metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­(2,5-di-4-pyridyl-1,3,4-thia­diazole-κN2)bis­­(thio­cyanato-κN)copper(II) dihydrate

aDepartment of Chemistry, Lishui University, 323000 Lishui, ZheJiang, People's Republic of China
*Correspondence e-mail: zjlsxyhx@126.com

(Received 25 March 2008; accepted 2 April 2008; online 10 April 2008)

In the title compound, [Cu(NCS)2(C12H8N4S)2(H2O)2]·2H2O, the Cu atom is located on an inversion center and displays an octa­hedral geometry. Two N atoms of two different 2,5-di-4-pyridyl-1,3,4-thia­diazole ligands and two N atoms from two separate thio­cyanate mol­ecules form the equatorial plane, while two coordinated water mol­ecules are in axial positions. The crystal structure is consolidated by extensive hydrogen bonding, forming a two-dimensional network.

Related literature

For related literature, see: Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]); Su et al. (2003[Su, C. Y., Cai, Y. P., Chen, C. L., Smith, M. D., Kaim, W. & Loye, H. C. (2003). J. Am. Chem. Soc. 125, 8595-8613.]); Zhang et al. (2005[Zhang, X. M., Fang, R. Q. & Wu, H. S. (2005). CrystEngComm. 7, 96-101.]); Zhou et al. (2006[Zhou, C. H., Wang, Y. Y., Li, D. S., Zhou, L. J., Liu, P. & Shi, Q. Z. (2006). Eur. J. Inorg. Chem. pp. 2437-2446.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(NCS)2(C12H8N4S)2(H2O)2]·2H2O

  • Mr = 732.33

  • Triclinic, [P \overline 1]

  • a = 7.0555 (11) Å

  • b = 8.3034 (13) Å

  • c = 14.849 (2) Å

  • α = 104.629 (2)°

  • β = 93.067 (2)°

  • γ = 112.228 (2)°

  • V = 768.3 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.03 mm−1

  • T = 298 (2) K

  • 0.28 × 0.24 × 0.19 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.760, Tmax = 0.828

  • 3905 measured reflections

  • 2692 independent reflections

  • 1794 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.169

  • S = 1.07

  • 2692 reflections

  • 205 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2B⋯N5 0.82 2.03 2.835 (6) 169
O2—H2C⋯S2i 0.82 2.90 3.541 (4) 137
O1—H1B⋯S2ii 0.82 2.50 3.303 (4) 164
O1—H1C⋯O2iii 0.82 1.95 2.761 (6) 171
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x-1, y, z; (iii) x+1, y, z-1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SMART. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SMART. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In recent years, the rational design and assembly of metal-organic frameworks (MOFs) with well regulated network structures have received remarkable attention in order to develop new functional materials with potential applications (Moulton & Zaworotko, 2001). Nevertheless, it is still a great challenge to predict the exact structures and compositions of polymeric compounds assembled in a motifs, although some structures with various architectures have been reported in MOFs. So far, much of the research has been concentrated on the exploitation of angular ligands with a molecular angle, such as ligands with a T-shape, V-shape etc, in the construction of versatile coordination polymer architectures (Su et al., 2003, Zhou et al., 2006). However, the bent 2,5-di-4-pyridyl-1,3,4-thiadiazole (L), have been less studied as building blocks in the construction of metal-organic frameworks (Zhang et al.; 2005). The angular 2,5-di-4-pyridyl-1,3,4-thiadiazole has flexible coodination modes than general 4,4'-bipyrdine-like ligands due to two more potential N-donors atoms. In this paper, we report the synthesis and crystal structure of the title complex with a multifunctional L ligand,(I).

The Cu atom is located on an inversion center and displays octahedral geometry (Fig. 1). Two nitrogen atoms of two different 2,5-di-4-pyridyl-1,3,4-thiadiazole ligands and two nitrogen atoms from two separated thiocyanate molecules form the basal plane, while two coordinated water molecules hold in axis position. The bond and angle are similar with others complexes with L ligand (Zhang et al., 2005). These monuclear units are held together by means of H bonds involving the coordinated water molecules, sulfur atoms of thiocyanate, lattice water molecules and N atoms of pyridyl rings from L ligands, which further assemble into a 2-D supramolecular sheet (Fig.2, Table 1).

Related literature top

For related literature, see: Moulton & Zaworotko (2001); Su et al. (2003); Zhang et al. (2005); Zhou et al. (2006).

Experimental top

Cu(NCS)2(0.025 g, 0.13 mmol), L(0.031 g, 0.21 mmol), and NaOH (0.08 g, 0.2 mmol). were added in a solvent of methanol, the mixture was heated for ten hours under reflux. During the process stirring and influx were required. The resultant was then filtered to give a pure solution which was infiltrated by diethyl ether freely in a closed vessel, Four weeks later some single crystals of the size suitable for X-Ray diffraction analysis.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (methyl) and Uiso(H) = 1.2Ueq(C or N). H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O-H= 0.82 (1)Å and H···H= 1.38 (2)Å) with Uiso(H) = 1.5Ueq(O). In the last stage of refinement they were treated as riding on their parent O atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular view of (I), with the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Water molecule and H atoms have been omitted for clarity. [Symmetry code: (i) 1 - x, 2 - y, -z].
[Figure 2] Fig. 2. Partial packing view of (I), showing O—H···O, O—H···S and O—H···N hydrogen bonds leading to the formation of two-dimensional network. Hydrogen bonds are shown as dashed lines.
Diaquabis(2,5-di-4-pyridyl-1,3,4-thiadiazole-κN2)bis(thiocyanato- κN)copper(II) dihydrate top
Crystal data top
[Cu(NCS)2(C12H8N4S)2(H2O)2]·2H2OZ = 1
Mr = 732.33F(000) = 375
Triclinic, P1Dx = 1.583 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0555 (11) ÅCell parameters from 2692 reflections
b = 8.3034 (13) Åθ = 1.4–25.1°
c = 14.849 (2) ŵ = 1.03 mm1
α = 104.629 (2)°T = 298 K
β = 93.067 (2)°Block, blue
γ = 112.228 (2)°0.28 × 0.24 × 0.19 mm
V = 768.3 (2) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
2692 independent reflections
Radiation source: fine-focus sealed tube1794 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 25.1°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 85
Tmin = 0.761, Tmax = 0.828k = 99
3905 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0774P)2 + 0.6059P]
where P = (Fo2 + 2Fc2)/3
2692 reflections(Δ/σ)max < 0.001
205 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.69 e Å3
Crystal data top
[Cu(NCS)2(C12H8N4S)2(H2O)2]·2H2Oγ = 112.228 (2)°
Mr = 732.33V = 768.3 (2) Å3
Triclinic, P1Z = 1
a = 7.0555 (11) ÅMo Kα radiation
b = 8.3034 (13) ŵ = 1.03 mm1
c = 14.849 (2) ÅT = 298 K
α = 104.629 (2)°0.28 × 0.24 × 0.19 mm
β = 93.067 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
2692 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1794 reflections with I > 2σ(I)
Tmin = 0.761, Tmax = 0.828Rint = 0.028
3905 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.169H-atom parameters constrained
S = 1.07Δρmax = 0.44 e Å3
2692 reflectionsΔρmin = 0.69 e Å3
205 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50001.00000.00000.0423 (3)
S10.0367 (2)0.7797 (2)0.40422 (10)0.0484 (4)
S20.7893 (2)0.5558 (2)0.03644 (12)0.0477 (4)
N10.6831 (7)0.8539 (6)0.0062 (3)0.0417 (11)
N20.4011 (6)0.9385 (6)0.1283 (3)0.0349 (10)
N30.3261 (7)0.7924 (7)0.4413 (3)0.0486 (13)
N40.2304 (8)0.7563 (7)0.5165 (3)0.0489 (13)
N50.3536 (8)0.6276 (7)0.7101 (3)0.0511 (13)
O10.2491 (5)0.7683 (5)0.0897 (3)0.0434 (9)
H1B0.13490.73660.07280.065*
H1C0.25960.67730.12230.065*
O20.6718 (6)0.4775 (6)0.8112 (3)0.0586 (12)
H2B0.56870.52040.78800.088*
H2C0.64150.45250.85820.088*
C10.7271 (8)0.7310 (8)0.0188 (4)0.0347 (12)
C20.2117 (9)0.9123 (8)0.1465 (4)0.0436 (14)
H20.12230.92750.10430.052*
C30.1394 (9)0.8639 (8)0.2240 (4)0.0455 (14)
H30.00250.84070.23160.055*
C40.2713 (8)0.8505 (7)0.2895 (4)0.0379 (13)
C50.4715 (9)0.8795 (8)0.2725 (4)0.0475 (15)
H50.56600.87060.31500.057*
C60.5266 (9)0.9218 (8)0.1915 (4)0.0432 (14)
H60.66040.93970.18020.052*
C70.2060 (8)0.8066 (7)0.3769 (4)0.0395 (13)
C80.0424 (9)0.7481 (8)0.5080 (4)0.0418 (13)
C90.0929 (8)0.7148 (7)0.5800 (4)0.0379 (13)
C100.2927 (9)0.7063 (8)0.5682 (4)0.0442 (14)
H100.34400.72920.51600.053*
C110.4144 (9)0.6632 (8)0.6357 (4)0.0495 (15)
H110.54790.65930.62760.059*
C120.1584 (10)0.6393 (9)0.7221 (4)0.0559 (17)
H120.11120.61780.77570.067*
C130.0248 (9)0.6813 (8)0.6596 (4)0.0497 (15)
H130.10900.68710.67050.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0421 (6)0.0432 (6)0.0477 (6)0.0197 (5)0.0129 (4)0.0186 (5)
S10.0490 (9)0.0680 (11)0.0412 (9)0.0289 (8)0.0147 (7)0.0281 (8)
S20.0484 (9)0.0420 (9)0.0663 (11)0.0258 (7)0.0192 (8)0.0252 (8)
N10.044 (3)0.043 (3)0.052 (3)0.026 (2)0.015 (2)0.020 (2)
N20.032 (2)0.037 (3)0.038 (3)0.014 (2)0.009 (2)0.015 (2)
N30.045 (3)0.063 (3)0.043 (3)0.022 (3)0.012 (2)0.023 (3)
N40.048 (3)0.064 (3)0.041 (3)0.021 (3)0.014 (2)0.027 (3)
N50.050 (3)0.064 (4)0.044 (3)0.022 (3)0.017 (2)0.022 (3)
O10.035 (2)0.043 (2)0.051 (2)0.0140 (17)0.0117 (17)0.0118 (18)
O20.055 (3)0.059 (3)0.051 (3)0.013 (2)0.018 (2)0.011 (2)
C10.031 (3)0.045 (3)0.031 (3)0.014 (2)0.011 (2)0.016 (3)
C20.041 (3)0.052 (4)0.043 (3)0.018 (3)0.007 (3)0.023 (3)
C30.035 (3)0.056 (4)0.046 (3)0.013 (3)0.009 (3)0.022 (3)
C40.040 (3)0.034 (3)0.036 (3)0.011 (2)0.012 (2)0.009 (2)
C50.042 (3)0.064 (4)0.045 (4)0.026 (3)0.009 (3)0.025 (3)
C60.040 (3)0.054 (4)0.043 (3)0.022 (3)0.017 (3)0.020 (3)
C70.042 (3)0.039 (3)0.036 (3)0.014 (3)0.009 (3)0.012 (3)
C80.047 (3)0.043 (3)0.037 (3)0.017 (3)0.006 (3)0.014 (3)
C90.043 (3)0.035 (3)0.036 (3)0.015 (2)0.008 (2)0.012 (3)
C100.046 (3)0.053 (4)0.047 (3)0.026 (3)0.009 (3)0.026 (3)
C110.041 (3)0.052 (4)0.058 (4)0.020 (3)0.012 (3)0.017 (3)
C120.054 (4)0.075 (5)0.042 (4)0.023 (3)0.014 (3)0.026 (3)
C130.043 (3)0.066 (4)0.043 (4)0.022 (3)0.007 (3)0.023 (3)
Geometric parameters (Å, º) top
Cu1—N12.071 (4)O2—H2C0.8159
Cu1—N1i2.071 (4)C2—C31.372 (8)
Cu1—O1i2.118 (4)C2—H20.9300
Cu1—O12.118 (4)C3—C41.365 (8)
Cu1—N22.178 (4)C3—H30.9300
Cu1—N2i2.178 (4)C4—C51.388 (8)
S1—C71.725 (6)C4—C71.485 (7)
S1—C81.726 (5)C5—C61.372 (7)
S2—C11.638 (6)C5—H50.9300
N1—C11.150 (7)C6—H60.9300
N2—C61.324 (7)C8—C91.479 (7)
N2—C21.325 (7)C9—C131.382 (7)
N3—C71.301 (7)C9—C101.384 (7)
N3—N41.375 (6)C10—C111.382 (8)
N4—C81.300 (7)C10—H100.9300
N5—C111.305 (7)C11—H110.9300
N5—C121.342 (8)C12—C131.372 (8)
O1—H1B0.8214C12—H120.9300
O1—H1C0.8200C13—H130.9300
O2—H2B0.8172
N1—Cu1—N1i180.000 (1)C4—C3—H3120.5
N1—Cu1—O1i89.03 (16)C2—C3—H3120.5
N1i—Cu1—O1i90.97 (16)C3—C4—C5118.0 (5)
N1—Cu1—O190.97 (16)C3—C4—C7121.8 (5)
N1i—Cu1—O189.03 (17)C5—C4—C7120.2 (5)
O1i—Cu1—O1180.0C6—C5—C4118.4 (5)
N1—Cu1—N291.15 (17)C6—C5—H5120.8
N1i—Cu1—N288.85 (17)C4—C5—H5120.8
O1i—Cu1—N286.47 (15)N2—C6—C5124.1 (5)
O1—Cu1—N293.53 (15)N2—C6—H6118.0
N1—Cu1—N2i88.85 (17)C5—C6—H6118.0
N1i—Cu1—N2i91.15 (17)N3—C7—C4124.0 (5)
O1i—Cu1—N2i93.53 (15)N3—C7—S1113.8 (4)
O1—Cu1—N2i86.47 (14)C4—C7—S1122.1 (4)
N2—Cu1—N2i180.0 (2)N4—C8—C9123.7 (5)
C7—S1—C887.1 (3)N4—C8—S1113.7 (4)
C1—N1—Cu1159.4 (4)C9—C8—S1122.6 (4)
C6—N2—C2116.5 (5)C13—C9—C10118.0 (5)
C6—N2—Cu1121.5 (4)C13—C9—C8119.9 (5)
C2—N2—Cu1122.0 (3)C10—C9—C8122.0 (5)
C7—N3—N4112.5 (5)C11—C10—C9118.6 (5)
C8—N4—N3112.8 (4)C11—C10—H10120.7
C11—N5—C12117.1 (5)C9—C10—H10120.7
Cu1—O1—H1B118.7N5—C11—C10124.0 (6)
Cu1—O1—H1C124.5N5—C11—H11118.0
H1B—O1—H1C108.3C10—C11—H11118.0
H2B—O2—H2C110.6N5—C12—C13123.5 (6)
N1—C1—S2179.8 (5)N5—C12—H12118.2
N2—C2—C3123.9 (5)C13—C12—H12118.2
N2—C2—H2118.0C12—C13—C9118.7 (6)
C3—C2—H2118.0C12—C13—H13120.6
C4—C3—C2119.0 (5)C9—C13—H13120.6
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···N50.822.032.835 (6)169
O2—H2C···S2ii0.822.903.541 (4)137
O1—H1B···S2iii0.822.503.303 (4)164
O1—H1C···O2iv0.821.952.761 (6)171
Symmetry codes: (ii) x, y+1, z+1; (iii) x1, y, z; (iv) x+1, y, z1.

Experimental details

Crystal data
Chemical formula[Cu(NCS)2(C12H8N4S)2(H2O)2]·2H2O
Mr732.33
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.0555 (11), 8.3034 (13), 14.849 (2)
α, β, γ (°)104.629 (2), 93.067 (2), 112.228 (2)
V3)768.3 (2)
Z1
Radiation typeMo Kα
µ (mm1)1.03
Crystal size (mm)0.28 × 0.24 × 0.19
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.761, 0.828
No. of measured, independent and
observed [I > 2σ(I)] reflections
3905, 2692, 1794
Rint0.028
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.169, 1.07
No. of reflections2692
No. of parameters205
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.69

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···N50.822.032.835 (6)168.5
O2—H2C···S2i0.822.903.541 (4)136.6
O1—H1B···S2ii0.822.503.303 (4)164.3
O1—H1C···O2iii0.821.952.761 (6)171.1
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y, z; (iii) x+1, y, z1.
 

Acknowledgements

The authors are grateful to the Natural Science Foundation of Zhejiang Province (No. Y407081).

References

First citationBruker (2004). APEX2 and SMART. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, C. Y., Cai, Y. P., Chen, C. L., Smith, M. D., Kaim, W. & Loye, H. C. (2003). J. Am. Chem. Soc. 125, 8595–8613.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, X. M., Fang, R. Q. & Wu, H. S. (2005). CrystEngComm. 7, 96–101.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhou, C. H., Wang, Y. Y., Li, D. S., Zhou, L. J., Liu, P. & Shi, Q. Z. (2006). Eur. J. Inorg. Chem. pp. 2437–2446.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds