organic compounds
5-Chloro-2-methoxyanilinium nitrate
aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia
*Correspondence e-mail: sonia.abid@fsb.rnu.tn
The title salt, C7H9ClNO+·NO3−, exhibits extensive hydrogen bonding between the ammonium and the nitrate anion. A two-dimensional network of bifurcated N—H⋯O hydrogen bonds generates corrugated layers in the bc plane. The organic molecules are stacked in a parallel orientation as a result of π–π interactions, with an inter-ring distance of 3.837 Å.
Related literature
For related literature, see: Abid et al. (2007); Aloui et al. (2002); Desiraju & Steiner (1999); Hemissi et al. (2005); Jayaraman et al. (2002); Ouslati & Ben Nasr (2006); Steiner (2002); Kefi et al. (2007).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997), DIAMOND (Brandenburg, 1998); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536808008805/fj2102sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808008805/fj2102Isup2.hkl
An ethanolic 2-methoxy-5-chloroaniline solution (5 mmol, in 5 ml) was added to an aqueous HNO3 solution (0.5 M). The obtained solution is evaporated during several days in ambient condition until the formation of single crystals of the title compound.
All H atoms were positioned geometrically and treated as riding on their parent atoms, [N–H = 0.89, C–H =0.96 Å (CH3 ) with with Uiso(H) = 1.5Ueq and C–H =0.96 Å (Ar–H), with Uiso(H) = 1.5Ueq]
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997), DIAMOND (Brandenburg, 1998); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. ORTEP-3 (Farrugia,(1999)) view of the title compound, with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level, and H-atoms are shown as spheres with an arbitary radius. | |
Fig. 2. A perspective view of the atomic arrangement of the title compound. | |
Fig. 3. Nitrate anion environment in the title compound. [Symmetry operators: (i) x, y, z; (ii) -x, y + 1/2, -z + 1/2; (iii) -x, -y, -z]. |
C7H9ClNO+·NO3− | F(000) = 456 |
Mr = 220.61 | Dx = 1.513 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 25 reflections |
a = 10.681 (2) Å | θ = 9.1–10.8° |
b = 9.474 (3) Å | µ = 0.39 mm−1 |
c = 9.802 (3) Å | T = 293 K |
β = 102.38 (3)° | Prism, black |
V = 968.8 (5) Å3 | 0.2 × 0.18 × 0.16 mm |
Z = 4 |
Enraf–Nonius TurboCAD4 diffractometer | Rint = 0.029 |
Radiation source: Enraf–Nonius FR590 | θmax = 27.0°, θmin = 2.9° |
Graphite monochromator | h = −13→13 |
non–profiled ω scans | k = −12→0 |
4244 measured reflections | l = −12→12 |
2125 independent reflections | 2 standard reflections every 120 min |
1409 reflections with I > 2σ(I) | intensity decay: 5% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.109 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0495P)2 + 0.2112P] where P = (Fo2 + 2Fc2)/3 |
2125 reflections | (Δ/σ)max < 0.001 |
129 parameters | Δρmax = 0.18 e Å−3 |
0 restraints | Δρmin = −0.42 e Å−3 |
C7H9ClNO+·NO3− | V = 968.8 (5) Å3 |
Mr = 220.61 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.681 (2) Å | µ = 0.39 mm−1 |
b = 9.474 (3) Å | T = 293 K |
c = 9.802 (3) Å | 0.2 × 0.18 × 0.16 mm |
β = 102.38 (3)° |
Enraf–Nonius TurboCAD4 diffractometer | Rint = 0.029 |
4244 measured reflections | 2 standard reflections every 120 min |
2125 independent reflections | intensity decay: 5% |
1409 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.109 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.18 e Å−3 |
2125 reflections | Δρmin = −0.42 e Å−3 |
129 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl | 0.39657 (5) | 0.59783 (8) | 0.79445 (7) | 0.0703 (2) | |
N2 | 0.83926 (16) | 0.40697 (19) | 0.75239 (18) | 0.0478 (4) | |
H2 | 0.8415 | 0.3375 | 0.6918 | 0.072* | |
H1 | 0.8331 | 0.3705 | 0.8344 | 0.072* | |
H3 | 0.9107 | 0.4579 | 0.7630 | 0.072* | |
O4 | 0.83237 (15) | 0.55493 (16) | 0.52279 (16) | 0.0568 (4) | |
C1 | 0.72828 (18) | 0.4973 (2) | 0.6998 (2) | 0.0387 (4) | |
C2 | 0.72905 (19) | 0.5751 (2) | 0.5790 (2) | 0.0425 (5) | |
C3 | 0.6254 (2) | 0.6618 (2) | 0.5276 (2) | 0.0530 (6) | |
H4 | 0.6241 | 0.7158 | 0.4481 | 0.064* | |
C4 | 0.5237 (2) | 0.6682 (2) | 0.5941 (2) | 0.0532 (5) | |
H5 | 0.4537 | 0.7256 | 0.5585 | 0.064* | |
C5 | 0.52562 (19) | 0.5906 (2) | 0.7117 (2) | 0.0465 (5) | |
C6 | 0.62876 (18) | 0.5041 (2) | 0.7675 (2) | 0.0425 (5) | |
H6 | 0.6303 | 0.4523 | 0.8484 | 0.051* | |
C7 | 0.8528 (3) | 0.6480 (3) | 0.4147 (3) | 0.0714 (7) | |
H7 | 0.7883 | 0.6316 | 0.3316 | 0.107* | |
H8 | 0.9360 | 0.6309 | 0.3957 | 0.107* | |
H9 | 0.8477 | 0.7441 | 0.4443 | 0.107* | |
O1 | 0.82176 (15) | 0.19146 (16) | 0.53507 (16) | 0.0556 (4) | |
N1 | 0.88696 (17) | 0.09358 (19) | 0.60238 (19) | 0.0484 (4) | |
O2 | 0.8812 (2) | −0.02617 (18) | 0.5536 (2) | 0.0835 (6) | |
O3 | 0.95687 (16) | 0.12025 (18) | 0.71720 (17) | 0.0648 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl | 0.0462 (3) | 0.0888 (5) | 0.0816 (5) | −0.0011 (3) | 0.0262 (3) | −0.0182 (4) |
N2 | 0.0487 (9) | 0.0465 (10) | 0.0493 (10) | 0.0074 (8) | 0.0128 (8) | 0.0016 (8) |
O4 | 0.0608 (9) | 0.0616 (10) | 0.0553 (9) | 0.0042 (8) | 0.0284 (8) | 0.0059 (8) |
C1 | 0.0394 (9) | 0.0342 (10) | 0.0416 (10) | 0.0017 (8) | 0.0067 (8) | −0.0040 (8) |
C2 | 0.0474 (11) | 0.0390 (10) | 0.0426 (11) | −0.0011 (9) | 0.0133 (9) | −0.0051 (9) |
C3 | 0.0641 (14) | 0.0486 (13) | 0.0465 (12) | 0.0072 (11) | 0.0123 (10) | 0.0052 (10) |
C4 | 0.0518 (12) | 0.0508 (13) | 0.0539 (13) | 0.0117 (10) | 0.0043 (10) | −0.0034 (11) |
C5 | 0.0389 (10) | 0.0487 (12) | 0.0525 (12) | −0.0016 (9) | 0.0112 (9) | −0.0156 (10) |
C6 | 0.0465 (11) | 0.0410 (11) | 0.0411 (11) | −0.0061 (9) | 0.0122 (9) | −0.0044 (9) |
C7 | 0.0947 (19) | 0.0575 (15) | 0.0752 (17) | −0.0137 (14) | 0.0481 (15) | −0.0009 (13) |
O1 | 0.0598 (9) | 0.0502 (9) | 0.0562 (9) | 0.0115 (8) | 0.0108 (7) | 0.0016 (7) |
N1 | 0.0526 (10) | 0.0451 (10) | 0.0522 (11) | −0.0002 (9) | 0.0215 (9) | −0.0025 (9) |
O2 | 0.1170 (16) | 0.0446 (10) | 0.0859 (13) | 0.0093 (10) | 0.0152 (12) | −0.0144 (10) |
O3 | 0.0709 (11) | 0.0675 (11) | 0.0518 (10) | 0.0030 (8) | 0.0038 (8) | −0.0049 (8) |
Cl—C5 | 1.744 (2) | C3—H4 | 0.9300 |
N2—C1 | 1.463 (2) | C4—C5 | 1.364 (3) |
N2—H2 | 0.8900 | C4—H5 | 0.9300 |
N2—H1 | 0.8900 | C5—C6 | 1.388 (3) |
N2—H3 | 0.8900 | C6—H6 | 0.9300 |
O4—C2 | 1.349 (2) | C7—H7 | 0.9600 |
O4—C7 | 1.431 (3) | C7—H8 | 0.9600 |
C1—C6 | 1.370 (3) | C7—H9 | 0.9600 |
C1—C2 | 1.397 (3) | O1—N1 | 1.258 (2) |
C2—C3 | 1.383 (3) | N1—O2 | 1.228 (2) |
C3—C4 | 1.383 (3) | N1—O3 | 1.236 (2) |
C1—N2—H2 | 109.5 | C5—C4—H5 | 119.9 |
C1—N2—H1 | 109.5 | C3—C4—H5 | 119.9 |
H2—N2—H1 | 109.5 | C4—C5—C6 | 121.21 (19) |
C1—N2—H3 | 109.5 | C4—C5—Cl | 120.13 (17) |
H2—N2—H3 | 109.5 | C6—C5—Cl | 118.66 (17) |
H1—N2—H3 | 109.5 | C1—C6—C5 | 118.04 (19) |
C2—O4—C7 | 118.86 (18) | C1—C6—H6 | 121.0 |
C6—C1—C2 | 122.12 (18) | C5—C6—H6 | 121.0 |
C6—C1—N2 | 120.77 (18) | O4—C7—H7 | 109.5 |
C2—C1—N2 | 117.11 (17) | O4—C7—H8 | 109.5 |
O4—C2—C3 | 126.62 (19) | H7—C7—H8 | 109.5 |
O4—C2—C1 | 115.18 (18) | O4—C7—H9 | 109.5 |
C3—C2—C1 | 118.19 (19) | H7—C7—H9 | 109.5 |
C4—C3—C2 | 120.2 (2) | H8—C7—H9 | 109.5 |
C4—C3—H4 | 119.9 | O2—N1—O3 | 120.9 (2) |
C2—C3—H4 | 119.9 | O2—N1—O1 | 120.0 (2) |
C5—C4—C3 | 120.3 (2) | O3—N1—O1 | 119.02 (18) |
C7—O4—C2—C3 | 12.4 (3) | C2—C3—C4—C5 | 0.8 (3) |
C7—O4—C2—C1 | −168.9 (2) | C3—C4—C5—C6 | 0.1 (3) |
C6—C1—C2—O4 | −178.65 (18) | C3—C4—C5—Cl | −179.46 (17) |
N2—C1—C2—O4 | 1.4 (3) | C2—C1—C6—C5 | 0.7 (3) |
C6—C1—C2—C3 | 0.2 (3) | N2—C1—C6—C5 | −179.35 (18) |
N2—C1—C2—C3 | −179.74 (18) | C4—C5—C6—C1 | −0.9 (3) |
O4—C2—C3—C4 | 177.7 (2) | Cl—C5—C6—C1 | 178.71 (15) |
C1—C2—C3—C4 | −1.0 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1···O1i | 0.89 | 2.08 | 2.967 (3) | 173 |
N2—H1···O2i | 0.89 | 2.57 | 3.103 (3) | 120 |
N2—H2···O1 | 0.89 | 2.04 | 2.927 (3) | 171 |
N2—H2···O3 | 0.89 | 2.38 | 3.043 (3) | 131 |
N2—H3···O2ii | 0.89 | 2.55 | 3.240 (3) | 135 |
N2—H3···O3ii | 0.89 | 2.07 | 2.939 (3) | 165 |
C7—H9···O2iii | 0.96 | 2.42 | 3.361 (4) | 167 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+2, y+1/2, −z+3/2; (iii) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C7H9ClNO+·NO3− |
Mr | 220.61 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 10.681 (2), 9.474 (3), 9.802 (3) |
β (°) | 102.38 (3) |
V (Å3) | 968.8 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.39 |
Crystal size (mm) | 0.2 × 0.18 × 0.16 |
Data collection | |
Diffractometer | Enraf–Nonius TurboCAD4 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4244, 2125, 1409 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.109, 1.02 |
No. of reflections | 2125 |
No. of parameters | 129 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.18, −0.42 |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), DIAMOND (Brandenburg, 1998), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1···O1i | 0.8900 | 2.0800 | 2.967 (3) | 173 |
N2—H1···O2i | 0.8900 | 2.5700 | 3.103 (3) | 120 |
N2—H2···O1 | 0.8900 | 2.0400 | 2.927 (3) | 171 |
N2—H2···O3 | 0.8900 | 2.3800 | 3.043 (3) | 131 |
N2—H3···O2ii | 0.8900 | 2.5500 | 3.240 (3) | 135 |
N2—H3···O3ii | 0.8900 | 2.0700 | 2.939 (3) | 165 |
C7—H9···O2iii | 0.9600 | 2.4200 | 3.361 (4) | 167 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+2, y+1/2, −z+3/2; (iii) x, y+1, z. |
References
Abid, S., Hemissi, H. & Rzaigui, M. (2007). Acta Cryst. E63, o3117. Web of Science CSD CrossRef IUCr Journals Google Scholar
Aloui, Z., Abid, S. & Rzaigui, M. (2002). Mater. Res. Bull. 37, 697–703. Web of Science CSD CrossRef CAS Google Scholar
Brandenburg, K. (1998). DIAMOND. University of Bonn, Germany. Google Scholar
Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond. Oxford University Press. Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Hemissi, H., Abid, S. & Rzaigui, M. (2005). Anal. Sci. 21, 137–138. Web of Science PubMed Google Scholar
Jayaraman, K., Choudhury, A. & Rao, C. N. R. (2002). Solid State Sci. 4, 413–422. Web of Science CSD CrossRef CAS Google Scholar
Kefi, R., Abid, S., Ben Nasr, C. & Rzaigui, M. (2007). Mater. Res. Bull. 42, 404–412. Web of Science CSD CrossRef CAS Google Scholar
Ouslati, A. & Ben Nasr, C. (2006). Anal. Sci. 22, 1–2. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Hydrogen bonding is of intense interest because of their widespread occurrence in biological systems. So, it is very helpful to search simple molecules allowing to understanding the configuration and the function of some complex macromolecules.The hybrid compounds are rich in H-bonds and they could be used to this effect because of their potential importance in constructing sophisticated assemblies from discrete ionic or molecular building blocks due to its strength and directionality (Steiner. et al. 2002, Jayaraman, et al. 2002). In this work, the combination of 2-methoxy-5-chloroaniline and nitric acid has been chosen to elaborate the special hydrogen-bond pattern. The asymmetric unit of crystal structure, depicted in ORTEP drawing (Fig. 1), correspond to the formula unit C6H9ClNO+.NO3-. The main feature of this atomic arrangement is the existence of thick inorganic corrugated layers spreading around bc plane (Fig. 2). Inside layer, each NO3- anion is linked to three organic groups through bifurcated N–H···O H-bonding. The N···O and H···O bond lengths are in the ranges of 2.927 (3)–3.240 (3) Å and 2.04–2.57 Å, respectively. The organic species interact also with a weak C–H···O hydrogen bond with H···O separation of 2.42 Å. These interactions are weaker than those observed otherwise (Ouslati et al. 2006, Kefi et al. 2007). The orientation of molecules in this framework is governed by a nearly regular triangular arrangement of 2-methoxy-5-chlorophenylammonium groups [N···N distances between nitrogen ammonium atoms are in the range of 5.597 and 5.857 Å, N···N···N angles range from 57.75 to 62.25°] (Fig. 3). As well as electrostatic and van der Waals forces and hydrogen bonds, aromatic π-π stacking interactions participate to define the crystal packing. Indeed, in the atomic arrangement of the title compound, the phenyl ring of the organic molecules are stacked in the parallel orientation with inter-planar separation of 3.837 Å indicating there are π–π stacking interactions (Desiraju & Steiner, 1999). The –Cl, –NH3 and –OCH3 substituents form, respectively, different torsion angles with the benzene ring: Cl—C5—C6—C1 ((t1) = 178.71°), N2—C1—C2—C3 ((t2) = -179.74°) and C7—O4—C2—C3 ((t3) = 12.43°). (t1) and (t2) angle values show that the chloro and amino substituents are nearly coplanar with the aryl ring. The torsion angle (t3) value indicates that the methoxy group lies out the plane of the benzene ring. This conformation resembles that observed in other compounds (Abid et al. 2007, Aloui et al. 2002, Hemissi et al. 2005).