organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-Diazinodi­methyl­idyne)di-o-phenyl­ene) dibenzoate

aDepartment of Solid State Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India, bDepartment of Physics, Jadavpur University, Kolkata 700 032, India, cDepartment of Chemistry, Jadavpur University, Kolkata 700 032, India, and dDepartment of Chemistry, University of Manchester, Manchester M13 9PL, England
*Correspondence e-mail: sspmm@iacs.res.in

(Received 4 April 2008; accepted 14 April 2008; online 18 April 2008)

The title compound, C28H20N2O4, was synthesized by the reaction of 2-(hydrazonometh­yl)phenyl benzoate with iodine. The mol­ecule possesses a crystallographically imposed center of symmetry at the mid-point of the hydrazine N—N bond. The substituents at the ends of the C=N bonds adopt an E,E configuration. Inter­molecular C—H⋯π(arene) hydrogen bonds and aromatic ππ stacking inter­actions [centroid–centroid distance 3.900 (1) Å] link the mol­ecules into (100) sheets. In addition, there is an inter­molecular C—H⋯O hydrogen-bond inter­action.

Related literature

For related literature, see: Glaser et al. (1995[Glaser, R., Chen, G. S., Anthamatten, M. & Barnes, C. L. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 1449-1458.]); Kesslen et al. (1999[Kesslen, E. C., Euler, W. B. & Foxman, B. M. (1999). Chem. Mater. 11, 336-340.]); Hunig et al. (2000[Hunig, S., Kemmer, M. & Wenner, H. (2000). Chem. Eur. J. 6, 2618-2632.]); Glidewell et al. (2006[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2006). Acta Cryst. B62, 666-675.]); Xu & Hu (2007[Xu, F. & Hu, W.-X. (2007). Acta Cryst. E63, o289-o290.]); Zheng et al. (2006[Zheng, P.-W., Qiu, Q.-M., Lin, Y.-Y. & Liu, K.-F. (2006). Acta Cryst. E62, o1913-o1914.]); Liu et al. (2007[Liu, G., Xie, L., Wang, Y. & Wang, J.-D. (2007). Acta Cryst. E63, o2611.]).

[Scheme 1]

Experimental

Crystal data
  • C28H20N2O4

  • Mr = 448.46

  • Triclinic, [P \overline 1]

  • a = 5.5442 (9) Å

  • b = 7.9966 (13) Å

  • c = 13.455 (2) Å

  • α = 73.201 (2)°

  • β = 82.066 (3)°

  • γ = 74.441 (2)°

  • V = 548.94 (15) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 (2) K

  • 0.35 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 2797 measured reflections

  • 1885 independent reflections

  • 1692 reflections with I > 2σ(I)

  • Rint = 0.117

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.135

  • S = 1.03

  • 1885 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2i 0.95 2.64 3.519 (2) 154
C5—H5⋯Cg1ii 0.95 2.79 3.510 (2) 133
Symmetry codes: (i) x-1, y, z; (ii) x-1, y+1, z. Cg1 is the centroid of the C9–C14 ring.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The synthetic utility of hydrazine compounds in coordination chemistry as well as their remarkable photochromic properties has resulted in continued interest in studies of their stereochemistry (Glaser et al., 1995). The photochromism in hydrazines arises from intramolecular H-atom transfer, together with a change in the π-electron system. To study the effect of intermolecular interactions, such as π···π charge transfer or hydrogen bonding, on H-atom transfer processes, solid state structure analyses of a number of hydrazine compounds containing both a diamine linkage and N—N bonding have been reported in the literature (Liu et al., 2007; Xu & Hu, 2007; Zheng et al., 2006) We report here the synthesis and molecular structure of the title benzylidenehydrazine derivative(I).

As observed in many symmetric azines with an E, E configuration (Glidewell et al., 2006), the molecule of (I) possesses a crystallographically imposed center of symmetry at the mid-point of the N—N bond (Fig. 1). Consequently the asymmetric unit consists of half of the molecule. The central –CH=N—N=CH– fragment is strictly planar, but as a whole the molecule is not planar; the benzoyloxy group (C8—C14, O1, O2) is rotated about the O1—C7 bond by 78.7 (2)° with respect to the plane of the benzylidene hydrazine moiety (C1—C7, N1). The single-bond character of N1—N1i[1.408 (2) Å] and the double-bond character of C1=N1[1.274 (2) Å] indicate a lack of delocalization of π-electrons, while the planar structure of >C=N—N=C< chain indicates π configuration. The C=N—N angle [11.4 (2)°] in (I) is significantly smaller than the ideal sp2value of 120°, as consequence of repulsion between the nitrogen lone pairs and the adjacent C=N bond.

The supramolecular aggregation in (I) is determined by C—H···π (arene) hydrogen bond and aromatic π···π stacking interactions. The aryl C5 atom in the ring at (x, y, z) is part of the molecule centered across (0, 0, 0) and acts as a hydrogen bond donor to the aryl ring (C9—C14) at (-1 + x, 1 + y, z), which forms part of the molecule centered across (-1, 1, 0). Propagation of this hydrogen-bond forms a chain running parallel to the [11 0] direction (Fig. 2). The phenyl rings (C9—C14) at (x, y, z) and (1 - x, 1 - y,1 - z) are components of the molecules across the inversion centers at (0, 0, 0) and (1 - x, 1 - y, 1 - z), respectively. These strictly parallel rings with an interplanar spacing of 3.464 (1) Å, the ring-centroid separation of 3.900 (1)Å and the centroid offset of 1.79Å lead to the formation of a π-stacked chain of centrosymmetric molecules running parallel to the [1 1 1] direction (Fig. 2).The combination of the [110] and [1 1 1] chains generates a (100) sheet.

Related literature top

For related literature, see: Glaser et al. (1995); Kesslen et al. (1999); Hunig et al. (2000); Glidewell et al. (2006); Xu & Hu (2007); Zheng et al. (2006); Liu et al. (2007).

Experimental top

A solution of iodine(8 g, 7 mmol) in 15 ml tetrahydrofuran (THF) was added dropwise to a magnetically stirred solution of 2- benzoyloxy phenyl hydrazone (0.68 g, 2.8 mmol) in THF (40 ml) and triethylamine (10 ml) at room temperature (298k). The mixture was stirred for 1 h and then diluted with water (100 ml) and extracted with ether (3x30 ml). The extract was washed with water, aqueous sodium thiosulfate solution and brine followed by drying over anhydrous sodium sulfate. The solvent was removed in vacuo. The residual black oil was dissolved in carbon tetrachloride and filtered through silica gel to give a light yellow oil which on standing yielded shinny yellow crystals of the title compound (I).

Refinement top

All H atoms were positioned geometrically and refined using a riding model with Uiso(H) values fixed at 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I), with displacement ellipsoids drawn at the 30% probability level.[Symmetry code (i):- -x, -y, -z]
[Figure 2] Fig. 2. The packing of (I), viewed along the a axis, showing intermolecular C—H···π (arene) hydrogen bond and aromatic π···π stacking interaction.
2,2'-(Diazinodimethylidyne)di-o-phenylene dibenzoate top
Crystal data top
C28H20N2O4Z = 1
Mr = 448.46F(000) = 234
Triclinic, P1Dx = 1.357 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.5442 (9) ÅCell parameters from 1976 reflections
b = 7.9966 (13) Åθ = 2.4–27.5°
c = 13.455 (2) ŵ = 0.09 mm1
α = 73.201 (2)°T = 100 K
β = 82.066 (3)°Block, pale yellow
γ = 74.441 (2)°0.35 × 0.20 × 0.20 mm
V = 548.94 (15) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
1692 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.117
Graphite monochromatorθmax = 25.0°, θmin = 1.6°
ϕ and ω scansh = 63
2797 measured reflectionsk = 99
1885 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0874P)2 + 0.0721P]
where P = (Fo2 + 2Fc2)/3
1885 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C28H20N2O4γ = 74.441 (2)°
Mr = 448.46V = 548.94 (15) Å3
Triclinic, P1Z = 1
a = 5.5442 (9) ÅMo Kα radiation
b = 7.9966 (13) ŵ = 0.09 mm1
c = 13.455 (2) ÅT = 100 K
α = 73.201 (2)°0.35 × 0.20 × 0.20 mm
β = 82.066 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1692 reflections with I > 2σ(I)
2797 measured reflectionsRint = 0.117
1885 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.03Δρmax = 0.24 e Å3
1885 reflectionsΔρmin = 0.28 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.60203 (19)0.17401 (13)0.23034 (8)0.0250 (3)
O20.3270 (2)0.15072 (14)0.33163 (8)0.0299 (3)
N10.1081 (2)0.06358 (16)0.01102 (9)0.0256 (3)
C10.2578 (3)0.01150 (19)0.07886 (11)0.0246 (4)
H10.21400.13830.10730.029*
C20.4964 (3)0.09474 (19)0.11375 (11)0.0239 (4)
C30.5716 (3)0.2813 (2)0.07164 (12)0.0273 (4)
H30.46430.34100.02060.033*
C40.7999 (3)0.3799 (2)0.10330 (12)0.0291 (4)
H40.84710.50660.07470.035*
C50.9593 (3)0.2945 (2)0.17645 (12)0.0287 (4)
H51.11700.36240.19720.034*
C60.8898 (3)0.1100 (2)0.21961 (11)0.0263 (4)
H60.99860.05080.27000.032*
C70.6600 (3)0.01385 (19)0.18816 (11)0.0240 (4)
C80.4341 (3)0.24172 (19)0.30508 (11)0.0228 (4)
C90.3993 (3)0.43981 (19)0.34806 (11)0.0231 (4)
C100.2123 (3)0.5285 (2)0.41615 (12)0.0264 (4)
H100.11000.46330.43260.032*
C110.1736 (3)0.7120 (2)0.46053 (12)0.0283 (4)
H110.04540.77290.50760.034*
C120.3236 (3)0.8067 (2)0.43577 (12)0.0293 (4)
H120.29850.93260.46640.035*
C130.5087 (3)0.7186 (2)0.36691 (12)0.0287 (4)
H130.60870.78450.34960.034*
C140.5495 (3)0.5342 (2)0.32285 (12)0.0264 (4)
H140.67810.47330.27610.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0317 (6)0.0174 (6)0.0274 (6)0.0070 (4)0.0069 (4)0.0048 (4)
O20.0394 (6)0.0212 (6)0.0337 (6)0.0127 (5)0.0095 (5)0.0061 (4)
N10.0305 (7)0.0198 (6)0.0267 (7)0.0039 (5)0.0036 (5)0.0077 (5)
C10.0334 (8)0.0167 (7)0.0249 (7)0.0057 (6)0.0065 (6)0.0058 (6)
C20.0307 (8)0.0199 (8)0.0233 (7)0.0067 (6)0.0049 (6)0.0073 (6)
C30.0328 (8)0.0211 (8)0.0280 (8)0.0075 (6)0.0037 (6)0.0049 (6)
C40.0362 (9)0.0177 (7)0.0329 (8)0.0037 (6)0.0076 (6)0.0061 (6)
C50.0290 (8)0.0261 (8)0.0326 (8)0.0023 (6)0.0052 (6)0.0129 (6)
C60.0294 (8)0.0265 (8)0.0264 (8)0.0095 (6)0.0026 (6)0.0093 (6)
C70.0317 (8)0.0176 (7)0.0257 (8)0.0062 (6)0.0089 (6)0.0068 (6)
C80.0270 (7)0.0201 (8)0.0224 (7)0.0067 (6)0.0005 (6)0.0070 (6)
C90.0274 (8)0.0201 (8)0.0240 (7)0.0077 (6)0.0005 (6)0.0083 (6)
C100.0311 (8)0.0226 (8)0.0285 (8)0.0090 (6)0.0039 (6)0.0083 (6)
C110.0316 (8)0.0223 (8)0.0293 (8)0.0043 (6)0.0047 (6)0.0050 (6)
C120.0360 (9)0.0169 (7)0.0337 (8)0.0064 (6)0.0019 (6)0.0065 (6)
C130.0318 (8)0.0222 (8)0.0366 (9)0.0108 (6)0.0003 (6)0.0114 (6)
C140.0283 (8)0.0214 (8)0.0310 (8)0.0069 (6)0.0028 (6)0.0081 (6)
Geometric parameters (Å, º) top
O1—C81.3580 (18)C6—C71.381 (2)
O1—C71.4073 (17)C6—H60.9500
O2—C81.2045 (17)C8—C91.489 (2)
N1—C11.274 (2)C9—C101.382 (2)
N1—N1i1.408 (2)C9—C141.393 (2)
C1—C21.466 (2)C10—C111.384 (2)
C1—H10.9500C10—H100.9500
C2—C71.390 (2)C11—C121.392 (2)
C2—C31.401 (2)C11—H110.9500
C3—C41.384 (2)C12—C131.380 (2)
C3—H30.9500C12—H120.9500
C4—C51.383 (2)C13—C141.389 (2)
C4—H40.9500C13—H130.9500
C5—C61.387 (2)C14—H140.9500
C5—H50.9500
C8—O1—C7116.52 (10)C2—C7—O1120.43 (13)
C1—N1—N1i111.37 (15)O2—C8—O1123.28 (13)
N1—C1—C2121.02 (13)O2—C8—C9125.08 (13)
N1—C1—H1119.5O1—C8—C9111.63 (12)
C2—C1—H1119.5C10—C9—C14120.38 (14)
C7—C2—C3117.32 (14)C10—C9—C8117.36 (13)
C7—C2—C1121.33 (13)C14—C9—C8122.25 (13)
C3—C2—C1121.33 (13)C9—C10—C11120.26 (13)
C4—C3—C2120.94 (14)C9—C10—H10119.9
C4—C3—H3119.5C11—C10—H10119.9
C2—C3—H3119.5C10—C11—C12119.53 (14)
C5—C4—C3120.14 (14)C10—C11—H11120.2
C5—C4—H4119.9C12—C11—H11120.2
C3—C4—H4119.9C13—C12—C11120.28 (14)
C4—C5—C6120.20 (14)C13—C12—H12119.9
C4—C5—H5119.9C11—C12—H12119.9
C6—C5—H5119.9C12—C13—C14120.35 (13)
C7—C6—C5118.95 (14)C12—C13—H13119.8
C7—C6—H6120.5C14—C13—H13119.8
C5—C6—H6120.5C13—C14—C9119.19 (14)
C6—C7—C2122.43 (14)C13—C14—H14120.4
C6—C7—O1117.04 (13)C9—C14—H14120.4
N1i—N1—C1—C2179.77 (13)C8—O1—C7—C278.69 (16)
N1—C1—C2—C7179.63 (13)C7—O1—C8—O23.9 (2)
N1—C1—C2—C31.9 (2)C7—O1—C8—C9176.64 (11)
C7—C2—C3—C40.0 (2)O2—C8—C9—C106.7 (2)
C1—C2—C3—C4178.48 (13)O1—C8—C9—C10172.76 (12)
C2—C3—C4—C50.9 (2)O2—C8—C9—C14172.44 (14)
C3—C4—C5—C61.0 (2)O1—C8—C9—C148.13 (19)
C4—C5—C6—C70.1 (2)C14—C9—C10—C110.4 (2)
C5—C6—C7—C20.8 (2)C8—C9—C10—C11178.68 (12)
C5—C6—C7—O1177.14 (12)C9—C10—C11—C120.3 (2)
C3—C2—C7—C60.9 (2)C10—C11—C12—C130.4 (2)
C1—C2—C7—C6177.63 (13)C11—C12—C13—C141.0 (2)
C3—C2—C7—O1177.10 (12)C12—C13—C14—C90.8 (2)
C1—C2—C7—O11.4 (2)C10—C9—C14—C130.1 (2)
C8—O1—C7—C6104.90 (14)C8—C9—C14—C13179.14 (12)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2ii0.952.643.519 (2)154
C5—H5···Cg1iii0.952.793.510 (2)133
Symmetry codes: (ii) x1, y, z; (iii) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaC28H20N2O4
Mr448.46
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.5442 (9), 7.9966 (13), 13.455 (2)
α, β, γ (°)73.201 (2), 82.066 (3), 74.441 (2)
V3)548.94 (15)
Z1
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2797, 1885, 1692
Rint0.117
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.135, 1.03
No. of reflections1885
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.28

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.952.643.519 (2)153.5
C5—H5···Cg1ii0.952.793.510 (2)133
Symmetry codes: (i) x1, y, z; (ii) x1, y+1, z.
 

Acknowledgements

The authors thank Prof. A. K. Mukherjee of the Department of Physics, Jadavpur University, for his interest and for stimulating discussions.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGlaser, R., Chen, G. S., Anthamatten, M. & Barnes, C. L. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 1449–1458.  CSD CrossRef Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2006). Acta Cryst. B62, 666–675.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHunig, S., Kemmer, M. & Wenner, H. (2000). Chem. Eur. J. 6, 2618–2632.  CrossRef PubMed CAS Google Scholar
First citationKesslen, E. C., Euler, W. B. & Foxman, B. M. (1999). Chem. Mater. 11, 336–340.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, G., Xie, L., Wang, Y. & Wang, J.-D. (2007). Acta Cryst. E63, o2611.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, F. & Hu, W.-X. (2007). Acta Cryst. E63, o289–o290.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZheng, P.-W., Qiu, Q.-M., Lin, Y.-Y. & Liu, K.-F. (2006). Acta Cryst. E62, o1913–o1914.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds