metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(meso-5,5,7,12,12,14-Hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­deca­ne)nickel(II) bis­­(O,O′-di­benzyl di­thio­phosphate)

aDepartment of Chemistry, Sichuan University of Science & Engineering, Zigong, Sichuan 643000, People's Republic of China
*Correspondence e-mail: zoulike@yahoo.com.cn

(Received 15 March 2008; accepted 28 March 2008; online 4 April 2008)

In the title salt-type 1:2 adduct, [Ni(C16H36N4)](C14H14O2PS2)2 or [Ni(tet-a)][S2P(OCH2Ph)2]2, where tet-a is meso-5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­azacyclo­tetra­decane, the [Ni(tet-a)]2+ complex cation exhibits a relatively undistorted square-planar geometry about the Ni atom, which lies on an inversion centre and is coordinated by four macrocyclic N atoms. The two O,O′-bis­(2-phenyl­meth­yl) dithio­phosphate anions act as counter-ions to balance the charge and they inter­act with the complex through N—H⋯S hydrogen bonds. Important geometric data include Ni—N distances of 1.958 (3) and 1.963 (3) Å.

Related literature

For related literature, see: Burchell et al. (2000[Burchell, C. J., Ferguson, G., Lough, A. J. & Glidewell, C. (2000). Acta Cryst. B56, 1054-1062.]); Ali et al. (2004[Ali, M., Ray, A., Sheldrick, W. S., Mayer-Figge, H., Gao, S. & Sahmesd, A. I. (2004). New J. Chem. 28, 412-417.]); Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); Li et al. (2006[Li, Z., Li, J. & Du, S. (2006). J. Mol. Struct. 783, 116-121.]); Liu et al. (1997[Liu, C. W., Pitts, J. T. & Fackler, J. P. (1997). Polyhedron, 16, 3899-3909.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C16H36N4)](C14H14O2PS2)2

  • Mr = 961.88

  • Monoclinic, P 21 /c

  • a = 16.371 (5) Å

  • b = 14.917 (5) Å

  • c = 9.964 (4) Å

  • β = 103.11 (3)°

  • V = 2369.9 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.70 mm−1

  • T = 290 (2) K

  • 0.40 × 0.38 × 0.36 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.768, Tmax = 0.787

  • 5571 measured reflections

  • 4393 independent reflections

  • 2880 reflections with I > 2σ(I)

  • Rint = 0.021

  • 3 standard reflections every 300 reflections intensity decay: 1.1%

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.127

  • S = 1.01

  • 4393 reflections

  • 275 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1 0.91 2.61 3.390 (3) 144
N2—H2⋯S2i 0.91 2.50 3.394 (3) 169
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Considerable interest in the chemistry of the O,O'-dialkyl dithiophosphate complexes of transition metal results from their value to industry, namely, as anti-oxidants, additives to lubricating oils, flotation reagents, insecticides(Liu et al.,1997;Li et al.,2006).We report here the synthesis and crystal structure of salt-type adduct [Ni(tet-a)][S2P(OCH2Ph)2]2 (tet-a=meso-5,5,7,12,12,14-hexamethyl- 1,4,8,11-tetraazacyclotetradecane, a tetradentate macrocyclic nitrogen base (Burchell et al.,2000; Ali et al.,2004 ))

The NiII in the complex cation [Ni(tet-a)]2+ lies on an inversion center and is coordinated by four nitrogen atoms of teteaaza macrocycle in undistorted square-planar geometry (Fig.1). The bond lengths and angles within the complex may be considered normal in comparison with the Cambridge Structural Database results (Allen, 2002).

The two O,O'- di(2-phenylmethyl) dithiophosphates act as counter-ions to balance the charge and they interact with the complex through N—H···S hydrogen bonds (Table 1).

Related literature top

For related literature, see: Burchell et al. (2000); Ali et al. (2004); Allen (2002); Li et al. (2006); Liu et al. (1997).

Experimental top

A hot solution of tet-a.2H2O (0.77 g, 2 mmol) and Ni(OAc)2.2H2O (0.25 g, 1 mmol) in 20 ml me thanol was quickly added to a hot solution of (PhCH2O)2PSSNH2(C2H5)2(0.77 g, 2 mmol) in 20 ml me thanol. The mixture was refluxed for 6 h, then cooled to room temperature, the orange-red precipitate was collected by filtration, washed with small amounts of methanol.A solution of adduct (1) in DMSO was kept at room temperature, and red block crystals suitable for X-ray diffraction studies were obtained in eight months,.

Refinement top

All H atoms attached to C and N atom were fixed geometrically and treated as riding with C—H = 0.98 Å (methine), 0.97 Å (methylene), 0.96Å (methyl) or 0.93Å (aromatic) and N—H = 0.91 Å with Uiso(H) = 1.2Ueq(C, N) or Uiso(H) = 1.5Ueq(methyl).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A View of the title compound showing the atom-labelling scheme.Only one of the two anions is represented for clarity.Displacement ellipsoids are drawn at the 30% probability level. Hydrogen-bonds are shown as dashed lines. For the sake of clarity, H atoms bonded to C atoms have been omitted. H atoms are represented as small spheres of arbitrary radii. [Symmetry code: (i) -x + 1, -y + 1, -z].
(meso-5,5,7,12,12,14-Hexamethyl-1,4,8,11- tetraazacyclotetradecane)nickel(II) bis(O,O'-dibenzyl dithiophosphate) top
Crystal data top
[Ni(C16H36N4)](C14H14O2PS2)2F(000) = 1020
Mr = 961.88Dx = 1.348 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 19 reflections
a = 16.371 (5) Åθ = 4.4–5.5°
b = 14.917 (5) ŵ = 0.70 mm1
c = 9.964 (4) ÅT = 290 K
β = 103.11 (3)°Block, red
V = 2369.9 (15) Å30.40 × 0.38 × 0.36 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
2880 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 25.5°, θmin = 1.3°
ω/2θ scansh = 719
Absorption correction: ψ scan
(North et al., 1968)
k = 180
Tmin = 0.768, Tmax = 0.787l = 1211
5571 measured reflections3 standard reflections every 300 reflections
4393 independent reflections intensity decay: 1.1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0689P)2]
where P = (Fo2 + 2Fc2)/3
4393 reflections(Δ/σ)max < 0.001
275 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Ni(C16H36N4)](C14H14O2PS2)2V = 2369.9 (15) Å3
Mr = 961.88Z = 2
Monoclinic, P21/cMo Kα radiation
a = 16.371 (5) ŵ = 0.70 mm1
b = 14.917 (5) ÅT = 290 K
c = 9.964 (4) Å0.40 × 0.38 × 0.36 mm
β = 103.11 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2880 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.021
Tmin = 0.768, Tmax = 0.7873 standard reflections every 300 reflections
5571 measured reflections intensity decay: 1.1%
4393 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.01Δρmax = 0.52 e Å3
4393 reflectionsΔρmin = 0.34 e Å3
275 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.50000.00000.02975 (18)
S10.39590 (6)0.45749 (7)0.26928 (12)0.0569 (3)
S20.28652 (6)0.64383 (7)0.13356 (11)0.0498 (3)
P10.29136 (6)0.52753 (7)0.22790 (10)0.0406 (3)
O10.26427 (15)0.53665 (18)0.3726 (3)0.0509 (7)
O20.21601 (15)0.47114 (17)0.1325 (3)0.0521 (7)
N10.57052 (16)0.53521 (17)0.1790 (3)0.0341 (7)
H10.53570.52940.23790.041*
N20.55476 (16)0.38269 (17)0.0308 (3)0.0332 (6)
H20.59750.38450.01380.040*
C10.6346 (2)0.4648 (2)0.2251 (4)0.0543 (12)
H1A0.65390.46630.32450.065*
H1B0.68240.47470.18440.065*
C20.5955 (2)0.3765 (2)0.1806 (4)0.0478 (10)
H2A0.55400.36190.23300.057*
H2B0.63780.32980.19600.057*
C30.5074 (2)0.2981 (2)0.0165 (3)0.0353 (8)
H30.46360.29130.03540.042*
C40.4652 (2)0.3050 (2)0.1675 (4)0.0397 (9)
H4A0.44390.24620.19890.048*
H4B0.50770.32040.21740.048*
C50.5636 (2)0.2146 (2)0.0096 (4)0.0452 (9)
H5A0.60670.21940.04130.068*
H5B0.53040.16210.01970.068*
H5C0.58890.21010.10620.068*
C60.6063 (2)0.6282 (2)0.2081 (4)0.0359 (8)
C70.6734 (2)0.6441 (3)0.1263 (4)0.0542 (11)
H7A0.65230.62620.03230.081*
H7B0.72250.60960.16580.081*
H7C0.68770.70660.12930.081*
C80.6443 (2)0.6385 (3)0.3636 (4)0.0543 (11)
H8A0.66020.69980.38380.081*
H8B0.69280.60080.38960.081*
H8C0.60350.62120.41440.081*
C90.1889 (3)0.5872 (3)0.3782 (4)0.0624 (12)
H9A0.14460.57360.29820.075*
H9B0.20030.65100.37830.075*
C100.1620 (2)0.5621 (3)0.5064 (4)0.0511 (10)
C110.1766 (3)0.6179 (3)0.6203 (5)0.0639 (12)
H110.20200.67340.61750.077*
C120.1527 (3)0.5897 (5)0.7399 (5)0.0884 (18)
H120.16230.62660.81710.106*
C130.1153 (4)0.5082 (6)0.7433 (7)0.103 (2)
H130.09950.48990.82300.123*
C140.1010 (4)0.4537 (5)0.6318 (8)0.108 (2)
H140.07590.39800.63490.130*
C150.1237 (3)0.4810 (4)0.5149 (6)0.0822 (15)
H150.11300.44350.43830.099*
C160.2008 (2)0.3800 (3)0.1649 (5)0.0604 (12)
H16A0.19530.37560.25960.072*
H16B0.24730.34250.15420.072*
C170.1214 (2)0.3495 (2)0.0688 (4)0.0472 (10)
C180.0461 (3)0.3895 (3)0.0682 (5)0.0681 (13)
H180.04390.43650.12870.082*
C190.0272 (3)0.3613 (4)0.0213 (5)0.0795 (16)
H190.07810.38840.01930.095*
C200.0245 (3)0.2952 (4)0.1100 (6)0.0853 (18)
H200.07380.27510.16820.102*
C210.0503 (4)0.2567 (4)0.1159 (6)0.108 (2)
H210.05220.21260.18110.130*
C220.1229 (3)0.2831 (3)0.0256 (6)0.0808 (16)
H220.17340.25570.02860.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0297 (3)0.0263 (3)0.0308 (3)0.0014 (2)0.0017 (2)0.0013 (3)
S10.0404 (5)0.0557 (6)0.0758 (8)0.0085 (5)0.0157 (5)0.0121 (6)
S20.0506 (6)0.0459 (6)0.0535 (6)0.0007 (4)0.0129 (5)0.0074 (5)
P10.0349 (5)0.0421 (5)0.0440 (6)0.0003 (4)0.0070 (4)0.0019 (4)
O10.0459 (14)0.0648 (17)0.0443 (16)0.0157 (13)0.0152 (12)0.0131 (13)
O20.0455 (14)0.0413 (14)0.0633 (18)0.0079 (11)0.0011 (13)0.0018 (13)
N10.0367 (14)0.0292 (14)0.0336 (16)0.0000 (12)0.0023 (12)0.0011 (12)
N20.0332 (14)0.0297 (15)0.0358 (16)0.0036 (11)0.0059 (12)0.0022 (12)
C10.052 (2)0.037 (2)0.059 (3)0.0101 (17)0.019 (2)0.0037 (19)
C20.058 (2)0.035 (2)0.039 (2)0.0084 (17)0.0113 (18)0.0016 (17)
C30.0396 (18)0.0274 (16)0.038 (2)0.0049 (14)0.0082 (15)0.0018 (15)
C40.0458 (19)0.0307 (18)0.041 (2)0.0024 (15)0.0071 (16)0.0022 (16)
C50.060 (2)0.0301 (19)0.044 (2)0.0053 (16)0.0098 (18)0.0000 (17)
C60.0390 (18)0.0301 (18)0.037 (2)0.0041 (14)0.0046 (15)0.0051 (15)
C70.041 (2)0.056 (2)0.065 (3)0.0041 (18)0.0109 (19)0.006 (2)
C80.058 (2)0.050 (2)0.045 (2)0.0027 (19)0.0075 (19)0.0090 (19)
C90.060 (2)0.075 (3)0.056 (3)0.025 (2)0.020 (2)0.014 (2)
C100.044 (2)0.061 (3)0.050 (3)0.019 (2)0.0147 (18)0.011 (2)
C110.058 (3)0.073 (3)0.060 (3)0.019 (2)0.012 (2)0.001 (2)
C120.083 (4)0.128 (5)0.055 (3)0.050 (4)0.018 (3)0.003 (3)
C130.097 (4)0.138 (6)0.091 (5)0.063 (4)0.061 (4)0.053 (5)
C140.114 (5)0.089 (5)0.146 (6)0.021 (4)0.080 (5)0.043 (5)
C150.095 (4)0.077 (4)0.086 (4)0.002 (3)0.043 (3)0.001 (3)
C160.055 (2)0.039 (2)0.081 (3)0.0046 (18)0.004 (2)0.005 (2)
C170.043 (2)0.038 (2)0.059 (3)0.0055 (17)0.0095 (18)0.0008 (19)
C180.060 (3)0.079 (3)0.064 (3)0.020 (2)0.010 (2)0.016 (3)
C190.043 (2)0.118 (5)0.076 (4)0.011 (3)0.009 (2)0.010 (3)
C200.066 (3)0.060 (3)0.114 (5)0.018 (3)0.014 (3)0.002 (3)
C210.113 (5)0.062 (3)0.126 (5)0.007 (3)0.023 (4)0.044 (4)
C220.064 (3)0.062 (3)0.109 (4)0.012 (2)0.006 (3)0.021 (3)
Geometric parameters (Å, º) top
Ni1—N21.958 (3)C7—H7C0.9600
Ni1—N11.963 (3)C8—H8A0.9600
S1—P11.9674 (14)C8—H8B0.9600
S2—P11.9661 (15)C8—H8C0.9600
P1—O11.608 (3)C9—C101.490 (6)
P1—O21.613 (3)C9—H9A0.9700
O1—C91.459 (4)C9—H9B0.9700
O2—C161.432 (4)C10—C151.374 (7)
N1—C11.482 (4)C10—C111.385 (6)
N1—C61.509 (4)C11—C121.400 (7)
N1—H10.9100C11—H110.9300
N2—C21.493 (4)C12—C131.366 (9)
N2—C31.501 (4)C12—H120.9300
N2—H20.9100C13—C141.354 (9)
C1—C21.488 (5)C13—H130.9300
C1—H1A0.9700C14—C151.363 (8)
C1—H1B0.9700C14—H140.9300
C2—H2A0.9700C15—H150.9300
C2—H2B0.9700C16—C171.500 (5)
C3—C41.510 (4)C16—H16A0.9700
C3—C51.535 (4)C16—H16B0.9700
C3—H30.9800C17—C181.369 (5)
C4—C6i1.520 (4)C17—C221.370 (6)
C4—H4A0.9700C18—C191.388 (6)
C4—H4B0.9700C18—H180.9300
C5—H5A0.9600C19—C201.332 (7)
C5—H5B0.9600C19—H190.9300
C5—H5C0.9600C20—C211.366 (7)
C6—C4i1.520 (4)C20—H200.9300
C6—C71.528 (5)C21—C221.376 (6)
C6—C81.541 (5)C21—H210.9300
C7—H7A0.9600C22—H220.9300
C7—H7B0.9600
N2—Ni1—N186.71 (11)C6—C7—H7B109.5
N2i—Ni1—N193.29 (11)H7A—C7—H7B109.5
O1—P1—O2104.07 (15)C6—C7—H7C109.5
O1—P1—S2111.40 (12)H7A—C7—H7C109.5
O2—P1—S2103.65 (11)H7B—C7—H7C109.5
O1—P1—S1105.11 (11)C6—C8—H8A109.5
O2—P1—S1111.05 (11)C6—C8—H8B109.5
S2—P1—S1120.50 (7)H8A—C8—H8B109.5
C9—O1—P1119.1 (2)C6—C8—H8C109.5
C16—O2—P1120.7 (2)H8A—C8—H8C109.5
C1—N1—C6112.0 (2)H8B—C8—H8C109.5
C1—N1—Ni1108.7 (2)O1—C9—C10108.6 (3)
C6—N1—Ni1122.9 (2)O1—C9—H9A110.0
C1—N1—H1103.6C10—C9—H9A110.0
C6—N1—H1103.6O1—C9—H9B110.0
Ni1—N1—H1103.6C10—C9—H9B110.0
C2—N2—C3110.1 (2)H9A—C9—H9B108.3
C2—N2—Ni1107.3 (2)C15—C10—C11118.4 (4)
C3—N2—Ni1121.11 (19)C15—C10—C9120.1 (4)
C2—N2—H2105.8C11—C10—C9121.5 (4)
C3—N2—H2105.8C10—C11—C12119.2 (5)
Ni1—N2—H2105.8C10—C11—H11120.4
N1—C1—C2108.0 (3)C12—C11—H11120.4
N1—C1—H1A110.1C13—C12—C11120.1 (6)
C2—C1—H1A110.1C13—C12—H12119.9
N1—C1—H1B110.1C11—C12—H12119.9
C2—C1—H1B110.1C14—C13—C12120.6 (6)
H1A—C1—H1B108.4C14—C13—H13119.7
C1—C2—N2107.9 (3)C12—C13—H13119.7
C1—C2—H2A110.1C13—C14—C15119.5 (6)
N2—C2—H2A110.1C13—C14—H14120.2
C1—C2—H2B110.1C15—C14—H14120.2
N2—C2—H2B110.1C14—C15—C10122.2 (6)
H2A—C2—H2B108.4C14—C15—H15118.9
N2—C3—C4110.0 (3)C10—C15—H15118.9
N2—C3—C5112.4 (2)O2—C16—C17108.3 (3)
C4—C3—C5110.3 (3)O2—C16—H16A110.0
N2—C3—H3108.0C17—C16—H16A110.0
C4—C3—H3108.0O2—C16—H16B110.0
C5—C3—H3108.0C17—C16—H16B110.0
C3—C4—C6i117.4 (3)H16A—C16—H16B108.4
C3—C4—H4A107.9C18—C17—C22118.0 (4)
C6i—C4—H4A107.9C18—C17—C16121.3 (4)
C3—C4—H4B107.9C22—C17—C16120.6 (4)
C6i—C4—H4B107.9C17—C18—C19121.1 (4)
H4A—C4—H4B107.2C17—C18—H18119.4
C3—C5—H5A109.5C19—C18—H18119.4
C3—C5—H5B109.5C20—C19—C18119.8 (5)
H5A—C5—H5B109.5C20—C19—H19120.1
C3—C5—H5C109.5C18—C19—H19120.1
H5A—C5—H5C109.5C19—C20—C21120.3 (5)
H5B—C5—H5C109.5C19—C20—H20119.8
N1—C6—C4i108.0 (2)C21—C20—H20119.8
N1—C6—C7109.6 (3)C20—C21—C22120.1 (5)
C4i—C6—C7111.1 (3)C20—C21—H21120.0
N1—C6—C8109.6 (3)C22—C21—H21120.0
C4i—C6—C8108.3 (3)C17—C22—C21120.6 (5)
C7—C6—C8110.3 (3)C17—C22—H22119.7
C6—C7—H7A109.5C21—C22—H22119.7
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S10.912.613.390 (3)144
N2—H2···S2i0.912.503.394 (3)169
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni(C16H36N4)](C14H14O2PS2)2
Mr961.88
Crystal system, space groupMonoclinic, P21/c
Temperature (K)290
a, b, c (Å)16.371 (5), 14.917 (5), 9.964 (4)
β (°) 103.11 (3)
V3)2369.9 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.70
Crystal size (mm)0.40 × 0.38 × 0.36
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.768, 0.787
No. of measured, independent and
observed [I > 2σ(I)] reflections
5571, 4393, 2880
Rint0.021
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.127, 1.01
No. of reflections4393
No. of parameters275
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.34

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S10.912.613.390 (3)144.1
N2—H2···S2i0.912.503.394 (3)168.5
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

Financial assistance from the Science and Technology Office of Zigong City, China (Project No. 06 G2045 and 07GX008) is gratefully acknowledged.

References

First citationAli, M., Ray, A., Sheldrick, W. S., Mayer-Figge, H., Gao, S. & Sahmesd, A. I. (2004). New J. Chem. 28, 412–417.  Web of Science CSD CrossRef CAS Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurchell, C. J., Ferguson, G., Lough, A. J. & Glidewell, C. (2000). Acta Cryst. B56, 1054–1062.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLi, Z., Li, J. & Du, S. (2006). J. Mol. Struct. 783, 116–121.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, C. W., Pitts, J. T. & Fackler, J. P. (1997). Polyhedron, 16, 3899–3909.  CSD CrossRef CAS Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds