organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Phenyl­imidazo[1,2-a]pyridin-3-yl)acetamide

aDépartement de Chimie, Faculté des Sciences, BP 717 Oujda, Morocco, bDépartement de Chimie, Faculté des Sciences, BP717 Oujda, Morocco, cLaboratory of Mineral Solid and Analytical Chemistry, `LMSAC', Department of Chemistry, Faculty of Sciences, University Mohamed I, PO Box 717, 60000 Oujda, Morocco, and dInstitute of Physics, Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: fejfarov@fzu.cz

(Received 7 April 2008; accepted 22 April 2008; online 26 April 2008)

The crystal structure of the title compound, C15H13N3O, consists of columns of mol­ecules that are inter­connected by N—H⋯N hydrogen bonds in the direction of the b axis. The torsion angle between the imidazo[1,2-a]pyridine ring system and the phenyl ring is 9.04 (5)°.

Related literature

For general background, see Anaflous et al. (2004[Anaflous, A., Benchat, N., Mimouni, M., Abouricha, S., Ben-Hadda, T., El Bali, B., Hakkou, A. & Hacht, B. (2004). Lett. Drug Des. Discovery, 1, 224—229.]); Gueffier et al. (1998[Gueffier, A., Mavel, S., Lhassani, M., Elhakmaoui, A., Snoeck, R., Andrei, G., Chavignon, O., Teulade, J. C., Witvrouw, M., Balzarini, J., De Clercq, E. & Chapat, J. (1998). J. Med. Chem. 41, 5108-5112.]); Mavel et al. (2002[Mavel, S., Renou, J. L., Galtier, C., Allouchi, H., Snoeck, R., Andrei, G., Balzarini, J., Gueffier, A. & De Clercq, E. (2002). Bioorg. Med Chem. 10, 941-946.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13N3O

  • Mr = 251.3

  • Monoclinic, P 21 /c

  • a = 13.9680 (5) Å

  • b = 5.6784 (2) Å

  • c = 15.8145 (5) Å

  • β = 101.039 (3)°

  • V = 1231.13 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 120 K

  • 0.58 × 0.25 × 0.17 mm

Data collection
  • Oxford Diffraction Xcalibur2 diffractometer with Sapphire2 CCD detector

  • Absorption correction: none

  • 15703 measured reflections

  • 2556 independent reflections

  • 1544 reflections with I > 3σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.084

  • S = 1.00

  • 2556 reflections

  • 175 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3n⋯N1i 0.880 (12) 2.162 (12) 3.0219 (16) 165.4 (13)
Symmetry code: (i) x, y+1, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2006[Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Prague, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: JANA2006.

Supporting information


Comment top

In recent years, functionalized imidazo[1,2-a]pyridine and imidazo[1,2-a]pyrimidine systems attracted persistent interest due to their biological activities (Anaflous et al., 2004 and reference herein). The screening of imidazo[1,2-a]pyridine derivatives against tuberculosis showed interesting results (Anaflous et al., 2004) and many functionalized imidazo[1,2-a]pyridines bearing a thioether side chain at the 3 position are reported as highly active against human cytomegalovirus and /or varicella-zoster virus (Gueffier et al., 1998 & Mavel et al., 2002).

We report in the present paper on the synthesis and crystal structure of N-(2-phenylimidazo[1,2-a]pyridin-3-yl)acetamide (I).

The molecules of the title compound are interconnected into columns extended along b by an N3—H3n···N1 hydrogen bonds (see Tab. 1). No bonding has been found between the columns that appear to be quite isolated.

Bonds and angles values are usual as those reported in similar compounds.

The torsion angle between the imidazo[1,2-a]pyridine and phenyl ring is 9.04 (5)°

Related literature top

For general background, see Anaflous et al. (2004); Gueffier et al. (1998); Mavel et al. (2002)

Experimental top

The commercially available 2-phenylimidazo[1,2-a]pyridin-3-amine (0.50 g, 2.4 mmole) in toluene (10 ml, 94 mmole) was treated with acetic anhydride (0.3 ml, 3.2 mmole). The mixture was stirred for two hours. Toluene was eliminated under reduced pressure and the residue was washed with water to give, after drying, 0.45 g (1.8 mmole) of N-(2-phenylimidazo[1,2-a]pyridin-3-yl)acetamide as colorless crystals.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).

Figures top
[Figure 1] Fig. 1. View of the unit cell of the title structure along the axis b
[Figure 2] Fig. 2. Asymetric unit of title compound, showing 50% displacement ellispoids for non-H atoms.
[Figure 3] Fig. 3. The columns of molecules showing N—H···N hydrogen bonds
N-(2-Phenylimidazo[1,2-a]pyridin-3-yl)acetamide top
Crystal data top
C15H13N3OF(000) = 528
Mr = 251.3Dx = 1.355 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4755 reflections
a = 13.9680 (5) Åθ = 2.6–26.5°
b = 5.6784 (2) ŵ = 0.09 mm1
c = 15.8145 (5) ÅT = 120 K
β = 101.039 (3)°Prism, colorless
V = 1231.13 (7) Å30.58 × 0.25 × 0.17 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur2
diffractometer with Sapphire2 CCD detector
1544 reflections with I > 3σ(I)
Radiation source: X-ray tubeRint = 0.054
Graphite monochromatorθmax = 26.5°, θmin = 2.6°
Detector resolution: 8.3438 pixels mm-1h = 1717
Rotation method data acquisition using ω scansk = 77
15703 measured reflectionsl = 1919
2556 independent reflections
Refinement top
Refinement on F245 constraints
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0016I2]
S = 1.00(Δ/σ)max = 0.006
2556 reflectionsΔρmax = 0.17 e Å3
175 parametersΔρmin = 0.14 e Å3
1 restraint
Crystal data top
C15H13N3OV = 1231.13 (7) Å3
Mr = 251.3Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.9680 (5) ŵ = 0.09 mm1
b = 5.6784 (2) ÅT = 120 K
c = 15.8145 (5) Å0.58 × 0.25 × 0.17 mm
β = 101.039 (3)°
Data collection top
Oxford Diffraction Xcalibur2
diffractometer with Sapphire2 CCD detector
1544 reflections with I > 3σ(I)
15703 measured reflectionsRint = 0.054
2556 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0361 restraint
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.17 e Å3
2556 reflectionsΔρmin = 0.14 e Å3
175 parameters
Special details top

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

All the H atoms were discernible in difference Fourier maps and could be refined to reasonable geometry. According to standard procedures for organic compounds the H atoms bonded to C atoms were constrained to ideal positions. The N—H distances were restrained to 0.87 Å with σ 0.01. The isotropic atomic displacement parameters of hydrogen atoms were evaluated as 1.2*Ueq of the parent atom.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.61764 (8)0.2561 (2)0.47985 (7)0.0230 (4)
N20.56626 (7)0.05089 (18)0.39364 (7)0.0206 (4)
N30.70718 (11)0.3084 (2)0.41732 (9)0.0235 (5)
O10.79160 (9)0.1417 (2)0.32433 (8)0.0298 (4)
C10.69090 (11)0.0912 (2)0.48648 (9)0.0210 (5)
C20.66186 (9)0.09842 (19)0.43398 (8)0.0224 (4)
C30.54173 (10)0.1658 (2)0.42431 (9)0.0211 (5)
C40.44673 (11)0.2519 (3)0.39578 (9)0.0238 (5)
C50.38234 (11)0.1217 (3)0.33930 (9)0.0262 (5)
C60.41070 (11)0.0979 (2)0.30893 (9)0.0272 (5)
C70.50162 (10)0.1807 (3)0.33604 (9)0.0233 (5)
C80.78417 (11)0.1346 (2)0.54688 (10)0.0220 (6)
C90.79074 (12)0.3221 (3)0.60385 (10)0.0285 (5)
C100.87592 (12)0.3699 (3)0.66086 (10)0.0317 (5)
C110.95689 (11)0.2316 (3)0.66266 (10)0.0290 (5)
C120.95210 (12)0.0434 (3)0.60733 (10)0.0373 (6)
C130.86634 (12)0.0062 (3)0.54974 (11)0.0356 (6)
C140.77211 (11)0.3171 (3)0.36247 (10)0.0220 (5)
C150.81873 (12)0.5518 (3)0.35553 (11)0.0294 (6)
H3n0.6911 (10)0.4370 (19)0.4423 (9)0.0282*
H40.427560.4008120.4159580.0285*
H50.3171520.178690.3197560.0314*
H60.3646630.1878880.2687760.0327*
H70.5208960.3288740.3152840.028*
H90.7347590.4204450.6035020.0341*
H100.8787840.5008820.6996480.038*
H111.0163930.2659610.7022460.0348*
H121.0084360.0543040.6085240.0447*
H130.8636460.138620.5116080.0427*
H15a0.773810.674510.363050.0353*
H15b0.8764740.5649150.3993120.0353*
H15c0.8358 (10)0.5666 (19)0.2998 (9)0.0353*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0273 (7)0.0188 (6)0.0250 (7)0.0018 (5)0.0100 (6)0.0017 (5)
N20.0230 (7)0.0198 (6)0.0205 (6)0.0005 (5)0.0079 (5)0.0023 (5)
N30.0343 (9)0.0126 (7)0.0271 (8)0.0014 (7)0.0148 (7)0.0020 (7)
O10.0405 (7)0.0228 (6)0.0305 (7)0.0012 (6)0.0176 (6)0.0026 (5)
C10.0263 (9)0.0171 (7)0.0225 (8)0.0029 (7)0.0119 (7)0.0042 (6)
C20.0267 (8)0.0183 (6)0.0245 (7)0.0015 (6)0.0108 (6)0.0028 (5)
C30.0275 (9)0.0186 (7)0.0192 (8)0.0014 (7)0.0098 (7)0.0021 (6)
C40.0304 (9)0.0210 (8)0.0227 (8)0.0023 (7)0.0120 (7)0.0040 (6)
C50.0217 (9)0.0333 (8)0.0247 (8)0.0023 (7)0.0074 (7)0.0094 (7)
C60.0317 (8)0.0309 (8)0.0195 (8)0.0080 (6)0.0062 (7)0.0003 (6)
C70.0319 (8)0.0197 (8)0.0207 (8)0.0027 (7)0.0112 (7)0.0005 (6)
C80.0226 (10)0.0222 (8)0.0222 (9)0.0012 (7)0.0068 (8)0.0058 (7)
C90.0296 (9)0.0261 (9)0.0308 (9)0.0033 (8)0.0086 (7)0.0015 (7)
C100.0338 (9)0.0285 (8)0.0327 (9)0.0036 (7)0.0061 (8)0.0048 (7)
C110.0282 (8)0.0324 (9)0.0258 (8)0.0039 (7)0.0034 (7)0.0015 (7)
C120.0293 (10)0.0377 (9)0.0425 (10)0.0114 (8)0.0013 (8)0.0022 (7)
C130.0394 (10)0.0306 (9)0.0357 (10)0.0038 (8)0.0040 (8)0.0111 (8)
C140.0251 (10)0.0210 (9)0.0203 (8)0.0030 (7)0.0055 (7)0.0034 (7)
C150.0335 (10)0.0248 (10)0.0331 (11)0.0032 (8)0.0144 (9)0.0020 (9)
Geometric parameters (Å, º) top
N1—C11.3763 (18)C6—H60.96
N1—C31.3424 (17)C7—H70.96
N2—C21.3916 (15)C8—C91.387 (2)
N2—C31.3894 (17)C8—C131.393 (2)
N2—C71.3689 (16)C9—C101.375 (2)
N3—C21.3984 (19)C9—H90.96
N3—C141.371 (2)C10—C111.373 (2)
N3—H3n0.880 (12)C10—H100.96
O1—C141.222 (2)C11—C121.375 (2)
C1—C21.3727 (18)C11—H110.96
C1—C81.481 (2)C12—C131.388 (2)
C3—C41.405 (2)C12—H120.96
C4—C51.359 (2)C13—H130.96
C4—H40.96C14—C151.497 (2)
C5—C61.419 (2)C15—H15a0.96
C5—H50.96C15—H15b0.96
C6—C71.345 (2)C15—H15c0.960 (15)
C1—N1—C3105.82 (11)C1—C8—C9119.17 (14)
C2—N2—C3106.91 (10)C1—C8—C13122.90 (14)
C2—N2—C7130.80 (11)C9—C8—C13117.93 (14)
C3—N2—C7122.27 (11)C8—C9—C10121.26 (15)
C2—N3—C14121.89 (13)C8—C9—H9119.372
C2—N3—H3n117.3 (9)C10—C9—H9119.371
C14—N3—H3n120.8 (9)C9—C10—C11120.43 (14)
N1—C1—C2110.99 (11)C9—C10—H10119.784
N1—C1—C8119.03 (12)C11—C10—H10119.784
C2—C1—C8129.96 (13)C10—C11—C12119.48 (13)
N2—C2—N3120.55 (11)C10—C11—H11120.26
N2—C2—C1105.77 (11)C12—C11—H11120.259
N3—C2—C1133.68 (12)C11—C12—C13120.42 (15)
N1—C3—N2110.49 (11)C11—C12—H12119.792
N1—C3—C4131.02 (13)C13—C12—H12119.792
N2—C3—C4118.48 (12)C8—C13—C12120.48 (15)
C3—C4—C5119.18 (14)C8—C13—H13119.758
C3—C4—H4120.41C12—C13—H13119.758
C5—C4—H4120.41N3—C14—O1121.32 (15)
C4—C5—C6120.52 (13)N3—C14—C15115.37 (14)
C4—C5—H5119.739O1—C14—C15123.28 (16)
C6—C5—H5119.74C14—C15—H15a109.471
C5—C6—C7120.46 (13)C14—C15—H15b109.472
C5—C6—H6119.768C14—C15—H15c109.5 (7)
C7—C6—H6119.769H15a—C15—H15b109.472
N2—C7—C6119.07 (13)H15a—C15—H15c109.471
N2—C7—H7120.466H15b—C15—H15c109.47
C6—C7—H7120.465
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3n···N1i0.880 (12)2.162 (12)3.0219 (16)165.4 (13)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H13N3O
Mr251.3
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)13.9680 (5), 5.6784 (2), 15.8145 (5)
β (°) 101.039 (3)
V3)1231.13 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.58 × 0.25 × 0.17
Data collection
DiffractometerOxford Diffraction Xcalibur2
diffractometer with Sapphire2 CCD detector
Absorption correction
No. of measured, independent and
observed [I > 3σ(I)] reflections
15703, 2556, 1544
Rint0.054
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.084, 1.00
No. of reflections2556
No. of parameters175
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.14

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SIR2002 (Burla et al., 2003), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3n···N1i0.880 (12)2.162 (12)3.0219 (16)165.4 (13)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

We thank the Grant Agency of the Czech Republic for support, grant No. 202/05/0757.

References

First citationAnaflous, A., Benchat, N., Mimouni, M., Abouricha, S., Ben-Hadda, T., El Bali, B., Hakkou, A. & Hacht, B. (2004). Lett. Drug Des. Discovery, 1, 224—229.  CrossRef Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationGueffier, A., Mavel, S., Lhassani, M., Elhakmaoui, A., Snoeck, R., Andrei, G., Chavignon, O., Teulade, J. C., Witvrouw, M., Balzarini, J., De Clercq, E. & Chapat, J. (1998). J. Med. Chem. 41, 5108–5112.  Web of Science PubMed Google Scholar
First citationMavel, S., Renou, J. L., Galtier, C., Allouchi, H., Snoeck, R., Andrei, G., Balzarini, J., Gueffier, A. & De Clercq, E. (2002). Bioorg. Med Chem. 10, 941–946.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, Oxfordshire, England.  Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Prague, Czech Republic.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds