metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m603-m604

Three-dimensional hydrogen-bonded supra­molecular assembly in tetra­kis­­(1,3,5-tri­aza-7-phosphaadamantane)copper(I) chloride hexa­hydrate

aCentro de Química Estrutural, Complexo Interdisciplinar, Instituto Superior Técnico, TU Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal, and bUniversidade Lusófona de Humanidades e Tecnologias, ULHT Lisbon, Av. do Campo Grande 376, 1749-024 Lisbon, Portugal
*Correspondence e-mail: fatima.guedes@ist.utl.pt

(Received 22 March 2008; accepted 26 March 2008; online 2 April 2008)

The structure of the title compound, [Cu(PTA)4]Cl·6H2O (PTA is 1,3,5-triaza-7-phosphaadamantane, C6H12N3P), is composed of discrete monomeric [Cu(PTA)4]+ cations, chloride anions and uncoordinated water mol­ecules. The CuI atom exhibits tetra­hedral coordination geometry, involving four symmetry-equivalent P–bound PTA ligands. The structure is extended to a regular three-dimensional supra­molecular framework via numerous equivalent O—H⋯N hydrogen bonds between all solvent water mol­ecules (six per cation) and all PTA N atoms, thus simultaneously bridging each [Cu(PTA)4]+ cation with 12 neighbouring units in multiple directions. The study also shows that PTA can be a convenient ligand in crystal engineering for the construction of supra­molecular architectures.

Related literature

For general background, see: Kirillov et al. (2007[Kirillov, A. M., Smoleński, P., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2007). Eur. J. Inorg. Chem. pp. 2686-2692.], 2008[Kirillov, A. M., Karabach, Y. Y., Haukka, M., Guedes da Silva, M. F. C., Sanchiz, J., Kopylovich, M. N. & Pombeiro, A. J. L. (2008). Inorg. Chem. 47, 162-175.]); Karabach et al. (2006[Karabach, Y. Y., Kirillov, A. M., da Silva, M. F. C. G., Kopylovich, M. N. & Pombeiro, A. J. L. (2006). Cryst. Growth Des. 6, 2200-2203.]); Di Nicola et al. (2007[Di Nicola, C., Karabach, Y. Y., Kirillov, A. M., Monari, M., Pandolfo, L., Pettinari, C. & Pombeiro, A. J. L. (2007). Inorg. Chem. 46, 221-230.]). For a comprehensive review of PTA chemistry, see: Phillips et al. (2004[Phillips, A. D., Gonsalvi, L., Romerosa, A., Vizza, F. & Peruzzini, M. (2004). Coord. Chem. Rev. 248, 955-993.]). For PTA-derived polymeric networks, see: Lidrissi et al. (2005[Lidrissi, C., Romerosa, A., Saoud, M., Serrano-Ruiz, M., Gonsalvi, L. & Peruzzini, M. (2005). Angew. Chem. Int. Ed. 44, 2568-2572.]); Frost et al. (2006[Frost, B. J., Bautista, C. M., Huang, R. C. & Shearer, J. (2006). Inorg. Chem. 45, 3481-3483.]); Mohr et al. (2006[Mohr, F., Falvello, L. R. & Laguna, M. (2006). Eur. J. Inorg. Chem. pp. 3152-3154.]). For related compounds, see: Forward et al. (1996[Forward, J. M., Assefa, Z., Staples, R. J. & Fackler, J. P. Jr (1996). Inorg. Chem. 35, 16-22.]); Darensbourg et al. (1997[Darensbourg, D. J., Decuir, T. J., Stafford, N. W., Robertson, J. B., Draper, J. D., Reibenspies, J. H., Katho, A. & Joo, F. (1997). Inorg. Chem. 36, 4218-4226.], 1999[Darensbourg, D. J., Robertson, J. B., Larkins, D. L. & Reibenspies, J. H. (1999). Inorg. Chem. 38, 2473-2481.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C6H12N3P)4]Cl·6H2O

  • Mr = 835.71

  • Cubic, [F d \overline 3m ]

  • a = 19.795 (4) Å

  • V = 7757 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.85 mm−1

  • T = 150 (2) K

  • 0.20 × 0.17 × 0.12 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.848, Tmax = 0.905

  • 3022 measured reflections

  • 447 independent reflections

  • 361 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.092

  • S = 1.08

  • 447 reflections

  • 28 parameters

  • H-atom parameters constrained

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H10⋯N1 0.81 2.04 2.843 (3) 174

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,3,5-triaza-7-phosphaadamantane (PTA) is a water soluble aminophosphine that has sparked recent interest in coordination chemistry in view of the significance of transition metal PTA complexes in aqueous phase catalysis, photochemistry and medicinal chemistry (Phillips et al., 2004). Besides, PTA and its derivatives can also be convenient building blocks for the construction of polymeric networks (Lidrissi et al., 2005; Frost et al., 2006; Mohr et al., 2006) due to several potentially available coordination sites, protonation ability of N atoms, and strong affinity towards hydrogen bonds. Nevertheless, the use of PTA ligands in crystal design and engineering has remained little explored. Hence, in pursuit of our recent studies directed towards the synthesis of new copper compounds including PTA complexes (Kirillov et al., 2007) and various coordination polymers, supramolecular frameworks and host–guest systems with other ligands (Karabach et al., 2006; Di Nicola et al., 2007; Kirillov et al., 2008), we have prepared compound (I) whose crystal structure and supramolecular features are reported herein.

The moiety formula of (I) consists of the [Cu(PTA)4]+ cation (Fig. 1), one chloride anion and six symmetry equivalent crystallization water molecules. The [Cu(PTA)4]+ unit possesses a very high symmetry, being generated from only five symmetry nonequivalent atoms (Cu1, P1, N1, C1 and C2). The CuI atom lies on -43m site symmetry and its coordination environment is filled by four equivalent P–bound PTA ligands, arranged in a perfect tetrahedral coordination geometry with the corresponding P—Cu—P angles of 109.47 (2)°. The Cu—P bond distances of 2.2598 (6) Å as well as other bonding parameters within the cage-like PTA cores are comparable to those reported for tetrahedral PTA complexes of Cu (Kirillov et al., 2007), Au (Forward et al., 1996), Pt (Darensbourg et al., 1999) and Ni (Darensbourg et al., 1997).

An interesting feature of (I) consists in the extensive intermolecular hydrogen bonding that arises from only one type of O-H···N H-bond (Table 1). Hence, each crystallization water molecule (O10) repeatedly acts as a double H-bond donor bridging to two N1 atoms of two different [Cu(PTA)4]+ units. This results in the extensive interlinkage in multiple directions of every monomeric copper unit with twelve neighbouring ones (Fig. 2), thus leading to the formation of a regular three-dimensional supramolecular framework (Fig. 3). That framework has the shortest Cu···Cu separation of 13.977 (1) Å and possesses the repeating channels (ca 4.8 Å diameter) filled by water molecules.

Related literature top

For general background, see: Kirillov et al. (2007, 2008); Karabach et al. (2006); Di Nicola et al. (2007). For a comprehensive review on PTA chemistry, see: Phillips et al. (2004). For PTA-derived polymeric networks, see: Lidrissi et al. (2005); Frost et al. (2006); Mohr et al. (2006). For related compounds, see: Forward et al. (1996); Darensbourg et al. (1997, 1999).

Experimental top

To the ethanolic solution (5 ml) of CuCl2 (27 mg, 0.20 mmol) was added solid PTA (126 mg, 0.80 mmol). The obtained mixture was refluxed for 3 h resulting in a white suspension. This was filtered off and the colourless filtrate was left to evaporate in a beaker in air and at ambient temperature. A small crop of the colourless X-ray quality crystals of (I) was formed in several days. 1H NMR data are similar to those reported for [Cu(PTA)4]NO3 (Kirillov et al., 2007). FT–IR (KBr pellet), cm-1: 3430 m, br and 3195 w [ν(H2O)], 2940 m and 2901 m [νas(C—H)], 2863 m and 2808 w [νs(C—H)], 1645 w br [δ(H2O)], 1437 m, 1413 m, 1365 m, 1296 s, 1242 s, 1180 m, 1105 m, 1037 w, 1015 s, 971 s, 906 w, 890 m, 808 s, 797 s, 744 m, 694 m, 670 w, 582 s, 551 w, 451 s, 406 m [PTA bands]. FAB-MS+ (m-nitrobenzylalcohol), m/z: 691 [Cu(PTA)4]+.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C). H atom of the water molecule were located in difference Fourier maps and included in the subsequent refinement using restraint (O-H= 0.82 (1)Å) with Uiso(H) = 1.5Ueq(O). In the last stage of refinement,it was treated as riding on the O atom.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), PLATON (Spek, 2003) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular view of the cation with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are omitted for clarity. [Symmetry codes: (i) z, x, y; (ii) y, z, x; (iii) -x+1/4, y, -z+1/4; (iv) -x+1/4, -y+1/4, z; (v) x, -y+1/4, -z+1/4]
[Figure 2] Fig. 2. Fragment of the crystal packing diagram of (I) showing the simultaneous multidimensional interlinkage of the central monomeric [Cu(PTA)4]+ unit (black coloured) with twelve neighbouring ones (each represented by different colour) via repeating O10—H10···N1 hydrogen bonding interactions (black dashed lines) between crystallization water molecules O10 (coloured balls) and PTA N1 atoms. H and Cl atoms are omitted for clarity.
[Figure 3] Fig. 3. Fragment of the crystal packing diagram of (I) (view along the a axis) showing the extensive hydrogen bonding interactions (pale blue dashed lines) resulting in the formation of a regular three-dimensional H-bonded supramolecular assembly. H atoms are omitted for clarity. Cu, green; P, orange; N, blue; C, grey; O, red (balls); Cl, yellow (balls).
tetrakis(1,3,5-triaza-7-phosphaadamantane)copper(I) chloride hexahydrate top
Crystal data top
[Cu(C6H12N3P)4]Cl·6H2ODx = 1.431 Mg m3
Mr = 835.71Mo Kα radiation, λ = 0.71069 Å
Cubic, Fd3mCell parameters from 743 reflections
Hall symbol: -F 4vw 2vw 3θ = 2.9–27.0°
a = 19.795 (4) ŵ = 0.85 mm1
V = 7757 (3) Å3T = 150 K
Z = 8Prism, colourless
F(000) = 35360.20 × 0.17 × 0.12 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
447 independent reflections
Radiation source: fine-focus sealed tube361 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ϕ and ω scansθmax = 27.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 2423
Tmin = 0.848, Tmax = 0.905k = 1611
3022 measured reflectionsl = 625
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0463P)2 + 19.2954P]
where P = (Fo2 + 2Fc2)/3
447 reflections(Δ/σ)max < 0.001
28 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Cu(C6H12N3P)4]Cl·6H2OZ = 8
Mr = 835.71Mo Kα radiation
Cubic, Fd3mµ = 0.85 mm1
a = 19.795 (4) ÅT = 150 K
V = 7757 (3) Å30.20 × 0.17 × 0.12 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
447 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
361 reflections with I > 2σ(I)
Tmin = 0.848, Tmax = 0.905Rint = 0.049
3022 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0463P)2 + 19.2954P]
where P = (Fo2 + 2Fc2)/3
447 reflectionsΔρmax = 0.75 e Å3
28 parametersΔρmin = 0.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.25075 (10)0.15137 (15)0.25075 (10)0.0199 (6)
H1A0.22580.12280.28180.024*0.50
H1B0.28180.12280.22580.024*0.50
C20.33080 (15)0.24509 (11)0.24509 (11)0.0239 (7)
H2A0.36070.27260.27260.029*
H2B0.35870.21660.21660.029*
N10.29002 (8)0.20160 (12)0.29002 (8)0.0212 (6)
Cu10.12500.12500.12500.0134 (3)
P10.19090 (4)0.19090 (4)0.19090 (4)0.0156 (3)
Cl10.37500.37500.37500.0165 (5)
O100.37500.12300 (14)0.37500.0240 (7)
H100.35210.14800.35210.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0193 (8)0.0212 (14)0.0193 (8)0.0005 (7)0.0053 (11)0.0005 (7)
C20.0193 (15)0.0262 (10)0.0262 (10)0.0036 (8)0.0036 (8)0.0027 (12)
N10.0218 (8)0.0202 (13)0.0218 (8)0.0019 (7)0.0056 (10)0.0019 (7)
Cu10.0134 (3)0.0134 (3)0.0134 (3)0.0000.0000.000
P10.0156 (3)0.0156 (3)0.0156 (3)0.0009 (3)0.0009 (3)0.0009 (3)
Cl10.0165 (5)0.0165 (5)0.0165 (5)0.0000.0000.000
O100.0255 (10)0.0210 (16)0.0255 (10)0.0000.0083 (12)0.000
Geometric parameters (Å, º) top
C1—N11.482 (3)C2—H2A0.9700
C1—P11.849 (3)C2—H2B0.9700
C1—H1A0.9700Cu1—P12.2596 (13)
C1—H1B0.9700P1—C1i1.849 (3)
C2—N1i1.478 (2)O10—H100.8104
C2—N11.478 (2)
N1—C1—P1112.8 (2)P1—Cu1—P1iv109.5
N1—C1—H1A109.0P1iii—Cu1—P1iv109.5
P1—C1—H1B109.0P1—Cu1—P1v109.5
H1A—C1—H1B107.8P1iii—Cu1—P1v109.5
N1i—C2—N1113.7 (3)P1iv—Cu1—P1v109.5
N1—C2—H2A108.8C1ii—P1—C1i97.57 (12)
N1—C2—H2B108.8C1ii—P1—C197.57 (12)
H2A—C2—H2B107.7C1i—P1—C197.57 (12)
C2ii—N1—C2108.5 (3)C1ii—P1—Cu1119.70 (9)
C2ii—N1—C1111.21 (16)C1i—P1—Cu1119.70 (9)
C2—N1—C1111.21 (16)C1—P1—Cu1119.70 (9)
P1—Cu1—P1iii109.5
Symmetry codes: (i) z, x, y; (ii) y, z, x; (iii) x+1/4, y, z+1/4; (iv) x+1/4, y+1/4, z; (v) x, y+1/4, z+1/4.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10···N10.812.042.843 (3)174

Experimental details

Crystal data
Chemical formula[Cu(C6H12N3P)4]Cl·6H2O
Mr835.71
Crystal system, space groupCubic, Fd3m
Temperature (K)150
a (Å)19.795 (4)
V3)7757 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.85
Crystal size (mm)0.20 × 0.17 × 0.12
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.848, 0.905
No. of measured, independent and
observed [I > 2σ(I)] reflections
3022, 447, 361
Rint0.049
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.092, 1.08
No. of reflections447
No. of parameters28
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0463P)2 + 19.2954P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.75, 0.32

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), PLATON (Spek, 2003) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10···N10.812.042.843 (3)173.8
 

Acknowledgements

This work has been supported by the FCT, Portugal, and its POCI 2010 programme (FEDER funded).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationDarensbourg, D. J., Decuir, T. J., Stafford, N. W., Robertson, J. B., Draper, J. D., Reibenspies, J. H., Katho, A. & Joo, F. (1997). Inorg. Chem. 36, 4218–4226.  CSD CrossRef CAS Web of Science Google Scholar
First citationDarensbourg, D. J., Robertson, J. B., Larkins, D. L. & Reibenspies, J. H. (1999). Inorg. Chem. 38, 2473–2481.  Web of Science CSD CrossRef CAS Google Scholar
First citationDi Nicola, C., Karabach, Y. Y., Kirillov, A. M., Monari, M., Pandolfo, L., Pettinari, C. & Pombeiro, A. J. L. (2007). Inorg. Chem. 46, 221–230.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationForward, J. M., Assefa, Z., Staples, R. J. & Fackler, J. P. Jr (1996). Inorg. Chem. 35, 16–22.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationFrost, B. J., Bautista, C. M., Huang, R. C. & Shearer, J. (2006). Inorg. Chem. 45, 3481–3483.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKarabach, Y. Y., Kirillov, A. M., da Silva, M. F. C. G., Kopylovich, M. N. & Pombeiro, A. J. L. (2006). Cryst. Growth Des. 6, 2200–2203.  Web of Science CSD CrossRef CAS Google Scholar
First citationKirillov, A. M., Karabach, Y. Y., Haukka, M., Guedes da Silva, M. F. C., Sanchiz, J., Kopylovich, M. N. & Pombeiro, A. J. L. (2008). Inorg. Chem. 47, 162–175.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKirillov, A. M., Smoleński, P., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2007). Eur. J. Inorg. Chem. pp. 2686–2692.  Web of Science CSD CrossRef Google Scholar
First citationLidrissi, C., Romerosa, A., Saoud, M., Serrano-Ruiz, M., Gonsalvi, L. & Peruzzini, M. (2005). Angew. Chem. Int. Ed. 44, 2568–2572.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMohr, F., Falvello, L. R. & Laguna, M. (2006). Eur. J. Inorg. Chem. pp. 3152–3154.  Web of Science CSD CrossRef Google Scholar
First citationPhillips, A. D., Gonsalvi, L., Romerosa, A., Vizza, F. & Peruzzini, M. (2004). Coord. Chem. Rev. 248, 955–993.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m603-m604
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds