organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(7-Iso­propyl-1,4a-di­methyl-1,2,3,4,4a,-9,10,10a-octa­hydro­phenanthren-1-yl)­methanaminium 4-toluene­sulfonate

aCollege of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
*Correspondence e-mail: actae@googlegroups.com

(Received 6 April 2008; accepted 14 April 2008; online 18 April 2008)

In the title compound, C20H32N+·C7H7O3S, the configurations of the two chiral centers observed in the protonated cation are consistent with previous reports. In the crystal structure, weak inter­molecular N—H⋯O hydrogen bonds link ions into chains which develop along the a axis. The isopropyl group and four CH groups of the attached benzene ring are disordered approximately equally over two positions.

Related literature

For related literature, see: Gottstein & Cheney (1965[Gottstein, W. J. & Cheney, L. C. (1965). J. Org. Chem. 30, 2072-2073.]); Rao et al. (2006[Rao, X.-P., Song, Z.-Q., Gong, Y., Yao, X.-J. & Shang, S.-B. (2006). Acta Cryst. E62, o3450-o3451.]); Tao (1993[Tao, Z. (1993). Chem. Ind. Times, 21, 9-16.]).

[Scheme 1]

Experimental

Crystal data
  • C20H32N+·C7H7O3S

  • Mr = 457.65

  • Orthorhombic, P 21 21 21

  • a = 5.9954 (2) Å

  • b = 11.7039 (5) Å

  • c = 37.0381 (13) Å

  • V = 2598.95 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 296 (2) K

  • 0.40 × 0.30 × 0.30 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.942, Tmax = 0.956

  • 22386 measured reflections

  • 5925 independent reflections

  • 4346 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.139

  • S = 1.05

  • 5925 reflections

  • 360 parameters

  • 204 restraints

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.35 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2489 Friedel pairs

  • Flack parameter: 0.03 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O1 0.89 2.06 2.835 (3) 145
N1—H1D⋯O3i 0.89 1.84 2.722 (3) 173
N1—H1E⋯O1ii 0.89 1.95 2.772 (3) 152
Symmetry codes: (i) x-1, y, z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and XP in SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Dehydroabietylamine, a unique synthetic primary amine having a three fused rings structure, is obtained as part of a mixture of amines prepared by the hydrogenation of rosin acid nitrile.

The cation and anion are linked by N-H···O hydrogen bond (Table 1, Fig.1). The R and S absolute configuration observed at C4 and C10 has been determined by the refinement of the Flack parameter (Flack, 1983). These absolute configurations agree with previous reports(Rao et al., 2006, Tao, 1993).

Further N—H···O hydrogen bonds between the amine group and the O atoms of the SO3 group, link molecules into chains developing along the a axis (Table 1).

Related literature top

For related literature, see: Gottstein & Cheney (1965); Rao et al. (2006); Tao (1993).

Experimental top

The title compound was synthesized according to the literature method(Gottstein & Cheney, 1965, Tao, 1993).

Refinement top

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.98 Å (methine), 0.97 Å(methylene), 0.96Å(methyl) or 0.93Å (aromatic) and N—H = 0.89Å with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl, N).

The isopropyl group and part of the ring to which it is attached is disordered over two positions as indicated by very elongated thermal ellipsoids. This disorder was treated using the PART and SADI instruction available in SHELXL97 (Sheldrick, 2008). The ratio between the two disordered fragments has been initialy obtained by refining the occupancy factor using the FVAR instruction with an overall isotropic thermal parameter. The ratio of the occupancy factor was found to be 0.53/0.47. Once correctly defined, the occupancy factors were fixed and a full refinement using restraints on C-C distances (SADI) and UIJ (SIMU, DELU) was carried out.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-32 (Farrugia, 1998) and XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atom-labelling scheme. Thermal ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Only one aprt of the disordered moiety is represented for clarity. H bond is shown as dashed line.
(7-Isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthren-1- yl)methanaminium 4-toluenesulfonate top
Crystal data top
C20H32N+·C7H7O3SF(000) = 992
Mr = 457.65Dx = 1.170 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5550 reflections
a = 5.9954 (2) Åθ = 2.4–21.4°
b = 11.7039 (5) ŵ = 0.15 mm1
c = 37.0381 (13) ÅT = 296 K
V = 2598.95 (17) Å3Box, colourless
Z = 40.40 × 0.30 × 0.30 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5925 independent reflections
Radiation source: fine-focus sealed tube4346 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 27.5°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 77
Tmin = 0.942, Tmax = 0.956k = 1510
22386 measured reflectionsl = 4548
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.0817P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
5925 reflectionsΔρmax = 0.22 e Å3
360 parametersΔρmin = 0.36 e Å3
204 restraintsAbsolute structure: Flack (1983), 2489 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (8)
Crystal data top
C20H32N+·C7H7O3SV = 2598.95 (17) Å3
Mr = 457.65Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.9954 (2) ŵ = 0.15 mm1
b = 11.7039 (5) ÅT = 296 K
c = 37.0381 (13) Å0.40 × 0.30 × 0.30 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5925 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4346 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.956Rint = 0.029
22386 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.139Δρmax = 0.22 e Å3
S = 1.05Δρmin = 0.36 e Å3
5925 reflectionsAbsolute structure: Flack (1983), 2489 Friedel pairs
360 parametersAbsolute structure parameter: 0.03 (8)
204 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.4813 (5)0.45313 (18)0.84444 (6)0.0648 (6)
H1A0.51640.51490.82790.078*
H1B0.32100.45290.84810.078*
C20.5952 (5)0.4754 (2)0.88024 (6)0.0714 (7)
H2A0.54440.54790.88990.086*
H2B0.75510.48040.87660.086*
C30.5442 (4)0.38020 (18)0.90724 (6)0.0596 (6)
H3A0.62410.39560.92950.072*
H3B0.38600.38130.91270.072*
C40.6073 (3)0.26118 (18)0.89395 (6)0.0513 (5)
C50.5098 (3)0.24264 (17)0.85538 (5)0.0512 (5)
H50.34780.24250.85890.061*
C60.5598 (5)0.1269 (2)0.83848 (7)0.0723 (7)
H6A0.70710.12750.82770.087*
H6B0.55620.06780.85680.087*
C70.3844 (6)0.1028 (3)0.80977 (8)0.0937 (10)
H7A0.43370.03860.79520.112*
H7B0.24670.08060.82160.112*
C80.3379 (5)0.2025 (3)0.78531 (7)0.0763 (8)
C90.4075 (4)0.3128 (2)0.79388 (6)0.0643 (6)
C100.5512 (4)0.3390 (2)0.82710 (6)0.0557 (5)
C11A0.354 (6)0.4122 (15)0.7717 (7)0.073 (4)0.47
H11A0.40930.48320.77870.087*0.47
C12A0.2225 (19)0.4056 (6)0.7397 (3)0.065 (2)0.47
H12A0.18840.47080.72650.078*0.47
C13A0.1461 (16)0.2979 (8)0.7289 (2)0.061 (2)0.47
C14A0.210 (2)0.2074 (7)0.7520 (3)0.066 (2)0.47
H14A0.15990.13640.74420.079*0.47
C18A0.0100 (12)0.2855 (7)0.69557 (16)0.0750 (17)0.47
H18A0.02480.36100.68560.090*0.47
C19A0.108 (2)0.2104 (16)0.6668 (4)0.164 (8)0.47
H19A0.13310.13540.67640.246*0.47
H19B0.24670.24220.65870.246*0.47
H19C0.00620.20560.64680.246*0.47
C20A0.199 (3)0.2203 (19)0.7017 (7)0.178 (10)0.47
H20A0.16290.14650.71140.268*0.47
H20B0.27660.21140.67930.268*0.47
H20C0.29120.26100.71850.268*0.47
C11B0.344 (6)0.3896 (14)0.7680 (6)0.076 (4)0.53
H11B0.38030.46640.77070.091*0.53
C12B0.2278 (18)0.3544 (7)0.7386 (3)0.069 (2)0.53
H12B0.18550.40960.72180.083*0.53
C13B0.1685 (14)0.2434 (7)0.7317 (3)0.068 (2)0.53
C14B0.223 (2)0.1613 (6)0.7559 (2)0.068 (2)0.53
H14B0.18670.08470.75290.082*0.53
C18B0.0331 (11)0.2128 (8)0.69788 (16)0.0893 (19)0.53
H18B0.02830.12950.69540.107*0.53
C19B0.162 (2)0.2641 (14)0.6647 (3)0.136 (6)0.53
H19D0.16250.34600.66640.205*0.53
H19E0.08970.24120.64280.205*0.53
H19F0.31290.23650.66480.205*0.53
C20B0.2109 (16)0.2584 (13)0.7026 (4)0.094 (3)0.53
H20D0.26640.23660.72590.141*0.53
H20E0.30450.22640.68420.141*0.53
H20F0.21130.34020.70060.141*0.53
C150.4892 (4)0.17224 (18)0.91797 (6)0.0576 (5)
H15A0.33000.17650.91340.069*
H15B0.53870.09670.91080.069*
C160.8591 (4)0.2415 (3)0.89661 (8)0.0758 (7)
H16A0.93610.30140.88400.114*
H16B0.89600.16920.88600.114*
H16C0.90310.24170.92150.114*
C170.7940 (4)0.3494 (3)0.81380 (7)0.0770 (8)
H17A0.80090.40330.79430.115*
H17B0.84530.27620.80560.115*
H17C0.88700.37520.83330.115*
C310.8536 (4)0.25930 (19)1.06820 (6)0.0626 (6)
C321.0535 (4)0.25420 (19)1.04994 (6)0.0678 (7)
H321.16050.31031.05400.081*
C331.0981 (4)0.16706 (19)1.02573 (6)0.0598 (6)
H331.23430.16471.01370.072*
C340.9414 (3)0.08452 (17)1.01948 (6)0.0506 (5)
C350.7373 (4)0.08909 (19)1.03689 (6)0.0607 (6)
H350.62920.03391.03240.073*
C360.6962 (4)0.1768 (2)1.06106 (7)0.0667 (6)
H360.55900.18011.07270.080*
C370.8088 (7)0.3537 (2)1.09495 (8)0.0913 (10)
H37A0.73480.41581.08300.137*
H37B0.71570.32531.11400.137*
H37C0.94750.38011.10490.137*
N10.5270 (3)0.18534 (15)0.95701 (5)0.0565 (4)
H1C0.66780.16780.96220.085*
H1D0.43590.13890.96900.085*
H1E0.50010.25730.96340.085*
O10.8894 (4)0.12792 (13)1.00269 (5)0.0828 (6)
O20.9025 (4)0.00303 (15)0.95411 (4)0.0818 (5)
O31.2366 (3)0.0371 (2)0.98855 (8)0.1196 (10)
S10.99852 (11)0.02625 (5)0.988456 (17)0.06402 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0798 (17)0.0532 (12)0.0612 (13)0.0036 (13)0.0047 (13)0.0070 (10)
C20.0970 (19)0.0557 (13)0.0615 (14)0.0134 (14)0.0079 (13)0.0041 (11)
C30.0707 (15)0.0544 (11)0.0537 (12)0.0089 (11)0.0018 (11)0.0018 (9)
C40.0412 (10)0.0523 (11)0.0604 (12)0.0054 (10)0.0072 (9)0.0037 (10)
C50.0432 (10)0.0515 (10)0.0589 (12)0.0003 (10)0.0120 (10)0.0024 (9)
C60.086 (2)0.0623 (14)0.0682 (15)0.0065 (13)0.0188 (14)0.0090 (11)
C70.111 (2)0.0824 (19)0.088 (2)0.0165 (19)0.0141 (19)0.0295 (17)
C80.0679 (16)0.100 (2)0.0611 (16)0.0084 (16)0.0129 (12)0.0205 (15)
C90.0513 (12)0.0902 (18)0.0513 (13)0.0044 (13)0.0133 (11)0.0015 (12)
C100.0511 (13)0.0661 (13)0.0499 (12)0.0036 (10)0.0088 (9)0.0011 (10)
C11A0.064 (7)0.101 (7)0.053 (6)0.003 (7)0.002 (4)0.007 (6)
C12A0.071 (4)0.061 (4)0.062 (4)0.009 (5)0.006 (3)0.011 (4)
C13A0.057 (4)0.071 (6)0.055 (4)0.009 (4)0.011 (3)0.000 (4)
C14A0.077 (5)0.049 (5)0.071 (5)0.013 (5)0.013 (4)0.004 (5)
C18A0.076 (4)0.082 (4)0.068 (4)0.014 (4)0.008 (3)0.006 (3)
C19A0.113 (10)0.257 (18)0.121 (10)0.111 (12)0.046 (8)0.101 (10)
C20A0.162 (18)0.182 (19)0.191 (15)0.089 (14)0.055 (12)0.012 (13)
C11B0.069 (6)0.098 (7)0.060 (6)0.014 (6)0.008 (5)0.001 (5)
C12B0.079 (5)0.069 (5)0.058 (4)0.021 (5)0.001 (3)0.002 (5)
C13B0.061 (3)0.077 (6)0.067 (4)0.013 (4)0.003 (3)0.010 (4)
C14B0.083 (4)0.058 (4)0.063 (4)0.014 (5)0.013 (3)0.011 (4)
C18B0.091 (5)0.100 (5)0.077 (4)0.023 (5)0.012 (3)0.015 (4)
C19B0.109 (7)0.253 (15)0.047 (4)0.027 (8)0.010 (4)0.024 (6)
C20B0.068 (5)0.124 (8)0.091 (6)0.002 (5)0.020 (4)0.005 (5)
C150.0590 (13)0.0555 (11)0.0583 (12)0.0110 (11)0.0052 (11)0.0063 (9)
C160.0469 (13)0.0997 (19)0.0810 (17)0.0028 (14)0.0065 (11)0.0155 (16)
C170.0577 (15)0.107 (2)0.0661 (15)0.0105 (14)0.0169 (12)0.0118 (15)
C310.0839 (17)0.0460 (11)0.0578 (13)0.0055 (12)0.0035 (11)0.0019 (10)
C320.0838 (18)0.0469 (11)0.0728 (15)0.0147 (12)0.0042 (13)0.0028 (11)
C330.0549 (13)0.0567 (13)0.0679 (14)0.0115 (10)0.0036 (11)0.0048 (10)
C340.0461 (11)0.0456 (10)0.0601 (12)0.0033 (9)0.0021 (9)0.0019 (9)
C350.0482 (12)0.0524 (12)0.0816 (16)0.0031 (10)0.0028 (12)0.0089 (11)
C360.0612 (14)0.0653 (14)0.0735 (15)0.0078 (12)0.0075 (12)0.0065 (12)
C370.137 (3)0.0662 (16)0.0708 (17)0.0128 (17)0.0046 (18)0.0159 (13)
N10.0503 (10)0.0550 (9)0.0641 (11)0.0047 (8)0.0032 (9)0.0131 (8)
O10.1152 (16)0.0473 (9)0.0859 (12)0.0018 (10)0.0308 (11)0.0102 (8)
O20.1068 (14)0.0746 (11)0.0641 (10)0.0038 (10)0.0039 (10)0.0154 (9)
O30.0561 (11)0.1249 (19)0.178 (2)0.0252 (12)0.0091 (13)0.0906 (18)
S10.0572 (3)0.0545 (3)0.0804 (4)0.0071 (3)0.0065 (3)0.0208 (3)
Geometric parameters (Å, º) top
C1—C21.514 (3)C11B—H11B0.9300
C1—C101.540 (3)C12B—C13B1.371 (9)
C1—H1A0.9700C12B—H12B0.9300
C1—H1B0.9700C13B—C14B1.353 (8)
C2—C31.528 (3)C13B—C18B1.535 (10)
C2—H2A0.9700C14B—H14B0.9300
C2—H2B0.9700C18B—C20B1.566 (11)
C3—C41.525 (3)C18B—C19B1.571 (12)
C3—H3A0.9700C18B—H18B0.9800
C3—H3B0.9700C19B—H19D0.9600
C4—C161.530 (3)C19B—H19E0.9600
C4—C151.542 (3)C19B—H19F0.9600
C4—C51.559 (3)C20B—H20D0.9600
C5—C61.522 (3)C20B—H20E0.9600
C5—C101.559 (3)C20B—H20F0.9600
C5—H50.9800C15—N11.472 (3)
C6—C71.522 (4)C15—H15A0.9700
C6—H6A0.9700C15—H15B0.9700
C6—H6B0.9700C16—H16A0.9600
C7—C81.504 (4)C16—H16B0.9600
C7—H7A0.9700C16—H16C0.9600
C7—H7B0.9700C17—H17A0.9600
C8—C14B1.375 (9)C17—H17B0.9600
C8—C91.393 (4)C17—H17C0.9600
C8—C14A1.455 (10)C31—C361.376 (3)
C9—C11B1.368 (11)C31—C321.377 (4)
C9—C11A1.460 (12)C31—C371.508 (3)
C9—C101.533 (3)C32—C331.384 (3)
C10—C171.542 (3)C32—H320.9300
C11A—C12A1.425 (11)C33—C341.367 (3)
C11A—H11A0.9300C33—H330.9300
C12A—C13A1.400 (9)C34—C351.384 (3)
C12A—H12A0.9300C34—S11.766 (2)
C13A—C14A1.412 (9)C35—C361.384 (3)
C13A—C18A1.488 (11)C35—H350.9300
C14A—H14A0.9300C36—H360.9300
C18A—C20A1.482 (16)C37—H37A0.9600
C18A—C19A1.501 (12)C37—H37B0.9600
C18A—H18A0.9800C37—H37C0.9600
C19A—H19A0.9600N1—H1C0.8900
C19A—H19B0.9600N1—H1D0.8900
C19A—H19C0.9600N1—H1E0.8900
C20A—H20A0.9600O1—S11.457 (2)
C20A—H20B0.9600O2—S11.4377 (19)
C20A—H20C0.9600O3—S11.433 (2)
C11B—C12B1.359 (11)
C2—C1—C10113.1 (2)C11B—C12B—C13B124.7 (9)
C2—C1—H1A109.0C11B—C12B—H12B117.7
C10—C1—H1A109.0C13B—C12B—H12B117.7
C2—C1—H1B109.0C14B—C13B—C12B119.2 (7)
C10—C1—H1B109.0C14B—C13B—C18B120.2 (7)
H1A—C1—H1B107.8C12B—C13B—C18B120.6 (8)
C1—C2—C3110.9 (2)C13B—C14B—C8113.4 (6)
C1—C2—H2A109.5C13B—C14B—H14B123.3
C3—C2—H2A109.5C8—C14B—H14B123.3
C1—C2—H2B109.5C13B—C18B—C20B108.9 (7)
C3—C2—H2B109.5C13B—C18B—C19B106.8 (8)
H2A—C2—H2B108.0C20B—C18B—C19B114.6 (9)
C4—C3—C2113.92 (18)C13B—C18B—H18B108.8
C4—C3—H3A108.8C20B—C18B—H18B108.8
C2—C3—H3A108.8C19B—C18B—H18B108.8
C4—C3—H3B108.8C18B—C19B—H19D109.5
C2—C3—H3B108.8C18B—C19B—H19E109.5
H3A—C3—H3B107.7H19D—C19B—H19E109.5
C3—C4—C16111.2 (2)C18B—C19B—H19F109.5
C3—C4—C15108.46 (17)H19D—C19B—H19F109.5
C16—C4—C15108.3 (2)H19E—C19B—H19F109.5
C3—C4—C5109.27 (17)C18B—C20B—H20D109.5
C16—C4—C5114.08 (19)C18B—C20B—H20E109.5
C15—C4—C5105.23 (17)H20D—C20B—H20E109.5
C6—C5—C4115.28 (18)C18B—C20B—H20F109.5
C6—C5—C10109.66 (17)H20D—C20B—H20F109.5
C4—C5—C10117.08 (17)H20E—C20B—H20F109.5
C6—C5—H5104.4N1—C15—C4115.21 (18)
C4—C5—H5104.4N1—C15—H15A108.5
C10—C5—H5104.4C4—C15—H15A108.5
C7—C6—C5108.5 (2)N1—C15—H15B108.5
C7—C6—H6A110.0C4—C15—H15B108.5
C5—C6—H6A110.0H15A—C15—H15B107.5
C7—C6—H6B110.0C4—C16—H16A109.5
C5—C6—H6B110.0C4—C16—H16B109.5
H6A—C6—H6B108.4H16A—C16—H16B109.5
C8—C7—C6113.9 (2)C4—C16—H16C109.5
C8—C7—H7A108.8H16A—C16—H16C109.5
C6—C7—H7A108.8H16B—C16—H16C109.5
C8—C7—H7B108.8C10—C17—H17A109.5
C6—C7—H7B108.8C10—C17—H17B109.5
H7A—C7—H7B107.7H17A—C17—H17B109.5
C14B—C8—C9130.9 (4)C10—C17—H17C109.5
C14B—C8—C14A22.8 (3)H17A—C17—H17C109.5
C9—C8—C14A108.3 (4)H17B—C17—H17C109.5
C14B—C8—C7107.4 (4)C36—C31—C32118.2 (2)
C9—C8—C7121.8 (2)C36—C31—C37121.2 (3)
C14A—C8—C7129.8 (4)C32—C31—C37120.6 (2)
C11B—C9—C8111.5 (7)C31—C32—C33121.2 (2)
C11B—C9—C11A11.7 (14)C31—C32—H32119.4
C8—C9—C11A123.0 (7)C33—C32—H32119.4
C11B—C9—C10125.9 (7)C34—C33—C32119.9 (2)
C8—C9—C10122.4 (2)C34—C33—H33120.1
C11A—C9—C10114.5 (7)C32—C33—H33120.1
C9—C10—C1110.8 (2)C33—C34—C35120.1 (2)
C9—C10—C17106.86 (19)C33—C34—S1119.73 (17)
C1—C10—C17108.8 (2)C35—C34—S1120.19 (17)
C9—C10—C5107.74 (19)C34—C35—C36119.2 (2)
C1—C10—C5107.70 (16)C34—C35—H35120.4
C17—C10—C5115.0 (2)C36—C35—H35120.4
C12A—C11A—C9123.0 (13)C31—C36—C35121.5 (2)
C12A—C11A—H11A118.5C31—C36—H36119.3
C9—C11A—H11A118.5C35—C36—H36119.3
C13A—C12A—C11A117.8 (10)C31—C37—H37A109.5
C13A—C12A—H12A121.1C31—C37—H37B109.5
C11A—C12A—H12A121.1H37A—C37—H37B109.5
C12A—C13A—C14A114.5 (7)C31—C37—H37C109.5
C12A—C13A—C18A120.3 (7)H37A—C37—H37C109.5
C14A—C13A—C18A125.3 (8)H37B—C37—H37C109.5
C13A—C14A—C8133.3 (7)C15—N1—H1C109.5
C13A—C14A—H14A113.4C15—N1—H1D109.5
C8—C14A—H14A113.4H1C—N1—H1D109.5
C20A—C18A—C13A112.6 (11)C15—N1—H1E109.5
C20A—C18A—C19A97.9 (13)H1C—N1—H1E109.5
C13A—C18A—C19A115.6 (8)H1D—N1—H1E109.5
C20A—C18A—H18A110.0O3—S1—O2114.95 (16)
C13A—C18A—H18A110.0O3—S1—O1111.98 (17)
C19A—C18A—H18A110.0O2—S1—O1109.59 (11)
C12B—C11B—C9120.4 (12)O3—S1—C34104.85 (11)
C12B—C11B—H11B119.8O2—S1—C34108.85 (10)
C9—C11B—H11B119.8O1—S1—C34106.09 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O10.892.062.835 (3)145
N1—H1D···O3i0.891.842.722 (3)173
N1—H1E···O1ii0.891.952.772 (3)152
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC20H32N+·C7H7O3S
Mr457.65
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)5.9954 (2), 11.7039 (5), 37.0381 (13)
V3)2598.95 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.40 × 0.30 × 0.30
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.942, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
22386, 5925, 4346
Rint0.029
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.139, 1.05
No. of reflections5925
No. of parameters360
No. of restraints204
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.36
Absolute structureFlack (1983), 2489 Friedel pairs
Absolute structure parameter0.03 (8)

Computer programs: SMART (Bruker, 2002), SAINT-Plus (Bruker, 2003), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-32 (Farrugia, 1998) and XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O10.892.062.835 (3)145.3
N1—H1D···O3i0.891.842.722 (3)173.2
N1—H1E···O1ii0.891.952.772 (3)152.1
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+1/2, z+2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China under grant No. 30771686.

References

First citationBruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGottstein, W. J. & Cheney, L. C. (1965). J. Org. Chem. 30, 2072–2073.  CrossRef CAS Web of Science Google Scholar
First citationRao, X.-P., Song, Z.-Q., Gong, Y., Yao, X.-J. & Shang, S.-B. (2006). Acta Cryst. E62, o3450–o3451.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTao, Z. (1993). Chem. Ind. Times, 21, 9–16.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds