organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Di­methyl-3-phenyl-3H-pyrazolo[3,4-c]isoquinolin-5(4H)-one

aInstitute of Pharmaceutical and Toxicological Chemistry `P. Pratesi', University of Milan, via L. Mangiagalli 25, 20133 Milan, Italy, and bDepartment of Pharmaceutical and Technological Chemistry, University of Palermo, via Archirafi 32, 90123 Palermo, Italy
*Correspondence e-mail: fiorella.meneghetti@unimi.it

(Received 19 March 2008; accepted 14 April 2008; online 16 April 2008)

The title compound, C18H15N3O, is the product of the thermal decomposition of the diazo­nium salt derived from 2-amino-N-methyl-N-(3-methyl-1-phenyl-1H-pyrazol-5-yl)benzamide. It is characterized by a trans orientation of the methyl groups with respect to the tricyclic ring system. The mol­ecule has a nearly planar phenyl­pyrazolo[3,4-c]isoquinolin-5-one system, the largest deviation from the mean plane being 0.066 (2) Å for the O atom. The dihedral angle between the phenyl substituent and the heterotricycle is 67 (1)°. The packing is stabilized by C—H⋯N hydrogen-bond inter­actions, with the formation of mol­ecular chains along the c axis.

Related literature

Pyrazole rings are useful templates to investigate the role of the aryl­diazo­nium group in the Pschorr reaction pathway (Maggio et al., 2005[Maggio, B., Daidone, G., Raffa, D., Plescia, S., Bombieri, G. & Meneghetti, F. (2005). Helv. Chim. Acta, 88, 2272-2281.]). For related literature, see: Daidone et al. (1980[Daidone, G., Plescia, S. & Fabra, J. (1980). J. Heterocycl. Chem. 17, 1409-1411.], 1993[Daidone, G., Plescia, S., Maggio, B., Spirio, V., Benetollo, F. & Bombieri, G. (1993). J. Chem. Soc. Perkin Trans. 1, pp. 285-291.], 1998[Daidone, G., Maggio, B., Raffa, D., Plescia, S., Benetollo, F. & Bombieri, G. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 2891-2898.]).

[Scheme 1]

Experimental

Crystal data
  • C18H15N3O

  • Mr = 289.33

  • Monoclinic, P 21 /n

  • a = 8.066 (2) Å

  • b = 19.256 (3) Å

  • c = 9.270 (3) Å

  • β = 94.66 (3)°

  • V = 1435.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.6 × 0.5 × 0.4 mm

Data collection
  • Enraf–Nonius TurboCAD-4 diffractometer

  • Absorption correction: none

  • 2984 measured reflections

  • 2815 independent reflections

  • 1751 reflections with I > 2σ(I)

  • Rint = 0.031

  • 3 standard reflections frequency: 120 min intensity decay: 3%

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.113

  • S = 1.01

  • 2815 reflections

  • 202 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯N1i 0.93 2.59 3.457 (3) 156
Symmetry code: (i) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

On the basis of our studies on the non classical Pschorr reaction (Maggio et al., 2005), we have hypothesized that the product of thermal decomposition of the diazonium hydrogen sulfate (1) (Daidone et al., 1980) could be one of the two possible isomers 2 and 3 (Fig. 1). Single-crystal X-ray analysis on the reaction product (Fig. 2) allows to assign the formation of isomer 2, having the two methyl groups trans oriented with respect to the tricyclic ring. The molecule is characterized by a quite planar phenylpyrazolo[3,4-c]isoquinolin-5-one moiety, having as highest deviation from planarity O1 atom (out of plane of 0.066 (2) Å). The non aromatic ring of the tricyclic framework has puckering parameter of ϕ2=-69.4 (2)° and QT=0.059 (3) Å. The phenyl substituent is inclined with respect to the heterotricycle of 67 (1)°, with a torsion angle N1—N2—C4—C5 of -106.1 (3)°. The molecular packing is determined by intermolecular C6—H6···N1i interactions of 2.56 (2)Å and 158 (1)° [symmetry code: (i) x - 1/2, -y - 1/2, z + 1/2], with the formation of chains developing along the c axis (Fig. 3).

Related literature top

Pyrazole rings are useful templates to investigate the role of the aryldiazonium group in the Pschorr reaction pathway (Maggio et al., 2005). For related literature, see: Daidone et al. (1980, 1993, 1998).

Experimental top

The title compound was obtained as the product of the thermal decomposition of the diazonium salt derived from 2-amino-N-methyl-N-(3-methyl-1-phenyl-1H-pyrazol-5-yl)benzamide.

Refinement top

All non-H-atoms were refined anisotropically. Hydrogen atoms were introduced at calculated positions, in their described geometries and allowed to ride on the attached carbon atom with fixed isotropic thermal parameters (1.2Ueq and 1.5Ueq of the parent carbon atom for aromatic H-atoms and methyls H-atoms, respectively).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The chemical reaction scheme.
[Figure 2] Fig. 2. The molecular structure of the title compound, showing atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3] Fig. 3. Intermolecular interactions of the title compound, showing the molecular chains along the c axis. Hydrogen bonds are shown as dashed lines.
1,4-Dimethyl-3-phenyl-3H-pyrazolo[3,4-c]isoquinolin-5(4H)-one top
Crystal data top
C18H15N3OF(000) = 608
Mr = 289.33Dx = 1.339 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 8.066 (2) Åθ = 9–10°
b = 19.256 (3) ŵ = 0.09 mm1
c = 9.270 (3) ÅT = 293 K
β = 94.66 (3)°Prism, colorless
V = 1435.0 (6) Å30.6 × 0.5 × 0.4 mm
Z = 4
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
Rint = 0.031
Radiation source: fine-focus sealed tubeθmax = 26.0°, θmin = 3.1°
Graphite monochromatorh = 99
Non–profiled ω/2θ scansk = 023
2984 measured reflectionsl = 011
2815 independent reflections3 standard reflections every 120 min
1751 reflections with I > 2σ(I) intensity decay: 3%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + 1.3459P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.006
2815 reflectionsΔρmax = 0.16 e Å3
202 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.043 (3)
Crystal data top
C18H15N3OV = 1435.0 (6) Å3
Mr = 289.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.066 (2) ŵ = 0.09 mm1
b = 19.256 (3) ÅT = 293 K
c = 9.270 (3) Å0.6 × 0.5 × 0.4 mm
β = 94.66 (3)°
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
Rint = 0.031
2984 measured reflections3 standard reflections every 120 min
2815 independent reflections intensity decay: 3%
1751 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.01Δρmax = 0.16 e Å3
2815 reflectionsΔρmin = 0.15 e Å3
202 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.62196 (18)0.08361 (7)0.50784 (16)0.0628 (4)
N10.93284 (19)0.15752 (8)0.28089 (16)0.0508 (4)
N20.89261 (18)0.12641 (8)0.40852 (16)0.0447 (4)
C10.8813 (2)0.11483 (10)0.1753 (2)0.0470 (5)
C20.8049 (2)0.05543 (9)0.22995 (19)0.0415 (4)
C30.8148 (2)0.06473 (9)0.37789 (19)0.0395 (4)
C40.9007 (2)0.17029 (9)0.53322 (19)0.0417 (4)
C50.7563 (2)0.19339 (10)0.5872 (2)0.0504 (5)
H50.65350.17790.54690.060*
C60.7650 (3)0.23975 (11)0.7016 (2)0.0571 (6)
H60.66800.25510.73910.068*
C70.9167 (3)0.26301 (10)0.7598 (2)0.0586 (6)
H70.92220.29480.83550.070*
C81.0615 (3)0.23927 (10)0.7063 (2)0.0592 (6)
H81.16420.25450.74710.071*
C91.0537 (2)0.19281 (10)0.5918 (2)0.0496 (5)
H91.15060.17700.55490.060*
N30.76230 (18)0.01656 (8)0.47488 (16)0.0427 (4)
C100.6777 (2)0.04286 (10)0.4218 (2)0.0460 (5)
C110.6673 (2)0.05442 (9)0.2651 (2)0.0458 (5)
C120.7305 (2)0.00692 (10)0.1681 (2)0.0446 (5)
C130.7159 (3)0.02280 (11)0.0198 (2)0.0581 (6)
H130.75620.00830.04570.070*
C140.6434 (3)0.08330 (12)0.0299 (3)0.0681 (6)
H140.63480.09290.12860.082*
C150.5829 (3)0.13036 (12)0.0653 (3)0.0665 (6)
H150.53450.17160.03090.080*
C160.5943 (2)0.11612 (11)0.2113 (2)0.0586 (6)
H160.55300.14790.27490.070*
C180.7939 (3)0.02364 (10)0.63194 (19)0.0529 (5)
H18A0.70520.04960.66940.079*
H18B0.80000.02160.67560.079*
H18C0.89720.04760.65390.079*
C170.9067 (3)0.13436 (12)0.0218 (2)0.0668 (6)
H17A0.96640.17750.02080.100*
H17B0.96940.09870.02140.100*
H17C0.80060.13940.03200.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0762 (10)0.0510 (9)0.0636 (10)0.0104 (7)0.0201 (8)0.0068 (7)
N10.0585 (10)0.0518 (10)0.0430 (10)0.0078 (8)0.0096 (8)0.0067 (8)
N20.0528 (10)0.0429 (9)0.0388 (9)0.0041 (7)0.0070 (7)0.0005 (7)
C10.0490 (11)0.0520 (11)0.0405 (11)0.0016 (9)0.0060 (8)0.0056 (10)
C20.0444 (10)0.0429 (11)0.0374 (10)0.0027 (8)0.0055 (8)0.0014 (9)
C30.0380 (10)0.0400 (10)0.0409 (11)0.0038 (8)0.0046 (8)0.0025 (9)
C40.0468 (11)0.0382 (10)0.0402 (11)0.0012 (8)0.0030 (8)0.0032 (8)
C50.0464 (11)0.0561 (12)0.0484 (12)0.0026 (10)0.0030 (9)0.0014 (10)
C60.0665 (14)0.0578 (13)0.0481 (12)0.0148 (11)0.0118 (11)0.0022 (11)
C70.0893 (17)0.0431 (12)0.0426 (12)0.0036 (11)0.0014 (11)0.0009 (9)
C80.0641 (14)0.0507 (13)0.0600 (14)0.0091 (10)0.0116 (11)0.0007 (11)
C90.0482 (11)0.0452 (11)0.0549 (12)0.0022 (9)0.0007 (9)0.0025 (10)
N30.0488 (9)0.0420 (9)0.0380 (9)0.0013 (7)0.0075 (7)0.0034 (7)
C100.0455 (11)0.0400 (11)0.0534 (12)0.0023 (9)0.0094 (9)0.0030 (9)
C110.0437 (10)0.0436 (11)0.0501 (12)0.0026 (9)0.0048 (9)0.0044 (10)
C120.0438 (11)0.0467 (11)0.0433 (11)0.0080 (9)0.0024 (9)0.0015 (9)
C130.0686 (14)0.0578 (14)0.0480 (13)0.0017 (11)0.0056 (10)0.0050 (11)
C140.0792 (16)0.0678 (15)0.0565 (15)0.0022 (13)0.0006 (12)0.0168 (12)
C150.0652 (14)0.0598 (14)0.0735 (16)0.0044 (11)0.0000 (12)0.0256 (13)
C160.0551 (13)0.0503 (12)0.0713 (15)0.0030 (10)0.0098 (11)0.0067 (11)
C180.0676 (13)0.0530 (12)0.0386 (11)0.0022 (10)0.0076 (9)0.0058 (9)
C170.0786 (15)0.0777 (16)0.0449 (13)0.0079 (12)0.0099 (11)0.0136 (11)
Geometric parameters (Å, º) top
O1—C101.230 (2)C9—H90.9300
N1—C11.319 (2)N3—C101.401 (2)
N1—N21.3879 (19)N3—C181.464 (2)
N2—C31.362 (2)C10—C111.466 (3)
N2—C41.429 (2)C11—C161.400 (3)
C1—C21.412 (2)C11—C121.407 (2)
C1—C171.502 (2)C12—C131.404 (3)
C2—C31.379 (2)C13—C141.366 (3)
C2—C121.440 (3)C13—H130.9300
C3—N31.382 (2)C14—C151.382 (3)
C4—C91.377 (2)C14—H140.9300
C4—C51.378 (2)C15—C161.376 (3)
C5—C61.384 (3)C15—H150.9300
C5—H50.9300C16—H160.9300
C6—C71.371 (3)C18—H18A0.9600
C6—H60.9300C18—H18B0.9600
C7—C81.383 (3)C18—H18C0.9600
C7—H70.9300C17—H17A0.9600
C8—C91.385 (3)C17—H17B0.9600
C8—H80.9300C17—H17C0.9600
C1—N1—N2106.38 (15)O1—C10—N3119.15 (18)
C3—N2—N1109.53 (14)O1—C10—C11123.45 (18)
C3—N2—C4132.37 (15)N3—C10—C11117.34 (17)
N1—N2—C4115.84 (14)C16—C11—C12119.19 (18)
N1—C1—C2111.02 (16)C16—C11—C10118.10 (18)
N1—C1—C17119.19 (17)C12—C11—C10122.70 (17)
C2—C1—C17129.78 (18)C13—C12—C11118.58 (18)
C3—C2—C1105.07 (16)C13—C12—C2124.78 (18)
C3—C2—C12119.52 (17)C11—C12—C2116.64 (17)
C1—C2—C12135.39 (17)C14—C13—C12121.0 (2)
N2—C3—C2107.99 (16)C14—C13—H13119.5
N2—C3—N3127.58 (16)C12—C13—H13119.5
C2—C3—N3124.33 (17)C13—C14—C15120.5 (2)
C9—C4—C5120.77 (17)C13—C14—H14119.8
C9—C4—N2119.08 (16)C15—C14—H14119.8
C5—C4—N2119.99 (16)C16—C15—C14119.9 (2)
C4—C5—C6119.64 (19)C16—C15—H15120.0
C4—C5—H5120.2C14—C15—H15120.0
C6—C5—H5120.2C15—C16—C11120.8 (2)
C7—C6—C5120.03 (19)C15—C16—H16119.6
C7—C6—H6120.0C11—C16—H16119.6
C5—C6—H6120.0N3—C18—H18A109.5
C6—C7—C8120.2 (2)N3—C18—H18B109.5
C6—C7—H7119.9H18A—C18—H18B109.5
C8—C7—H7119.9N3—C18—H18C109.5
C7—C8—C9120.1 (2)H18A—C18—H18C109.5
C7—C8—H8120.0H18B—C18—H18C109.5
C9—C8—H8120.0C1—C17—H17A109.5
C4—C9—C8119.28 (19)C1—C17—H17B109.5
C4—C9—H9120.4H17A—C17—H17B109.5
C8—C9—H9120.4C1—C17—H17C109.5
C3—N3—C10119.09 (16)H17A—C17—H17C109.5
C3—N3—C18123.15 (16)H17B—C17—H17C109.5
C10—N3—C18117.75 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···N1i0.932.593.457 (3)156
Symmetry code: (i) x1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H15N3O
Mr289.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.066 (2), 19.256 (3), 9.270 (3)
β (°) 94.66 (3)
V3)1435.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.6 × 0.5 × 0.4
Data collection
DiffractometerEnraf–Nonius TurboCAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2984, 2815, 1751
Rint0.031
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.113, 1.01
No. of reflections2815
No. of parameters202
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.15

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···N1i0.932.593.457 (3)155.8
Symmetry code: (i) x1/2, y1/2, z+1/2.
 

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationDaidone, G., Maggio, B., Raffa, D., Plescia, S., Benetollo, F. & Bombieri, G. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 2891–2898.  Web of Science CSD CrossRef Google Scholar
First citationDaidone, G., Plescia, S. & Fabra, J. (1980). J. Heterocycl. Chem. 17, 1409–1411.  CrossRef CAS Google Scholar
First citationDaidone, G., Plescia, S., Maggio, B., Spirio, V., Benetollo, F. & Bombieri, G. (1993). J. Chem. Soc. Perkin Trans. 1, pp. 285–291.  CSD CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMaggio, B., Daidone, G., Raffa, D., Plescia, S., Bombieri, G. & Meneghetti, F. (2005). Helv. Chim. Acta, 88, 2272–2281.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds