organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Chloro-2-meth­oxy­anilinium nitrate

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia
*Correspondence e-mail: sonia.abid@fsb.rnu.tn

(Received 16 February 2008; accepted 1 April 2008; online 4 April 2008)

The title salt, C7H9ClNO+·NO3, exhibits extensive hydrogen bonding between the ammonium functional group and the nitrate anion. A two-dimensional network of bifurcated N—H⋯O hydrogen bonds generates corrugated layers in the bc plane. The organic mol­ecules are stacked in a parallel orientation as a result of ππ inter­actions, with an inter-ring distance of 3.837 Å.

Related literature

For related literature, see: Abid et al. (2007[Abid, S., Hemissi, H. & Rzaigui, M. (2007). Acta Cryst. E63, o3117.]); Aloui et al. (2002[Aloui, Z., Abid, S. & Rzaigui, M. (2002). Mater. Res. Bull. 37, 697-703.]); Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond. Oxford University Press.]); Hemissi et al. (2005[Hemissi, H., Abid, S. & Rzaigui, M. (2005). Anal. Sci. 21, 137-138.]); Jayaraman et al. (2002[Jayaraman, K., Choudhury, A. & Rao, C. N. R. (2002). Solid State Sci. 4, 413-422.]); Ouslati & Ben Nasr (2006[Ouslati, A. & Ben Nasr, C. (2006). Anal. Sci. 22, 1-2.]); Steiner (2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]); Kefi et al. (2007[Kefi, R., Abid, S., Ben Nasr, C. & Rzaigui, M. (2007). Mater. Res. Bull. 42, 404-412.]).

[Scheme 1]

Experimental

Crystal data
  • C7H9ClNO+·NO3

  • Mr = 220.61

  • Monoclinic, P 21 /c

  • a = 10.681 (2) Å

  • b = 9.474 (3) Å

  • c = 9.802 (3) Å

  • β = 102.38 (3)°

  • V = 968.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 293 (2) K

  • 0.2 × 0.18 × 0.16 mm

Data collection
  • Enraf–Nonius TurboCAD-4 diffractometer

  • Absorption correction: none

  • 4244 measured reflections

  • 2125 independent reflections

  • 1409 reflections with I > 2σ(I)

  • Rint = 0.029

  • 2 standard reflections frequency: 120 min intensity decay: 5%

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.109

  • S = 1.02

  • 2125 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯O1i 0.89 2.08 2.967 (3) 173
N2—H1⋯O2i 0.89 2.57 3.103 (3) 120
N2—H2⋯O1 0.89 2.04 2.927 (3) 171
N2—H2⋯O3 0.89 2.38 3.043 (3) 131
N2—H3⋯O2ii 0.89 2.55 3.240 (3) 135
N2—H3⋯O3ii 0.89 2.07 2.939 (3) 165
C7—H9⋯O2iii 0.96 2.42 3.361 (4) 167
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x, y+1, z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. University of Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Hydrogen bonding is of intense interest because of their widespread occurrence in biological systems. So, it is very helpful to search simple molecules allowing to understanding the configuration and the function of some complex macromolecules.The hybrid compounds are rich in H-bonds and they could be used to this effect because of their potential importance in constructing sophisticated assemblies from discrete ionic or molecular building blocks due to its strength and directionality (Steiner. et al. 2002, Jayaraman, et al. 2002). In this work, the combination of 2-methoxy-5-chloroaniline and nitric acid has been chosen to elaborate the special hydrogen-bond pattern. The asymmetric unit of crystal structure, depicted in ORTEP drawing (Fig. 1), correspond to the formula unit C6H9ClNO+.NO3-. The main feature of this atomic arrangement is the existence of thick inorganic corrugated layers spreading around bc plane (Fig. 2). Inside layer, each NO3- anion is linked to three organic groups through bifurcated N–H···O H-bonding. The N···O and H···O bond lengths are in the ranges of 2.927 (3)–3.240 (3) Å and 2.04–2.57 Å, respectively. The organic species interact also with a weak C–H···O hydrogen bond with H···O separation of 2.42 Å. These interactions are weaker than those observed otherwise (Ouslati et al. 2006, Kefi et al. 2007). The orientation of molecules in this framework is governed by a nearly regular triangular arrangement of 2-methoxy-5-chlorophenylammonium groups [N···N distances between nitrogen ammonium atoms are in the range of 5.597 and 5.857 Å, N···N···N angles range from 57.75 to 62.25°] (Fig. 3). As well as electrostatic and van der Waals forces and hydrogen bonds, aromatic π-π stacking interactions participate to define the crystal packing. Indeed, in the atomic arrangement of the title compound, the phenyl ring of the organic molecules are stacked in the parallel orientation with inter-planar separation of 3.837 Å indicating there are ππ stacking interactions (Desiraju & Steiner, 1999). The –Cl, –NH3 and –OCH3 substituents form, respectively, different torsion angles with the benzene ring: Cl—C5—C6—C1 ((t1) = 178.71°), N2—C1—C2—C3 ((t2) = -179.74°) and C7—O4—C2—C3 ((t3) = 12.43°). (t1) and (t2) angle values show that the chloro and amino substituents are nearly coplanar with the aryl ring. The torsion angle (t3) value indicates that the methoxy group lies out the plane of the benzene ring. This conformation resembles that observed in other compounds (Abid et al. 2007, Aloui et al. 2002, Hemissi et al. 2005).

Related literature top

For related literature, see: Abid et al. (2007); Aloui et al. (2002); Desiraju & Steiner (1999); Hemissi et al. (2005); Jayaraman et al. (2002); Ouslati & Ben Nasr (2006); Steiner (2002; Kefi et al. (2007).

Experimental top

An ethanolic 2-methoxy-5-chloroaniline solution (5 mmol, in 5 ml) was added to an aqueous HNO3 solution (0.5 M). The obtained solution is evaporated during several days in ambient condition until the formation of single crystals of the title compound.

Refinement top

All H atoms were positioned geometrically and treated as riding on their parent atoms, [N–H = 0.89, C–H =0.96 Å (CH3 ) with with Uiso(H) = 1.5Ueq and C–H =0.96 Å (Ar–H), with Uiso(H) = 1.5Ueq]

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997), DIAMOND (Brandenburg, 1998); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia,(1999)) view of the title compound, with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level, and H-atoms are shown as spheres with an arbitary radius.
[Figure 2] Fig. 2. A perspective view of the atomic arrangement of the title compound.
[Figure 3] Fig. 3. Nitrate anion environment in the title compound. [Symmetry operators: (i) x, y, z; (ii) -x, y + 1/2, -z + 1/2; (iii) -x, -y, -z].
5-Chloro-2-methoxyanilinium nitrate top
Crystal data top
C7H9ClNO+·NO3F(000) = 456
Mr = 220.61Dx = 1.513 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 10.681 (2) Åθ = 9.1–10.8°
b = 9.474 (3) ŵ = 0.39 mm1
c = 9.802 (3) ÅT = 293 K
β = 102.38 (3)°Prism, black
V = 968.8 (5) Å30.2 × 0.18 × 0.16 mm
Z = 4
Data collection top
Enraf–Nonius TurboCAD4
diffractometer
Rint = 0.029
Radiation source: Enraf–Nonius FR590θmax = 27.0°, θmin = 2.9°
Graphite monochromatorh = 1313
non–profiled ω scansk = 120
4244 measured reflectionsl = 1212
2125 independent reflections2 standard reflections every 120 min
1409 reflections with I > 2σ(I) intensity decay: 5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0495P)2 + 0.2112P]
where P = (Fo2 + 2Fc2)/3
2125 reflections(Δ/σ)max < 0.001
129 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C7H9ClNO+·NO3V = 968.8 (5) Å3
Mr = 220.61Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.681 (2) ŵ = 0.39 mm1
b = 9.474 (3) ÅT = 293 K
c = 9.802 (3) Å0.2 × 0.18 × 0.16 mm
β = 102.38 (3)°
Data collection top
Enraf–Nonius TurboCAD4
diffractometer
Rint = 0.029
4244 measured reflections2 standard reflections every 120 min
2125 independent reflections intensity decay: 5%
1409 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.02Δρmax = 0.18 e Å3
2125 reflectionsΔρmin = 0.42 e Å3
129 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.39657 (5)0.59783 (8)0.79445 (7)0.0703 (2)
N20.83926 (16)0.40697 (19)0.75239 (18)0.0478 (4)
H20.84150.33750.69180.072*
H10.83310.37050.83440.072*
H30.91070.45790.76300.072*
O40.83237 (15)0.55493 (16)0.52279 (16)0.0568 (4)
C10.72828 (18)0.4973 (2)0.6998 (2)0.0387 (4)
C20.72905 (19)0.5751 (2)0.5790 (2)0.0425 (5)
C30.6254 (2)0.6618 (2)0.5276 (2)0.0530 (6)
H40.62410.71580.44810.064*
C40.5237 (2)0.6682 (2)0.5941 (2)0.0532 (5)
H50.45370.72560.55850.064*
C50.52562 (19)0.5906 (2)0.7117 (2)0.0465 (5)
C60.62876 (18)0.5041 (2)0.7675 (2)0.0425 (5)
H60.63030.45230.84840.051*
C70.8528 (3)0.6480 (3)0.4147 (3)0.0714 (7)
H70.78830.63160.33160.107*
H80.93600.63090.39570.107*
H90.84770.74410.44430.107*
O10.82176 (15)0.19146 (16)0.53507 (16)0.0556 (4)
N10.88696 (17)0.09358 (19)0.60238 (19)0.0484 (4)
O20.8812 (2)0.02617 (18)0.5536 (2)0.0835 (6)
O30.95687 (16)0.12025 (18)0.71720 (17)0.0648 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0462 (3)0.0888 (5)0.0816 (5)0.0011 (3)0.0262 (3)0.0182 (4)
N20.0487 (9)0.0465 (10)0.0493 (10)0.0074 (8)0.0128 (8)0.0016 (8)
O40.0608 (9)0.0616 (10)0.0553 (9)0.0042 (8)0.0284 (8)0.0059 (8)
C10.0394 (9)0.0342 (10)0.0416 (10)0.0017 (8)0.0067 (8)0.0040 (8)
C20.0474 (11)0.0390 (10)0.0426 (11)0.0011 (9)0.0133 (9)0.0051 (9)
C30.0641 (14)0.0486 (13)0.0465 (12)0.0072 (11)0.0123 (10)0.0052 (10)
C40.0518 (12)0.0508 (13)0.0539 (13)0.0117 (10)0.0043 (10)0.0034 (11)
C50.0389 (10)0.0487 (12)0.0525 (12)0.0016 (9)0.0112 (9)0.0156 (10)
C60.0465 (11)0.0410 (11)0.0411 (11)0.0061 (9)0.0122 (9)0.0044 (9)
C70.0947 (19)0.0575 (15)0.0752 (17)0.0137 (14)0.0481 (15)0.0009 (13)
O10.0598 (9)0.0502 (9)0.0562 (9)0.0115 (8)0.0108 (7)0.0016 (7)
N10.0526 (10)0.0451 (10)0.0522 (11)0.0002 (9)0.0215 (9)0.0025 (9)
O20.1170 (16)0.0446 (10)0.0859 (13)0.0093 (10)0.0152 (12)0.0144 (10)
O30.0709 (11)0.0675 (11)0.0518 (10)0.0030 (8)0.0038 (8)0.0049 (8)
Geometric parameters (Å, º) top
Cl—C51.744 (2)C3—H40.9300
N2—C11.463 (2)C4—C51.364 (3)
N2—H20.8900C4—H50.9300
N2—H10.8900C5—C61.388 (3)
N2—H30.8900C6—H60.9300
O4—C21.349 (2)C7—H70.9600
O4—C71.431 (3)C7—H80.9600
C1—C61.370 (3)C7—H90.9600
C1—C21.397 (3)O1—N11.258 (2)
C2—C31.383 (3)N1—O21.228 (2)
C3—C41.383 (3)N1—O31.236 (2)
C1—N2—H2109.5C5—C4—H5119.9
C1—N2—H1109.5C3—C4—H5119.9
H2—N2—H1109.5C4—C5—C6121.21 (19)
C1—N2—H3109.5C4—C5—Cl120.13 (17)
H2—N2—H3109.5C6—C5—Cl118.66 (17)
H1—N2—H3109.5C1—C6—C5118.04 (19)
C2—O4—C7118.86 (18)C1—C6—H6121.0
C6—C1—C2122.12 (18)C5—C6—H6121.0
C6—C1—N2120.77 (18)O4—C7—H7109.5
C2—C1—N2117.11 (17)O4—C7—H8109.5
O4—C2—C3126.62 (19)H7—C7—H8109.5
O4—C2—C1115.18 (18)O4—C7—H9109.5
C3—C2—C1118.19 (19)H7—C7—H9109.5
C4—C3—C2120.2 (2)H8—C7—H9109.5
C4—C3—H4119.9O2—N1—O3120.9 (2)
C2—C3—H4119.9O2—N1—O1120.0 (2)
C5—C4—C3120.3 (2)O3—N1—O1119.02 (18)
C7—O4—C2—C312.4 (3)C2—C3—C4—C50.8 (3)
C7—O4—C2—C1168.9 (2)C3—C4—C5—C60.1 (3)
C6—C1—C2—O4178.65 (18)C3—C4—C5—Cl179.46 (17)
N2—C1—C2—O41.4 (3)C2—C1—C6—C50.7 (3)
C6—C1—C2—C30.2 (3)N2—C1—C6—C5179.35 (18)
N2—C1—C2—C3179.74 (18)C4—C5—C6—C10.9 (3)
O4—C2—C3—C4177.7 (2)Cl—C5—C6—C1178.71 (15)
C1—C2—C3—C41.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···O1i0.892.082.967 (3)173
N2—H1···O2i0.892.573.103 (3)120
N2—H2···O10.892.042.927 (3)171
N2—H2···O30.892.383.043 (3)131
N2—H3···O2ii0.892.553.240 (3)135
N2—H3···O3ii0.892.072.939 (3)165
C7—H9···O2iii0.962.423.361 (4)167
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+2, y+1/2, z+3/2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC7H9ClNO+·NO3
Mr220.61
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.681 (2), 9.474 (3), 9.802 (3)
β (°) 102.38 (3)
V3)968.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.2 × 0.18 × 0.16
Data collection
DiffractometerEnraf–Nonius TurboCAD4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4244, 2125, 1409
Rint0.029
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.109, 1.02
No. of reflections2125
No. of parameters129
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.42

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), DIAMOND (Brandenburg, 1998), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···O1i0.89002.08002.967 (3)173
N2—H1···O2i0.89002.57003.103 (3)120
N2—H2···O10.89002.04002.927 (3)171
N2—H2···O30.89002.38003.043 (3)131
N2—H3···O2ii0.89002.55003.240 (3)135
N2—H3···O3ii0.89002.07002.939 (3)165
C7—H9···O2iii0.96002.42003.361 (4)167
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+2, y+1/2, z+3/2; (iii) x, y+1, z.
 

References

First citationAbid, S., Hemissi, H. & Rzaigui, M. (2007). Acta Cryst. E63, o3117.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAloui, Z., Abid, S. & Rzaigui, M. (2002). Mater. Res. Bull. 37, 697–703.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. University of Bonn, Germany.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond. Oxford University Press.  Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHemissi, H., Abid, S. & Rzaigui, M. (2005). Anal. Sci. 21, 137–138.  Web of Science PubMed Google Scholar
First citationJayaraman, K., Choudhury, A. & Rao, C. N. R. (2002). Solid State Sci. 4, 413–422.  Web of Science CSD CrossRef CAS Google Scholar
First citationKefi, R., Abid, S., Ben Nasr, C. & Rzaigui, M. (2007). Mater. Res. Bull. 42, 404–412.  Web of Science CSD CrossRef CAS Google Scholar
First citationOuslati, A. & Ben Nasr, C. (2006). Anal. Sci. 22, 1–2.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds