C18—C13118.0 (4)C39—C42—H42A109.5
C17—C18—C21120.7 (4)C39—C42—H42B109.5
C13—C18—C21121.3 (4)H42A—C42—H42B109.5
C14—C19—H19A109.5C39—C42—H42C109.5
C14—C19—H19B109.5H42A—C42—H42C109.5
H19A—C19—H19B109.5H42B—C42—H42C109.5
C14—C19—H19C109.5Cl7—C43—Cl8113.2 (5)
H19A—C19—H19C109.5Cl7—C43—H43A108.9
H19B—C19—H19C109.5Cl8—C43—H43A108.9
C16—C20—H20A109.5Cl7—C43—H43B108.9
C16—C20—H20B109.5Cl8—C43—H43B108.9
H20A—C20—H20B109.5H43A—C43—H43B107.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···Cg1i0.932.593.470 (5)157
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formula[CoCl2(C21H17ClN2)]·0.5CH2Cl2
Mr505.11
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.8830 (3), 15.3591 (5), 15.6544 (5)
α, β, γ (°)79.964 (1), 78.094 (1), 74.515 (1)
V3)2222.75 (12)
Z4
Radiation typeMo Kα
µ (mm1)1.26
Crystal size (mm)0.45 × 0.36 × 0.25
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.688, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
13275, 9215, 5134
Rint0.025
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.159, 1.02
No. of reflections9215
No. of parameters520
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.69

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···Cg1i0.932.593.470 (5)157
Symmetry code: (i) x1, y, z.
Possible ππ stacking interactions (Å, °) top
Centroid–centroidαCgI-perpCgJ-perpslippage
Cg2 – Cg2i3.877 (3)0.03.7123.7121.12
Cg2 – Cg3i3.923 (3)0.493.7123.7011.23
Cg4 – Cg4ii3.992 (3)0.023.4903.4901.94
Symmetry codes: (i) -x, 2-y, -z; (ii) 2-x, -y, 1-z. CgI -CgJ = distance between ring Centroids; α = dihedral angle between Planes I and J; CgI–perp = perpendicular distance of Cg(I) from ring J; CgJ–perp = perpendicular distance of Cg(J) from ring I; slippage = distance between Cg(I) and perpendicular projection of Cg(J) on Ring I. Cg2 is the centroid of atoms N1,C1–C4,C12; Cg3 is the centroid of atoms C4–C7,C11,C12; Cg4 is the centroid of atoms N3,C22–C25,C33.
 

Acknowledgements

The authors thank the Bairen Jihua Programme of the Chinese Academy of Sciences for funding.

References

First citationBritovsek, G. J. P., Gibson, V. C., McTavish, S. J., Solan, G. A., White, A. J. P., Williams, D. J., Kimberley, B. S. & Maddox, P. J. (1998). Chem. Commun. pp. 849–850.  Web of Science CSD CrossRef Google Scholar
First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGaras, A. M. S. & Vagg, R. S. (2000). J. Heterocycl. Chem. 37, 151–158.  CrossRef CAS Google Scholar
First citationGibson, V. C. & Spitzmesser, S. K. (2003). Chem. Rev. 103, 283–315.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSauvage, J. P. (1990). Acc. Chem. Res. 23, 319–327.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmall, B. L. & Brookhart, M. (1998). J. Am. Chem. Soc. 120, 7143–7144.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds