organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Pyromellitic acid–sarcosine (1/2)

aCEMDRX, Physics Department, University of Coimbra, P-3004-516 Coimbra, Portugal
*Correspondence e-mail: manuela@pollux.fis.uc.pt

(Received 18 March 2008; accepted 3 April 2008; online 10 April 2008)

The title compound, C10H6O8·2C3H7NO2, crystallizes as an adduct with the acid and amino acid mol­ecules in their neutral forms. The asymmetric unit contains one half of a centrosymmetric pyromellitic acid mol­ecule and one sarcosine mol­ecule. The sarcosine has the amine group protonated and the carboxyl group deprotonated, as is usual for amino acids (zwitterionic form). The pyromellitic acid mol­ecules retain the four carboxyl H atoms with the carboxyl groups rotated out of the ring plane [O—C—C—C torsion angles = 24.1 (3) and 61.6 (2)°]. There is a three-dimensional hydrogen-bond network linking the mol­ecules.

Related literature

For related compounds, see: Yaghi et al. (1997[Yaghi, O. M., Davis, C. E., Li, G. M. & Li, H. L. (1997). J. Am. Chem. Soc. 119, 2861-2868.]); Arora & Pedireddi (2003[Arora, K. K. & Pedireddi, V. R. (2003). J. Org. Chem. 68, 9177-9185.]); Rochon & Massarweh (2001[Rochon, F. D. & Massarweh, G. (2001). Inorg. Chim. Acta, 314, 163-171.]); Kumagai et al. (2003[Kumagai, H., Chapman, K. W., Kepert, C. J. & Kurmoo, M. (2003). Polyhedron, 22, 1921-1927.]).

[Scheme 1]

Experimental

Crystal data
  • C10H6O8·2C3H7NO2

  • Mr = 432.34

  • Monoclinic, P 21 /c

  • a = 8.8894 (3) Å

  • b = 5.4118 (2) Å

  • c = 20.2205 (7) Å

  • β = 104.388 (2)°

  • V = 942.25 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 293 (2) K

  • 0.47 × 0.10 × 0.07 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.915, Tmax = 0.998

  • 16656 measured reflections

  • 2351 independent reflections

  • 1643 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.115

  • S = 1.01

  • 2351 reflections

  • 166 parameters

  • Only H-atom coordinates refined

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O5i 0.93 (2) 1.61 (2) 2.5216 (18) 166 (2)
O3—H3⋯O5 0.98 (2) 1.62 (2) 2.6026 (18) 179 (2)
N1—H1A⋯O6ii 0.87 (2) 2.11 (2) 2.854 (2) 143.4 (17)
N1—H1A⋯O1iii 0.87 (2) 2.28 (2) 2.7262 (19) 111.8 (15)
N1—H1B⋯O4iv 0.88 (2) 2.15 (2) 2.917 (2) 145.5 (16)
Symmetry codes: (i) x, y-1, z; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus (Bruker, 2003[Bruker (2003). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,2,4,5-benzenetetracarboxylic acid (pyromellitic) is frequently chosen as a building block for crystal engineering due to its predictable properties and interesting supramolecular properties: It has provided three-dimensional porous networks (Yaghi et al., 1997), host–guest systems (Arora & Pedireddi, 2003), mixed metallic systems (Rochon & Massarweh, 2001) and complex magnetic behaviours (Kumagai et al., 2003). In an attempt to synthesize a low dimensional compound with copper, 1,2,4,5-benzenetetracarboxylic acid and sarcosine (as an auxiliary ligand), we have obtained the title compound, (I).

The midpoint of the acidic molecule lies on an inversion centre thus these molecules exhibit a Ci symmetry (Fig. 1). All four carboxylic groups retain the hydrogen atom and rotate around the C—C bond. Torsion angles O1—C1—C2—C4 24.1 (3)° and C4—C3—C5—O4 61.6 (2)° show different degrees of rotation. Sarcosine (N-methyl-glycine) crystallizes in the zwitterionic form with the amine group protonated and the carboxylic group deprotonated. The molecule when viewed along the C6—C7 bond shows the oxygen atoms anti to each other and the nitrogen atom synperiplanar to O6 [O6—C6—C7—N1 4.9 (2)°]. There is an extensive three-dimensional newtork of hydrogen bonds linking the molecules. Sarcosine molecules are assembled in chains via the N1—H1A···O6 bond (Table 1), running along the b axis. The chains are all interconnected through the remaining H bonds, since each sarcosine molecule is H-bonded to four benzenetetracarboxylic neighbours, (Fig. 2).

Related literature top

For related compounds, see: Yaghi et al. (1997); Arora & Pedireddi (2003); Rochon & Massarweh (2001); Kumagai et al. (2003).

Experimental top

0. 5 mmol of copper hydroxyfluoride were added to a 20 ml warmed ethanolic solution containing 1.5 mmol of 1,2,4,5-benzenetetracarboxylic acid and 1.5 mmol of sarcosine. After a few weeks, transparent, colourless crystals could be isolated from the solution.

Refinement top

H atoms coordinates were located from a difference Fourier map and refined freely. The Uiso(H) were restrained to be 1.2Ueq(parent atom).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound (I). Displacement ellipsoids are drawn at the 50% level. H atoms are represented as small spheres of arbitrary radii. H bond is represented as dashed line. [Symmetry code: (i) 1-x, 1-y, 2-z].
[Figure 2] Fig. 2. Packing view of the title compound down the b axis. Hydrogen bonds are depicted as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity. [Symmetry codes: (ii) -x, y-1/2, -z+3/2; (iii) -x, y+1/2, -z+3/2; (iv) -x+1, y+1/2, -z+3/2]
Pyromellitic acid–sarcosine (1/2) top
Crystal data top
C10H6O8·2C3H7NO2F(000) = 452
Mr = 432.34Dx = 1.524 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2870 reflections
a = 8.8894 (3) Åθ = 2.4–23.7°
b = 5.4118 (2) ŵ = 0.13 mm1
c = 20.2205 (7) ÅT = 293 K
β = 104.388 (2)°Prism, colourless
V = 942.25 (6) Å30.47 × 0.10 × 0.07 mm
Z = 2
Data collection top
Bruker APEX CCD area-detector
diffractometer
2351 independent reflections
Radiation source: fine-focus sealed tube1643 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ϕ and ω scansθmax = 28.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1111
Tmin = 0.915, Tmax = 0.998k = 77
16656 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115Only H-atom coordinates refined
S = 1.01 w = 1/[σ2(Fo2) + (0.056P)2 + 0.2509P]
where P = (Fo2 + 2Fc2)/3
2351 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C10H6O8·2C3H7NO2V = 942.25 (6) Å3
Mr = 432.34Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.8894 (3) ŵ = 0.13 mm1
b = 5.4118 (2) ÅT = 293 K
c = 20.2205 (7) Å0.47 × 0.10 × 0.07 mm
β = 104.388 (2)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
2351 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
1643 reflections with I > 2σ(I)
Tmin = 0.915, Tmax = 0.998Rint = 0.047
16656 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.115Only H-atom coordinates refined
S = 1.01Δρmax = 0.25 e Å3
2351 reflectionsΔρmin = 0.21 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.19992 (15)0.1100 (3)0.89313 (8)0.0531 (4)
O20.43230 (15)0.0346 (2)0.88997 (7)0.0415 (4)
H20.389 (3)0.163 (4)0.8612 (11)0.050*
C10.33933 (19)0.1205 (3)0.90904 (8)0.0291 (4)
C20.42466 (17)0.3192 (3)0.95451 (8)0.0236 (3)
C30.57683 (17)0.3865 (3)0.95565 (8)0.0239 (3)
C40.65079 (18)0.5655 (3)1.00139 (8)0.0256 (3)
H10.758 (2)0.621 (3)1.0018 (9)0.031*
C50.66506 (19)0.2833 (3)0.90749 (8)0.0284 (4)
O40.78636 (14)0.1742 (3)0.92796 (7)0.0418 (4)
O30.61224 (16)0.3342 (3)0.84210 (6)0.0382 (3)
H30.515 (2)0.430 (4)0.8318 (11)0.046*
O50.35723 (14)0.5924 (2)0.81422 (6)0.0377 (3)
O60.12981 (14)0.7404 (2)0.75521 (6)0.0365 (3)
C60.23381 (18)0.5845 (3)0.76612 (8)0.0261 (4)
C70.21727 (19)0.3602 (3)0.71983 (9)0.0284 (4)
H7A0.205 (2)0.202 (4)0.7448 (9)0.034*
H7B0.310 (2)0.343 (3)0.7009 (9)0.034*
N10.07624 (17)0.3848 (3)0.66375 (8)0.0283 (3)
H1A0.004 (2)0.404 (4)0.6805 (10)0.034*
H1B0.087 (2)0.516 (4)0.6393 (10)0.034*
C80.0406 (3)0.1733 (4)0.61676 (12)0.0437 (5)
H8A0.047 (3)0.212 (4)0.5816 (12)0.052*
H8B0.123 (3)0.159 (4)0.5931 (11)0.052*
H8C0.033 (3)0.037 (5)0.6395 (12)0.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0296 (7)0.0604 (10)0.0672 (10)0.0132 (6)0.0080 (6)0.0350 (8)
O20.0364 (7)0.0329 (7)0.0517 (8)0.0029 (6)0.0042 (6)0.0215 (6)
C10.0313 (9)0.0282 (9)0.0271 (8)0.0057 (7)0.0061 (7)0.0040 (7)
C20.0250 (8)0.0231 (8)0.0213 (8)0.0009 (6)0.0030 (6)0.0020 (6)
C30.0240 (7)0.0247 (8)0.0227 (8)0.0016 (6)0.0054 (6)0.0013 (6)
C40.0227 (7)0.0282 (9)0.0255 (8)0.0026 (6)0.0052 (6)0.0021 (7)
C50.0275 (8)0.0283 (9)0.0298 (9)0.0015 (7)0.0079 (7)0.0059 (7)
O40.0333 (7)0.0487 (8)0.0437 (8)0.0126 (6)0.0105 (6)0.0056 (6)
O30.0410 (7)0.0487 (8)0.0271 (7)0.0070 (6)0.0128 (5)0.0032 (6)
O50.0416 (7)0.0326 (7)0.0321 (7)0.0032 (6)0.0034 (5)0.0080 (5)
O60.0374 (7)0.0330 (7)0.0393 (7)0.0073 (6)0.0098 (6)0.0068 (6)
C60.0295 (8)0.0253 (8)0.0242 (8)0.0017 (7)0.0079 (6)0.0009 (7)
C70.0292 (9)0.0258 (9)0.0274 (9)0.0031 (7)0.0019 (7)0.0028 (7)
N10.0255 (7)0.0285 (8)0.0292 (8)0.0006 (6)0.0036 (6)0.0038 (6)
C80.0486 (12)0.0370 (11)0.0390 (11)0.0027 (10)0.0015 (10)0.0142 (9)
Geometric parameters (Å, º) top
O1—C11.202 (2)O5—C61.273 (2)
O2—C11.302 (2)O6—C61.230 (2)
O2—H20.93 (2)C6—C71.518 (2)
C1—C21.493 (2)C7—N11.473 (2)
C2—C4i1.390 (2)C7—H7A1.02 (2)
C2—C31.396 (2)C7—H7B0.995 (19)
C3—C41.387 (2)N1—C81.471 (2)
C3—C51.502 (2)N1—H1A0.87 (2)
C4—C2i1.390 (2)N1—H1B0.88 (2)
C4—H10.997 (18)C8—H8A0.94 (2)
C5—O41.209 (2)C8—H8B0.97 (2)
C5—O31.318 (2)C8—H8C0.88 (2)
O3—H30.98 (2)
C1—O2—H2118.4 (14)O5—C6—C7115.53 (14)
O1—C1—O2125.37 (16)N1—C7—C6109.64 (13)
O1—C1—C2122.06 (16)N1—C7—H7A106.5 (11)
O2—C1—C2112.57 (14)C6—C7—H7A112.0 (10)
C4i—C2—C3119.49 (14)N1—C7—H7B109.9 (11)
C4i—C2—C1117.78 (14)C6—C7—H7B110.5 (11)
C3—C2—C1122.70 (14)H7A—C7—H7B108.2 (15)
C4—C3—C2119.36 (14)C8—N1—C7115.63 (15)
C4—C3—C5117.05 (14)C8—N1—H1A106.3 (13)
C2—C3—C5123.53 (14)C7—N1—H1A109.5 (13)
C3—C4—C2i121.14 (14)C8—N1—H1B107.4 (13)
C3—C4—H1120.5 (10)C7—N1—H1B108.1 (13)
C2i—C4—H1118.3 (11)H1A—N1—H1B109.8 (18)
O4—C5—O3120.72 (15)N1—C8—H8A108.6 (14)
O4—C5—C3121.66 (15)N1—C8—H8B108.0 (14)
O3—C5—C3117.36 (14)H8A—C8—H8B103.5 (18)
C5—O3—H3113.4 (12)N1—C8—H8C110.2 (16)
O6—C6—O5125.48 (16)H8A—C8—H8C115 (2)
O6—C6—C7118.98 (15)H8B—C8—H8C111 (2)
O1—C1—C2—C4i24.1 (3)C5—C3—C4—C2i176.64 (15)
O2—C1—C2—C4i155.56 (15)C4—C3—C5—O461.6 (2)
O1—C1—C2—C3157.90 (18)C2—C3—C5—O4121.1 (2)
O2—C1—C2—C322.4 (2)C4—C3—C5—O3112.73 (18)
C4i—C2—C3—C40.7 (3)C2—C3—C5—O364.5 (2)
C1—C2—C3—C4177.23 (15)O6—C6—C7—N14.9 (2)
C4i—C2—C3—C5176.47 (15)O5—C6—C7—N1175.62 (15)
C1—C2—C3—C55.5 (3)C6—C7—N1—C8176.75 (17)
C2—C3—C4—C2i0.8 (3)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O5ii0.93 (2)1.61 (2)2.5216 (18)166 (2)
O3—H3···O50.98 (2)1.62 (2)2.6026 (18)179 (2)
N1—H1A···O6iii0.87 (2)2.11 (2)2.854 (2)143.4 (17)
N1—H1A···O1iv0.87 (2)2.28 (2)2.7262 (19)111.8 (15)
N1—H1B···O4v0.88 (2)2.15 (2)2.917 (2)145.5 (16)
Symmetry codes: (ii) x, y1, z; (iii) x, y1/2, z+3/2; (iv) x, y+1/2, z+3/2; (v) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC10H6O8·2C3H7NO2
Mr432.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.8894 (3), 5.4118 (2), 20.2205 (7)
β (°) 104.388 (2)
V3)942.25 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.47 × 0.10 × 0.07
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.915, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
16656, 2351, 1643
Rint0.047
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.115, 1.01
No. of reflections2351
No. of parameters166
H-atom treatmentOnly H-atom coordinates refined
Δρmax, Δρmin (e Å3)0.25, 0.21

Computer programs: SMART (Bruker, 2003), SAINT-Plus (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O5i0.93 (2)1.61 (2)2.5216 (18)166 (2)
O3—H3···O50.98 (2)1.62 (2)2.6026 (18)179 (2)
N1—H1A···O6ii0.87 (2)2.11 (2)2.854 (2)143.4 (17)
N1—H1A···O1iii0.87 (2)2.28 (2)2.7262 (19)111.8 (15)
N1—H1B···O4iv0.88 (2)2.15 (2)2.917 (2)145.5 (16)
Symmetry codes: (i) x, y1, z; (ii) x, y1/2, z+3/2; (iii) x, y+1/2, z+3/2; (iv) x+1, y+1/2, z+3/2.
 

Acknowledgements

This work was supported by Fundação para a Ciência e a Tecnologia (FCT) under project POCI/FIS/57876/2004.

References

First citationArora, K. K. & Pedireddi, V. R. (2003). J. Org. Chem. 68, 9177–9185.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2003). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKumagai, H., Chapman, K. W., Kepert, C. J. & Kurmoo, M. (2003). Polyhedron, 22, 1921–1927.  Web of Science CSD CrossRef CAS Google Scholar
First citationRochon, F. D. & Massarweh, G. (2001). Inorg. Chim. Acta, 314, 163–171.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYaghi, O. M., Davis, C. E., Li, G. M. & Li, H. L. (1997). J. Am. Chem. Soc. 119, 2861–2868.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds