metal-organic compounds
Diaquabis(2,5-di-4-pyridyl-1,3,4-thiadiazole-κN2)bis(thiocyanato-κN)copper(II) dihydrate
aDepartment of Chemistry, Lishui University, 323000 Lishui, ZheJiang, People's Republic of China
*Correspondence e-mail: zjlsxyhx@126.com
In the title compound, [Cu(NCS)2(C12H8N4S)2(H2O)2]·2H2O, the Cu atom is located on an inversion center and displays an octahedral geometry. Two N atoms of two different 2,5-di-4-pyridyl-1,3,4-thiadiazole ligands and two N atoms from two separate thiocyanate molecules form the equatorial plane, while two coordinated water molecules are in axial positions. The is consolidated by extensive hydrogen bonding, forming a two-dimensional network.
Related literature
For related literature, see: Moulton & Zaworotko (2001); Su et al. (2003); Zhang et al. (2005); Zhou et al. (2006).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808008854/dn2330sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808008854/dn2330Isup2.hkl
Cu(NCS)2(0.025 g, 0.13 mmol), L(0.031 g, 0.21 mmol), and NaOH (0.08 g, 0.2 mmol). were added in a solvent of methanol, the mixture was heated for ten hours under reflux. During the process stirring and influx were required. The resultant was then filtered to give a pure solution which was infiltrated by diethyl ether freely in a closed vessel, Four weeks later some single crystals of the size suitable for X-Ray diffraction analysis.
All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (methyl) and Uiso(H) = 1.2Ueq(C or N). H atoms of water molecule were located in difference Fourier maps and included in the subsequent
using restraints (O-H= 0.82 (1)Å and H···H= 1.38 (2)Å) with Uiso(H) = 1.5Ueq(O). In the last stage of they were treated as riding on their parent O atoms.Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Cu(NCS)2(C12H8N4S)2(H2O)2]·2H2O | Z = 1 |
Mr = 732.33 | F(000) = 375 |
Triclinic, P1 | Dx = 1.583 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.0555 (11) Å | Cell parameters from 2692 reflections |
b = 8.3034 (13) Å | θ = 1.4–25.1° |
c = 14.849 (2) Å | µ = 1.03 mm−1 |
α = 104.629 (2)° | T = 298 K |
β = 93.067 (2)° | Block, blue |
γ = 112.228 (2)° | 0.28 × 0.24 × 0.19 mm |
V = 768.3 (2) Å3 |
Bruker APEXII area-detector diffractometer | 2692 independent reflections |
Radiation source: fine-focus sealed tube | 1794 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
ϕ and ω scans | θmax = 25.1°, θmin = 1.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −8→5 |
Tmin = 0.761, Tmax = 0.828 | k = −9→9 |
3905 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.061 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.169 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0774P)2 + 0.6059P] where P = (Fo2 + 2Fc2)/3 |
2692 reflections | (Δ/σ)max < 0.001 |
205 parameters | Δρmax = 0.44 e Å−3 |
0 restraints | Δρmin = −0.69 e Å−3 |
[Cu(NCS)2(C12H8N4S)2(H2O)2]·2H2O | γ = 112.228 (2)° |
Mr = 732.33 | V = 768.3 (2) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.0555 (11) Å | Mo Kα radiation |
b = 8.3034 (13) Å | µ = 1.03 mm−1 |
c = 14.849 (2) Å | T = 298 K |
α = 104.629 (2)° | 0.28 × 0.24 × 0.19 mm |
β = 93.067 (2)° |
Bruker APEXII area-detector diffractometer | 2692 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | 1794 reflections with I > 2σ(I) |
Tmin = 0.761, Tmax = 0.828 | Rint = 0.028 |
3905 measured reflections |
R[F2 > 2σ(F2)] = 0.061 | 0 restraints |
wR(F2) = 0.169 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.44 e Å−3 |
2692 reflections | Δρmin = −0.69 e Å−3 |
205 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.5000 | 1.0000 | 0.0000 | 0.0423 (3) | |
S1 | −0.0367 (2) | 0.7797 (2) | 0.40422 (10) | 0.0484 (4) | |
S2 | 0.7893 (2) | 0.5558 (2) | −0.03644 (12) | 0.0477 (4) | |
N1 | 0.6831 (7) | 0.8539 (6) | −0.0062 (3) | 0.0417 (11) | |
N2 | 0.4011 (6) | 0.9385 (6) | 0.1283 (3) | 0.0349 (10) | |
N3 | 0.3261 (7) | 0.7924 (7) | 0.4413 (3) | 0.0486 (13) | |
N4 | 0.2304 (8) | 0.7563 (7) | 0.5165 (3) | 0.0489 (13) | |
N5 | −0.3536 (8) | 0.6276 (7) | 0.7101 (3) | 0.0511 (13) | |
O1 | 0.2491 (5) | 0.7683 (5) | −0.0897 (3) | 0.0434 (9) | |
H1B | 0.1349 | 0.7366 | −0.0728 | 0.065* | |
H1C | 0.2596 | 0.6773 | −0.1223 | 0.065* | |
O2 | −0.6718 (6) | 0.4775 (6) | 0.8112 (3) | 0.0586 (12) | |
H2B | −0.5687 | 0.5204 | 0.7880 | 0.088* | |
H2C | −0.6415 | 0.4525 | 0.8582 | 0.088* | |
C1 | 0.7271 (8) | 0.7310 (8) | −0.0188 (4) | 0.0347 (12) | |
C2 | 0.2117 (9) | 0.9123 (8) | 0.1465 (4) | 0.0436 (14) | |
H2 | 0.1223 | 0.9275 | 0.1043 | 0.052* | |
C3 | 0.1394 (9) | 0.8639 (8) | 0.2240 (4) | 0.0455 (14) | |
H3 | 0.0025 | 0.8407 | 0.2316 | 0.055* | |
C4 | 0.2713 (8) | 0.8505 (7) | 0.2895 (4) | 0.0379 (13) | |
C5 | 0.4715 (9) | 0.8795 (8) | 0.2725 (4) | 0.0475 (15) | |
H5 | 0.5660 | 0.8706 | 0.3150 | 0.057* | |
C6 | 0.5266 (9) | 0.9218 (8) | 0.1915 (4) | 0.0432 (14) | |
H6 | 0.6604 | 0.9397 | 0.1802 | 0.052* | |
C7 | 0.2060 (8) | 0.8066 (7) | 0.3769 (4) | 0.0395 (13) | |
C8 | 0.0424 (9) | 0.7481 (8) | 0.5080 (4) | 0.0418 (13) | |
C9 | −0.0929 (8) | 0.7148 (7) | 0.5800 (4) | 0.0379 (13) | |
C10 | −0.2927 (9) | 0.7063 (8) | 0.5682 (4) | 0.0442 (14) | |
H10 | −0.3440 | 0.7292 | 0.5160 | 0.053* | |
C11 | −0.4144 (9) | 0.6632 (8) | 0.6357 (4) | 0.0495 (15) | |
H11 | −0.5479 | 0.6593 | 0.6276 | 0.059* | |
C12 | −0.1584 (10) | 0.6393 (9) | 0.7221 (4) | 0.0559 (17) | |
H12 | −0.1112 | 0.6178 | 0.7757 | 0.067* | |
C13 | −0.0248 (9) | 0.6813 (8) | 0.6596 (4) | 0.0497 (15) | |
H13 | 0.1090 | 0.6871 | 0.6705 | 0.060* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0421 (6) | 0.0432 (6) | 0.0477 (6) | 0.0197 (5) | 0.0129 (4) | 0.0186 (5) |
S1 | 0.0490 (9) | 0.0680 (11) | 0.0412 (9) | 0.0289 (8) | 0.0147 (7) | 0.0281 (8) |
S2 | 0.0484 (9) | 0.0420 (9) | 0.0663 (11) | 0.0258 (7) | 0.0192 (8) | 0.0252 (8) |
N1 | 0.044 (3) | 0.043 (3) | 0.052 (3) | 0.026 (2) | 0.015 (2) | 0.020 (2) |
N2 | 0.032 (2) | 0.037 (3) | 0.038 (3) | 0.014 (2) | 0.009 (2) | 0.015 (2) |
N3 | 0.045 (3) | 0.063 (3) | 0.043 (3) | 0.022 (3) | 0.012 (2) | 0.023 (3) |
N4 | 0.048 (3) | 0.064 (3) | 0.041 (3) | 0.021 (3) | 0.014 (2) | 0.027 (3) |
N5 | 0.050 (3) | 0.064 (4) | 0.044 (3) | 0.022 (3) | 0.017 (2) | 0.022 (3) |
O1 | 0.035 (2) | 0.043 (2) | 0.051 (2) | 0.0140 (17) | 0.0117 (17) | 0.0118 (18) |
O2 | 0.055 (3) | 0.059 (3) | 0.051 (3) | 0.013 (2) | 0.018 (2) | 0.011 (2) |
C1 | 0.031 (3) | 0.045 (3) | 0.031 (3) | 0.014 (2) | 0.011 (2) | 0.016 (3) |
C2 | 0.041 (3) | 0.052 (4) | 0.043 (3) | 0.018 (3) | 0.007 (3) | 0.023 (3) |
C3 | 0.035 (3) | 0.056 (4) | 0.046 (3) | 0.013 (3) | 0.009 (3) | 0.022 (3) |
C4 | 0.040 (3) | 0.034 (3) | 0.036 (3) | 0.011 (2) | 0.012 (2) | 0.009 (2) |
C5 | 0.042 (3) | 0.064 (4) | 0.045 (4) | 0.026 (3) | 0.009 (3) | 0.025 (3) |
C6 | 0.040 (3) | 0.054 (4) | 0.043 (3) | 0.022 (3) | 0.017 (3) | 0.020 (3) |
C7 | 0.042 (3) | 0.039 (3) | 0.036 (3) | 0.014 (3) | 0.009 (3) | 0.012 (3) |
C8 | 0.047 (3) | 0.043 (3) | 0.037 (3) | 0.017 (3) | 0.006 (3) | 0.014 (3) |
C9 | 0.043 (3) | 0.035 (3) | 0.036 (3) | 0.015 (2) | 0.008 (2) | 0.012 (3) |
C10 | 0.046 (3) | 0.053 (4) | 0.047 (3) | 0.026 (3) | 0.009 (3) | 0.026 (3) |
C11 | 0.041 (3) | 0.052 (4) | 0.058 (4) | 0.020 (3) | 0.012 (3) | 0.017 (3) |
C12 | 0.054 (4) | 0.075 (5) | 0.042 (4) | 0.023 (3) | 0.014 (3) | 0.026 (3) |
C13 | 0.043 (3) | 0.066 (4) | 0.043 (4) | 0.022 (3) | 0.007 (3) | 0.023 (3) |
Cu1—N1 | 2.071 (4) | O2—H2C | 0.8159 |
Cu1—N1i | 2.071 (4) | C2—C3 | 1.372 (8) |
Cu1—O1i | 2.118 (4) | C2—H2 | 0.9300 |
Cu1—O1 | 2.118 (4) | C3—C4 | 1.365 (8) |
Cu1—N2 | 2.178 (4) | C3—H3 | 0.9300 |
Cu1—N2i | 2.178 (4) | C4—C5 | 1.388 (8) |
S1—C7 | 1.725 (6) | C4—C7 | 1.485 (7) |
S1—C8 | 1.726 (5) | C5—C6 | 1.372 (7) |
S2—C1 | 1.638 (6) | C5—H5 | 0.9300 |
N1—C1 | 1.150 (7) | C6—H6 | 0.9300 |
N2—C6 | 1.324 (7) | C8—C9 | 1.479 (7) |
N2—C2 | 1.325 (7) | C9—C13 | 1.382 (7) |
N3—C7 | 1.301 (7) | C9—C10 | 1.384 (7) |
N3—N4 | 1.375 (6) | C10—C11 | 1.382 (8) |
N4—C8 | 1.300 (7) | C10—H10 | 0.9300 |
N5—C11 | 1.305 (7) | C11—H11 | 0.9300 |
N5—C12 | 1.342 (8) | C12—C13 | 1.372 (8) |
O1—H1B | 0.8214 | C12—H12 | 0.9300 |
O1—H1C | 0.8200 | C13—H13 | 0.9300 |
O2—H2B | 0.8172 | ||
N1—Cu1—N1i | 180.000 (1) | C4—C3—H3 | 120.5 |
N1—Cu1—O1i | 89.03 (16) | C2—C3—H3 | 120.5 |
N1i—Cu1—O1i | 90.97 (16) | C3—C4—C5 | 118.0 (5) |
N1—Cu1—O1 | 90.97 (16) | C3—C4—C7 | 121.8 (5) |
N1i—Cu1—O1 | 89.03 (17) | C5—C4—C7 | 120.2 (5) |
O1i—Cu1—O1 | 180.0 | C6—C5—C4 | 118.4 (5) |
N1—Cu1—N2 | 91.15 (17) | C6—C5—H5 | 120.8 |
N1i—Cu1—N2 | 88.85 (17) | C4—C5—H5 | 120.8 |
O1i—Cu1—N2 | 86.47 (15) | N2—C6—C5 | 124.1 (5) |
O1—Cu1—N2 | 93.53 (15) | N2—C6—H6 | 118.0 |
N1—Cu1—N2i | 88.85 (17) | C5—C6—H6 | 118.0 |
N1i—Cu1—N2i | 91.15 (17) | N3—C7—C4 | 124.0 (5) |
O1i—Cu1—N2i | 93.53 (15) | N3—C7—S1 | 113.8 (4) |
O1—Cu1—N2i | 86.47 (14) | C4—C7—S1 | 122.1 (4) |
N2—Cu1—N2i | 180.0 (2) | N4—C8—C9 | 123.7 (5) |
C7—S1—C8 | 87.1 (3) | N4—C8—S1 | 113.7 (4) |
C1—N1—Cu1 | 159.4 (4) | C9—C8—S1 | 122.6 (4) |
C6—N2—C2 | 116.5 (5) | C13—C9—C10 | 118.0 (5) |
C6—N2—Cu1 | 121.5 (4) | C13—C9—C8 | 119.9 (5) |
C2—N2—Cu1 | 122.0 (3) | C10—C9—C8 | 122.0 (5) |
C7—N3—N4 | 112.5 (5) | C11—C10—C9 | 118.6 (5) |
C8—N4—N3 | 112.8 (4) | C11—C10—H10 | 120.7 |
C11—N5—C12 | 117.1 (5) | C9—C10—H10 | 120.7 |
Cu1—O1—H1B | 118.7 | N5—C11—C10 | 124.0 (6) |
Cu1—O1—H1C | 124.5 | N5—C11—H11 | 118.0 |
H1B—O1—H1C | 108.3 | C10—C11—H11 | 118.0 |
H2B—O2—H2C | 110.6 | N5—C12—C13 | 123.5 (6) |
N1—C1—S2 | 179.8 (5) | N5—C12—H12 | 118.2 |
N2—C2—C3 | 123.9 (5) | C13—C12—H12 | 118.2 |
N2—C2—H2 | 118.0 | C12—C13—C9 | 118.7 (6) |
C3—C2—H2 | 118.0 | C12—C13—H13 | 120.6 |
C4—C3—C2 | 119.0 (5) | C9—C13—H13 | 120.6 |
Symmetry code: (i) −x+1, −y+2, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2B···N5 | 0.82 | 2.03 | 2.835 (6) | 169 |
O2—H2C···S2ii | 0.82 | 2.90 | 3.541 (4) | 137 |
O1—H1B···S2iii | 0.82 | 2.50 | 3.303 (4) | 164 |
O1—H1C···O2iv | 0.82 | 1.95 | 2.761 (6) | 171 |
Symmetry codes: (ii) −x, −y+1, −z+1; (iii) x−1, y, z; (iv) x+1, y, z−1. |
Experimental details
Crystal data | |
Chemical formula | [Cu(NCS)2(C12H8N4S)2(H2O)2]·2H2O |
Mr | 732.33 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 298 |
a, b, c (Å) | 7.0555 (11), 8.3034 (13), 14.849 (2) |
α, β, γ (°) | 104.629 (2), 93.067 (2), 112.228 (2) |
V (Å3) | 768.3 (2) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.03 |
Crystal size (mm) | 0.28 × 0.24 × 0.19 |
Data collection | |
Diffractometer | Bruker APEXII area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2004) |
Tmin, Tmax | 0.761, 0.828 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3905, 2692, 1794 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.597 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.061, 0.169, 1.07 |
No. of reflections | 2692 |
No. of parameters | 205 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.44, −0.69 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2B···N5 | 0.82 | 2.03 | 2.835 (6) | 168.5 |
O2—H2C···S2i | 0.82 | 2.90 | 3.541 (4) | 136.6 |
O1—H1B···S2ii | 0.82 | 2.50 | 3.303 (4) | 164.3 |
O1—H1C···O2iii | 0.82 | 1.95 | 2.761 (6) | 171.1 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x−1, y, z; (iii) x+1, y, z−1. |
Acknowledgements
The authors are grateful to the Natural Science Foundation of Zhejiang Province (No. Y407081).
References
Bruker (2004). APEX2 and SMART. Bruker AXS Inc, Madison, Wisconsin, USA. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Su, C. Y., Cai, Y. P., Chen, C. L., Smith, M. D., Kaim, W. & Loye, H. C. (2003). J. Am. Chem. Soc. 125, 8595–8613. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhang, X. M., Fang, R. Q. & Wu, H. S. (2005). CrystEngComm. 7, 96–101. Web of Science CSD CrossRef CAS Google Scholar
Zhou, C. H., Wang, Y. Y., Li, D. S., Zhou, L. J., Liu, P. & Shi, Q. Z. (2006). Eur. J. Inorg. Chem. pp. 2437–2446. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years, the rational design and assembly of metal-organic frameworks (MOFs) with well regulated network structures have received remarkable attention in order to develop new functional materials with potential applications (Moulton & Zaworotko, 2001). Nevertheless, it is still a great challenge to predict the exact structures and compositions of polymeric compounds assembled in a motifs, although some structures with various architectures have been reported in MOFs. So far, much of the research has been concentrated on the exploitation of angular ligands with a molecular angle, such as ligands with a T-shape, V-shape etc, in the construction of versatile coordination polymer architectures (Su et al., 2003, Zhou et al., 2006). However, the bent 2,5-di-4-pyridyl-1,3,4-thiadiazole (L), have been less studied as building blocks in the construction of metal-organic frameworks (Zhang et al.; 2005). The angular 2,5-di-4-pyridyl-1,3,4-thiadiazole has flexible coodination modes than general 4,4'-bipyrdine-like ligands due to two more potential N-donors atoms. In this paper, we report the synthesis and crystal structure of the title complex with a multifunctional L ligand,(I).
The Cu atom is located on an inversion center and displays octahedral geometry (Fig. 1). Two nitrogen atoms of two different 2,5-di-4-pyridyl-1,3,4-thiadiazole ligands and two nitrogen atoms from two separated thiocyanate molecules form the basal plane, while two coordinated water molecules hold in axis position. The bond and angle are similar with others complexes with L ligand (Zhang et al., 2005). These monuclear units are held together by means of H bonds involving the coordinated water molecules, sulfur atoms of thiocyanate, lattice water molecules and N atoms of pyridyl rings from L ligands, which further assemble into a 2-D supramolecular sheet (Fig.2, Table 1).