organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(3,5-Di­chloro­anilinocarbon­yl)propionic acid

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, bUniversity of Sargodha, Department of Physics, Sagrodha, Pakistan, and cGovernment College University, Department of Chemistry, Lahore, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 30 March 2008; accepted 31 March 2008; online 2 April 2008)

The crystal structure of the title compound, C10H9Cl2NO3, consists of dimers due to inter­molecular O—H⋯O hydrogen bonding forming an R22(8) ring through the carboxyl­ groups. These dimers are linked to each other by inter­molecular hydrogen bonds between the amine group and the adjacent carbonyl O atom. A single C—Cl⋯π inter­action is also observed between the chloro-substituted aromatic rings.

Related literature

For related literature, see: Nath et al. (2001[Nath, M., Pokharia, S. & Yadav, R. (2001). Coord. Chem. Rev. 215, 99-149.]); Wardell et al. (2006[Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o45-o46.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9Cl2NO3

  • Mr = 262.08

  • Triclinic, [P \overline 1]

  • a = 4.8568 (2) Å

  • b = 8.6677 (4) Å

  • c = 13.9038 (8) Å

  • α = 74.467 (3)°

  • β = 80.495 (2)°

  • γ = 82.712 (3)°

  • V = 554.09 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 296 (2) K

  • 0.25 × 0.12 × 0.10 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.870, Tmax = 0.945

  • 12157 measured reflections

  • 2971 independent reflections

  • 2065 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.125

  • S = 1.07

  • 2971 reflections

  • 172 parameters

  • Only H-atom coordinates refined

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3i 0.84 (3) 2.07 (3) 2.904 (2) 175 (2)
O1—H1⋯O2ii 0.92 (4) 1.74 (4) 2.658 (3) 175 (4)
C7—Cl1⋯Cgiii 1.74 (1) 3.54 (1) 4.033 (2) 93 (1)
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y, -z; (iii) x-1, y, z. Cg is the centroid of atoms C5–C10.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.][Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supporting information


Comment top

Carboxylic acids catch the interest of people due to wide use of their metal complexes in biological and industrial field. On the other hand amino acids are one of the best sources to formulate the structure-activity correlation of metal derivatives as a biologically active agent (Nath et al., 2001) and widen the scope of investigation on the coordination behavior of the ligand in biological system. The title compound (I) has been prepared for complexation with different metals.

The structure of 3-(3-Nitrophenylaminocarbonyl)-propionic acid (Wardell et al., 2006) has been published. The title compound have replacement of 3-nitro with Cl and also an additional Cl-atom at 5-position of benzene ring. Therefore, the bond distances and packing of (I) is being compared with the mentioned reported structure. In (I) the C==O bond distances for carboxylate and carbonyl group have values of (C1==O2: 1.219 (3) Å) and (C4==O3: 1.225 (2) Å) in comparison to 1.223 (2) and 1.2214 (17) Å, respectively. The C—N bond distances are compareable within experimental errors. In both compounds similar intermolecular H-bonding (Table 1, Fig. 2) has been observed. The dihedral angle between the aromatic ring A(C5—C10) and (C1,C2,C3,O1,O2) have a value of 82.24 (8)°, whereas with (N1,C3,C4,O3) its value is 44.42 (12)°. The value of dihedral angle between (C1,C2,C3,O1,O2) and (N1,C3,C4,O3) is 38.36 (13)°. There exist a single C—Cl···π interaction at a distance of 3.5398 (11) Å [C7—CL1···CgAiii: symmetry code iii = -1 + x, y, z].

Related literature top

For related literature, see: Nath et al. (2001); Wardell et al. (2006). Cg is the centroid of atoms C5–C10.

Experimental top

3,5-Dichloroaniline (16.2 g, 0.1 mole) and succinic anhydride (10 g, 0.1 mole) were dissolved in glacial acetic acid separately and mixed. The mixed solution was stirred at room temperature for 24 h. The precipitated material was filtered, washed with distilled water and dried at 413–423 K. The title compound (I) was obtained by recrystallizing the dried product using aceton. (Yield: 90%, m.p. 437 K).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. ORTEP-3 for Windows (Farrugia, 1997) drawing of the title compound, C10H9Cl2NO3 with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii.
[Figure 2] Fig. 2. The unit cell packing of (I) (Spek, 2003), showing the dimeric nature and the linkage of dimers.
3-(3,5-Dichloroanilinocarbonyl)propionic acid top
Crystal data top
C10H9Cl2NO3Z = 2
Mr = 262.08F(000) = 268
Triclinic, P1Dx = 1.571 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.8568 (2) ÅCell parameters from 2971 reflections
b = 8.6677 (4) Åθ = 1.5–29.2°
c = 13.9038 (8) ŵ = 0.58 mm1
α = 74.467 (3)°T = 296 K
β = 80.495 (2)°Needle, colourless
γ = 82.712 (3)°0.25 × 0.12 × 0.10 mm
V = 554.09 (5) Å3
Data collection top
Bruker KappaAPEXII CCD
diffractometer
2971 independent reflections
Radiation source: fine-focus sealed tube2065 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 7.4 pixels mm-1θmax = 29.2°, θmin = 1.5°
ω scansh = 66
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1111
Tmin = 0.870, Tmax = 0.945l = 1918
12157 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125Only H-atom coordinates refined
S = 1.07 w = 1/[σ2(Fo2) + (0.0492P)2 + 0.2158P]
where P = (Fo2 + 2Fc2)/3
2971 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C10H9Cl2NO3γ = 82.712 (3)°
Mr = 262.08V = 554.09 (5) Å3
Triclinic, P1Z = 2
a = 4.8568 (2) ÅMo Kα radiation
b = 8.6677 (4) ŵ = 0.58 mm1
c = 13.9038 (8) ÅT = 296 K
α = 74.467 (3)°0.25 × 0.12 × 0.10 mm
β = 80.495 (2)°
Data collection top
Bruker KappaAPEXII CCD
diffractometer
2971 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2065 reflections with I > 2σ(I)
Tmin = 0.870, Tmax = 0.945Rint = 0.027
12157 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.125Only H-atom coordinates refined
S = 1.07Δρmax = 0.27 e Å3
2971 reflectionsΔρmin = 0.43 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.50817 (12)1.03658 (7)0.31192 (6)0.0754 (2)
Cl20.18783 (13)0.70434 (7)0.57110 (5)0.0704 (2)
O10.1715 (4)0.0213 (3)0.07439 (17)0.0910 (7)
H10.281 (8)0.046 (4)0.039 (3)0.109*
O20.5114 (3)0.1840 (3)0.01798 (15)0.0829 (6)
O30.1931 (3)0.5285 (3)0.18654 (16)0.0814 (6)
N10.2023 (3)0.5827 (3)0.23147 (16)0.0607 (5)
H1A0.377 (6)0.563 (3)0.222 (2)0.073*
C10.2819 (4)0.1536 (4)0.06543 (17)0.0629 (7)
C20.1014 (4)0.2656 (4)0.1188 (2)0.0636 (7)
H2A0.054 (6)0.295 (3)0.089 (2)0.076*
H2B0.031 (6)0.202 (3)0.186 (2)0.076*
C30.2413 (4)0.4095 (4)0.1194 (2)0.0653 (7)
H3A0.413 (6)0.381 (3)0.139 (2)0.078*
H3B0.275 (6)0.480 (3)0.051 (2)0.078*
C40.0626 (4)0.5118 (3)0.18182 (18)0.0588 (6)
C50.0789 (4)0.6763 (3)0.29919 (18)0.0525 (5)
C60.1369 (4)0.7959 (3)0.2744 (2)0.0558 (5)
H60.196 (5)0.813 (3)0.208 (2)0.067*
C70.2454 (4)0.8838 (2)0.3433 (2)0.0556 (6)
C80.1529 (4)0.8582 (2)0.4348 (2)0.0565 (6)
H80.234 (6)0.918 (3)0.4805 (19)0.068*
C90.0627 (4)0.7390 (2)0.45673 (19)0.0529 (5)
C100.1799 (4)0.6482 (2)0.39000 (19)0.0534 (5)
H100.323 (5)0.569 (3)0.4041 (18)0.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0467 (3)0.0511 (3)0.1229 (6)0.0104 (2)0.0224 (3)0.0129 (3)
Cl20.0688 (4)0.0548 (3)0.0942 (5)0.0021 (3)0.0275 (3)0.0220 (3)
O10.0561 (10)0.1287 (19)0.1042 (16)0.0241 (11)0.0243 (10)0.0704 (14)
O20.0471 (9)0.1186 (16)0.0902 (13)0.0130 (9)0.0204 (9)0.0543 (12)
O30.0227 (6)0.1166 (16)0.1185 (15)0.0053 (8)0.0064 (8)0.0601 (13)
N10.0212 (7)0.0772 (13)0.0841 (14)0.0006 (7)0.0002 (7)0.0273 (11)
C10.0344 (9)0.110 (2)0.0533 (13)0.0055 (11)0.0032 (9)0.0381 (13)
C20.0293 (9)0.104 (2)0.0631 (15)0.0026 (10)0.0004 (9)0.0360 (14)
C30.0273 (9)0.0925 (19)0.0749 (16)0.0001 (10)0.0053 (9)0.0290 (14)
C40.0240 (8)0.0786 (15)0.0716 (15)0.0001 (8)0.0007 (8)0.0208 (12)
C50.0242 (7)0.0512 (11)0.0789 (15)0.0053 (7)0.0001 (8)0.0146 (10)
C60.0306 (8)0.0564 (13)0.0747 (15)0.0046 (8)0.0058 (9)0.0074 (11)
C70.0301 (8)0.0381 (10)0.0934 (17)0.0015 (7)0.0078 (9)0.0086 (10)
C80.0404 (10)0.0379 (11)0.0926 (18)0.0046 (8)0.0083 (10)0.0187 (11)
C90.0406 (9)0.0367 (10)0.0822 (15)0.0072 (8)0.0133 (9)0.0118 (10)
C100.0337 (9)0.0388 (10)0.0864 (17)0.0017 (7)0.0114 (9)0.0125 (10)
Geometric parameters (Å, º) top
Cl1—C71.737 (2)C3—C41.503 (3)
Cl2—C91.734 (2)C3—H3A0.91 (3)
O1—C11.295 (3)C3—H3B0.99 (3)
O1—H10.92 (4)C5—C101.380 (3)
O2—C11.219 (3)C5—C61.394 (3)
O3—C41.225 (2)C6—C71.378 (3)
N1—C41.343 (3)C6—H60.98 (3)
N1—C51.415 (3)C7—C81.372 (3)
N1—H1A0.84 (3)C8—C91.386 (3)
C1—C21.488 (3)C8—H80.93 (3)
C2—C31.497 (4)C9—C101.381 (3)
C2—H2A0.90 (3)C10—H100.92 (3)
C2—H2B0.97 (3)
C1—O1—H1113 (2)O3—C4—C3121.8 (2)
C4—N1—C5125.67 (16)N1—C4—C3115.51 (17)
C4—N1—H1A114.4 (19)C10—C5—C6120.6 (2)
C5—N1—H1A119.8 (19)C10—C5—N1118.47 (19)
O2—C1—O1123.4 (2)C6—C5—N1121.0 (2)
O2—C1—C2123.1 (3)C7—C6—C5118.0 (2)
O1—C1—C2113.5 (2)C7—C6—H6124.9 (15)
C1—C2—C3113.79 (18)C5—C6—H6117.1 (15)
C1—C2—H2A107.1 (18)C8—C7—C6123.18 (19)
C3—C2—H2A111.1 (18)C8—C7—Cl1118.42 (18)
C1—C2—H2B107.3 (16)C6—C7—Cl1118.39 (19)
C3—C2—H2B114.0 (16)C7—C8—C9117.3 (2)
H2A—C2—H2B103 (2)C7—C8—H8121.1 (17)
C2—C3—C4112.22 (18)C9—C8—H8121.6 (17)
C2—C3—H3A111.7 (18)C10—C9—C8121.8 (2)
C4—C3—H3A111.0 (17)C10—C9—Cl2119.54 (16)
C2—C3—H3B110.6 (17)C8—C9—Cl2118.68 (19)
C4—C3—H3B105.7 (17)C5—C10—C9119.2 (2)
H3A—C3—H3B105 (2)C5—C10—H10118.7 (16)
O3—C4—N1122.7 (2)C9—C10—H10122.1 (16)
O2—C1—C2—C37.0 (4)C5—C6—C7—C80.6 (3)
O1—C1—C2—C3172.9 (2)C5—C6—C7—Cl1178.35 (15)
C1—C2—C3—C4174.8 (2)C6—C7—C8—C90.9 (3)
C5—N1—C4—O34.0 (4)Cl1—C7—C8—C9178.06 (14)
C5—N1—C4—C3176.1 (2)C7—C8—C9—C100.4 (3)
C2—C3—C4—O334.9 (4)C7—C8—C9—Cl2179.37 (15)
C2—C3—C4—N1145.1 (2)C6—C5—C10—C90.6 (3)
C4—N1—C5—C10133.9 (2)N1—C5—C10—C9179.70 (17)
C4—N1—C5—C647.0 (3)C8—C9—C10—C50.3 (3)
C10—C5—C6—C70.2 (3)Cl2—C9—C10—C5179.91 (15)
N1—C5—C6—C7179.26 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.84 (3)2.07 (3)2.904 (2)175 (2)
O1—H1···O2ii0.92 (4)1.74 (4)2.658 (3)175 (4)
C7—Cl1···Cgiii1.74 (1)3.54 (1)4.033 (2)93 (1)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC10H9Cl2NO3
Mr262.08
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)4.8568 (2), 8.6677 (4), 13.9038 (8)
α, β, γ (°)74.467 (3), 80.495 (2), 82.712 (3)
V3)554.09 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.58
Crystal size (mm)0.25 × 0.12 × 0.10
Data collection
DiffractometerBruker KappaAPEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.870, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
12157, 2971, 2065
Rint0.027
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.125, 1.07
No. of reflections2971
No. of parameters172
H-atom treatmentOnly H-atom coordinates refined
Δρmax, Δρmin (e Å3)0.27, 0.43

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.84 (3)2.07 (3)2.904 (2)175 (2)
O1—H1···O2ii0.92 (4)1.74 (4)2.658 (3)175 (4)
C7—Cl1···Cgiii1.737 (2)3.5398 (11)4.033 (2)93.34 (7)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z; (iii) x1, y, z.
 

Acknowledgements

The authors acknowledge the Higher Education Commision, Islamabad, Pakistan, for funding the purchase of the diffractometer. Dr Saqib Ali is also grateful to the PSF for financial support under project No. PSF/R&D/C–QU/Chem(270).

References

First citationBruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationNath, M., Pokharia, S. & Yadav, R. (2001). Coord. Chem. Rev. 215, 99–149.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o45–o46.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds