metal-organic compounds
Three-dimensional hydrogen-bonded supramolecular assembly in tetrakis(1,3,5-triaza-7-phosphaadamantane)copper(I) chloride hexahydrate
aCentro de Química Estrutural, Complexo Interdisciplinar, Instituto Superior Técnico, TU Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal, and bUniversidade Lusófona de Humanidades e Tecnologias, ULHT Lisbon, Av. do Campo Grande 376, 1749-024 Lisbon, Portugal
*Correspondence e-mail: fatima.guedes@ist.utl.pt
The structure of the title compound, [Cu(PTA)4]Cl·6H2O (PTA is 1,3,5-triaza-7-phosphaadamantane, C6H12N3P), is composed of discrete monomeric [Cu(PTA)4]+ cations, chloride anions and uncoordinated water molecules. The CuI atom exhibits tetrahedral coordination geometry, involving four symmetry-equivalent P–bound PTA ligands. The structure is extended to a regular three-dimensional supramolecular framework via numerous equivalent O—H⋯N hydrogen bonds between all solvent water molecules (six per cation) and all PTA N atoms, thus simultaneously bridging each [Cu(PTA)4]+ cation with 12 neighbouring units in multiple directions. The study also shows that PTA can be a convenient ligand in crystal engineering for the construction of supramolecular architectures.
Related literature
For general background, see: Kirillov et al. (2007, 2008); Karabach et al. (2006); Di Nicola et al. (2007). For a comprehensive review of PTA chemistry, see: Phillips et al. (2004). For PTA-derived polymeric networks, see: Lidrissi et al. (2005); Frost et al. (2006); Mohr et al. (2006). For related compounds, see: Forward et al. (1996); Darensbourg et al. (1997, 1999).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), PLATON (Spek, 2003) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808008179/dn2329sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808008179/dn2329Isup2.hkl
To the ethanolic solution (5 ml) of CuCl2 (27 mg, 0.20 mmol) was added solid PTA (126 mg, 0.80 mmol). The obtained mixture was refluxed for 3 h resulting in a white suspension. This was filtered off and the colourless filtrate was left to evaporate in a beaker in air and at ambient temperature. A small crop of the colourless X-ray quality crystals of (I) was formed in several days. 1H NMR data are similar to those reported for [Cu(PTA)4]NO3 (Kirillov et al., 2007). FT–IR (KBr pellet), cm-1: 3430 m, br and 3195 w [ν(H2O)], 2940 m and 2901 m [νas(C—H)], 2863 m and 2808 w [νs(C—H)], 1645 w br [δ(H2O)], 1437 m, 1413 m, 1365 m, 1296 s, 1242 s, 1180 m, 1105 m, 1037 w, 1015 s, 971 s, 906 w, 890 m, 808 s, 797 s, 744 m, 694 m, 670 w, 582 s, 551 w, 451 s, 406 m [PTA bands]. FAB-MS+ (m-nitrobenzylalcohol), m/z: 691 [Cu(PTA)4]+.
All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C). H atom of the water molecule were located in difference Fourier maps and included in the subsequent
using restraint (O-H= 0.82 (1)Å) with Uiso(H) = 1.5Ueq(O). In the last stage of refinement,it was treated as riding on the O atom.Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), PLATON (Spek, 2003) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Cu(C6H12N3P)4]Cl·6H2O | Dx = 1.431 Mg m−3 |
Mr = 835.71 | Mo Kα radiation, λ = 0.71069 Å |
Cubic, Fd3m | Cell parameters from 743 reflections |
Hall symbol: -F 4vw 2vw 3 | θ = 2.9–27.0° |
a = 19.795 (4) Å | µ = 0.85 mm−1 |
V = 7757 (3) Å3 | T = 150 K |
Z = 8 | Prism, colourless |
F(000) = 3536 | 0.20 × 0.17 × 0.12 mm |
Bruker APEXII CCD area-detector diffractometer | 447 independent reflections |
Radiation source: fine-focus sealed tube | 361 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.049 |
ϕ and ω scans | θmax = 27.0°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −24→23 |
Tmin = 0.848, Tmax = 0.905 | k = −16→11 |
3022 measured reflections | l = −6→25 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.092 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0463P)2 + 19.2954P] where P = (Fo2 + 2Fc2)/3 |
447 reflections | (Δ/σ)max < 0.001 |
28 parameters | Δρmax = 0.75 e Å−3 |
0 restraints | Δρmin = −0.32 e Å−3 |
[Cu(C6H12N3P)4]Cl·6H2O | Z = 8 |
Mr = 835.71 | Mo Kα radiation |
Cubic, Fd3m | µ = 0.85 mm−1 |
a = 19.795 (4) Å | T = 150 K |
V = 7757 (3) Å3 | 0.20 × 0.17 × 0.12 mm |
Bruker APEXII CCD area-detector diffractometer | 447 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 361 reflections with I > 2σ(I) |
Tmin = 0.848, Tmax = 0.905 | Rint = 0.049 |
3022 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.092 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0463P)2 + 19.2954P] where P = (Fo2 + 2Fc2)/3 |
447 reflections | Δρmax = 0.75 e Å−3 |
28 parameters | Δρmin = −0.32 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.25075 (10) | 0.15137 (15) | 0.25075 (10) | 0.0199 (6) | |
H1A | 0.2258 | 0.1228 | 0.2818 | 0.024* | 0.50 |
H1B | 0.2818 | 0.1228 | 0.2258 | 0.024* | 0.50 |
C2 | 0.33080 (15) | 0.24509 (11) | 0.24509 (11) | 0.0239 (7) | |
H2A | 0.3607 | 0.2726 | 0.2726 | 0.029* | |
H2B | 0.3587 | 0.2166 | 0.2166 | 0.029* | |
N1 | 0.29002 (8) | 0.20160 (12) | 0.29002 (8) | 0.0212 (6) | |
Cu1 | 0.1250 | 0.1250 | 0.1250 | 0.0134 (3) | |
P1 | 0.19090 (4) | 0.19090 (4) | 0.19090 (4) | 0.0156 (3) | |
Cl1 | 0.3750 | 0.3750 | 0.3750 | 0.0165 (5) | |
O10 | 0.3750 | 0.12300 (14) | 0.3750 | 0.0240 (7) | |
H10 | 0.3521 | 0.1480 | 0.3521 | 0.036* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0193 (8) | 0.0212 (14) | 0.0193 (8) | −0.0005 (7) | −0.0053 (11) | −0.0005 (7) |
C2 | 0.0193 (15) | 0.0262 (10) | 0.0262 (10) | −0.0036 (8) | −0.0036 (8) | −0.0027 (12) |
N1 | 0.0218 (8) | 0.0202 (13) | 0.0218 (8) | −0.0019 (7) | −0.0056 (10) | −0.0019 (7) |
Cu1 | 0.0134 (3) | 0.0134 (3) | 0.0134 (3) | 0.000 | 0.000 | 0.000 |
P1 | 0.0156 (3) | 0.0156 (3) | 0.0156 (3) | −0.0009 (3) | −0.0009 (3) | −0.0009 (3) |
Cl1 | 0.0165 (5) | 0.0165 (5) | 0.0165 (5) | 0.000 | 0.000 | 0.000 |
O10 | 0.0255 (10) | 0.0210 (16) | 0.0255 (10) | 0.000 | −0.0083 (12) | 0.000 |
C1—N1 | 1.482 (3) | C2—H2A | 0.9700 |
C1—P1 | 1.849 (3) | C2—H2B | 0.9700 |
C1—H1A | 0.9700 | Cu1—P1 | 2.2596 (13) |
C1—H1B | 0.9700 | P1—C1i | 1.849 (3) |
C2—N1i | 1.478 (2) | O10—H10 | 0.8104 |
C2—N1 | 1.478 (2) | ||
N1—C1—P1 | 112.8 (2) | P1—Cu1—P1iv | 109.5 |
N1—C1—H1A | 109.0 | P1iii—Cu1—P1iv | 109.5 |
P1—C1—H1B | 109.0 | P1—Cu1—P1v | 109.5 |
H1A—C1—H1B | 107.8 | P1iii—Cu1—P1v | 109.5 |
N1i—C2—N1 | 113.7 (3) | P1iv—Cu1—P1v | 109.5 |
N1—C2—H2A | 108.8 | C1ii—P1—C1i | 97.57 (12) |
N1—C2—H2B | 108.8 | C1ii—P1—C1 | 97.57 (12) |
H2A—C2—H2B | 107.7 | C1i—P1—C1 | 97.57 (12) |
C2ii—N1—C2 | 108.5 (3) | C1ii—P1—Cu1 | 119.70 (9) |
C2ii—N1—C1 | 111.21 (16) | C1i—P1—Cu1 | 119.70 (9) |
C2—N1—C1 | 111.21 (16) | C1—P1—Cu1 | 119.70 (9) |
P1—Cu1—P1iii | 109.5 |
Symmetry codes: (i) z, x, y; (ii) y, z, x; (iii) −x+1/4, y, −z+1/4; (iv) −x+1/4, −y+1/4, z; (v) x, −y+1/4, −z+1/4. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C6H12N3P)4]Cl·6H2O |
Mr | 835.71 |
Crystal system, space group | Cubic, Fd3m |
Temperature (K) | 150 |
a (Å) | 19.795 (4) |
V (Å3) | 7757 (3) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.85 |
Crystal size (mm) | 0.20 × 0.17 × 0.12 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) |
Tmin, Tmax | 0.848, 0.905 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3022, 447, 361 |
Rint | 0.049 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.092, 1.08 |
No. of reflections | 447 |
No. of parameters | 28 |
H-atom treatment | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.0463P)2 + 19.2954P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 0.75, −0.32 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), PLATON (Spek, 2003) and Mercury (Macrae et al., 2006).
Acknowledgements
This work has been supported by the FCT, Portugal, and its POCI 2010 programme (FEDER funded).
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Darensbourg, D. J., Decuir, T. J., Stafford, N. W., Robertson, J. B., Draper, J. D., Reibenspies, J. H., Katho, A. & Joo, F. (1997). Inorg. Chem. 36, 4218–4226. CSD CrossRef CAS Web of Science Google Scholar
Darensbourg, D. J., Robertson, J. B., Larkins, D. L. & Reibenspies, J. H. (1999). Inorg. Chem. 38, 2473–2481. Web of Science CSD CrossRef CAS Google Scholar
Di Nicola, C., Karabach, Y. Y., Kirillov, A. M., Monari, M., Pandolfo, L., Pettinari, C. & Pombeiro, A. J. L. (2007). Inorg. Chem. 46, 221–230. Web of Science CSD CrossRef PubMed CAS Google Scholar
Forward, J. M., Assefa, Z., Staples, R. J. & Fackler, J. P. Jr (1996). Inorg. Chem. 35, 16–22. CSD CrossRef PubMed CAS Web of Science Google Scholar
Frost, B. J., Bautista, C. M., Huang, R. C. & Shearer, J. (2006). Inorg. Chem. 45, 3481–3483. Web of Science CrossRef PubMed CAS Google Scholar
Karabach, Y. Y., Kirillov, A. M., da Silva, M. F. C. G., Kopylovich, M. N. & Pombeiro, A. J. L. (2006). Cryst. Growth Des. 6, 2200–2203. Web of Science CSD CrossRef CAS Google Scholar
Kirillov, A. M., Karabach, Y. Y., Haukka, M., Guedes da Silva, M. F. C., Sanchiz, J., Kopylovich, M. N. & Pombeiro, A. J. L. (2008). Inorg. Chem. 47, 162–175. Web of Science CSD CrossRef PubMed CAS Google Scholar
Kirillov, A. M., Smoleński, P., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2007). Eur. J. Inorg. Chem. pp. 2686–2692. Web of Science CSD CrossRef Google Scholar
Lidrissi, C., Romerosa, A., Saoud, M., Serrano-Ruiz, M., Gonsalvi, L. & Peruzzini, M. (2005). Angew. Chem. Int. Ed. 44, 2568–2572. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mohr, F., Falvello, L. R. & Laguna, M. (2006). Eur. J. Inorg. Chem. pp. 3152–3154. Web of Science CSD CrossRef Google Scholar
Phillips, A. D., Gonsalvi, L., Romerosa, A., Vizza, F. & Peruzzini, M. (2004). Coord. Chem. Rev. 248, 955–993. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
1,3,5-triaza-7-phosphaadamantane (PTA) is a water soluble aminophosphine that has sparked recent interest in coordination chemistry in view of the significance of transition metal PTA complexes in aqueous phase catalysis, photochemistry and medicinal chemistry (Phillips et al., 2004). Besides, PTA and its derivatives can also be convenient building blocks for the construction of polymeric networks (Lidrissi et al., 2005; Frost et al., 2006; Mohr et al., 2006) due to several potentially available coordination sites, protonation ability of N atoms, and strong affinity towards hydrogen bonds. Nevertheless, the use of PTA ligands in crystal design and engineering has remained little explored. Hence, in pursuit of our recent studies directed towards the synthesis of new copper compounds including PTA complexes (Kirillov et al., 2007) and various coordination polymers, supramolecular frameworks and host–guest systems with other ligands (Karabach et al., 2006; Di Nicola et al., 2007; Kirillov et al., 2008), we have prepared compound (I) whose crystal structure and supramolecular features are reported herein.
The moiety formula of (I) consists of the [Cu(PTA)4]+ cation (Fig. 1), one chloride anion and six symmetry equivalent crystallization water molecules. The [Cu(PTA)4]+ unit possesses a very high symmetry, being generated from only five symmetry nonequivalent atoms (Cu1, P1, N1, C1 and C2). The CuI atom lies on -43m site symmetry and its coordination environment is filled by four equivalent P–bound PTA ligands, arranged in a perfect tetrahedral coordination geometry with the corresponding P—Cu—P angles of 109.47 (2)°. The Cu—P bond distances of 2.2598 (6) Å as well as other bonding parameters within the cage-like PTA cores are comparable to those reported for tetrahedral PTA complexes of Cu (Kirillov et al., 2007), Au (Forward et al., 1996), Pt (Darensbourg et al., 1999) and Ni (Darensbourg et al., 1997).
An interesting feature of (I) consists in the extensive intermolecular hydrogen bonding that arises from only one type of O-H···N H-bond (Table 1). Hence, each crystallization water molecule (O10) repeatedly acts as a double H-bond donor bridging to two N1 atoms of two different [Cu(PTA)4]+ units. This results in the extensive interlinkage in multiple directions of every monomeric copper unit with twelve neighbouring ones (Fig. 2), thus leading to the formation of a regular three-dimensional supramolecular framework (Fig. 3). That framework has the shortest Cu···Cu separation of 13.977 (1) Å and possesses the repeating channels (ca 4.8 Å diameter) filled by water molecules.