metal-organic compounds
Hydroxonium triaquabis(biuret-κ2O,O′)dichloridolanthanum(III) dichloride dihydrate
aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk
In the title compound, (H3O)[LaCl2(C2H5N3O2)2(H2O)3]Cl2·2H2O, the La atom is bonded to seven O atoms (arising from two O,O′-bidentate biuret molecules and three water molecules) and two chloride ions in an irregular arrangement. A network of N—H⋯O, N—H⋯Cl, O—H⋯O and O—H⋯Cl hydrogen bonds helps to establish the packing, leading to a three-dimensional network. The La atom, one Cl atom and four O atoms lie on a crystallographic mirror plane.
Related literature
For related structures, see: Carugo et al. (1992); Rogers et al. (1993); Su et al. (2006); Haddad (1987, 1988); Harrison (2008a,b). For related literature, see: Brese & O'Keeffe (1991).
Experimental
Crystal data
|
|
Data collection: SMART (Bruker, 1999); cell SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808010349/fj2113sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808010349/fj2113Isup2.hkl
0.1 M Aqueous solutions of LaCl3 (10 ml) and biuret (10 ml) were mixed and a small quantity of dilute hydrochloric acid was added, to result in a colourless solution. Colourless blocks of (I) grew over several days as the water slowly evaporated.
The N-bound hydrogen atoms were geometrically placed (N—H = 0.88 Å) and refined as riding with Uiso(H) = 1.2Ueq(N). The water and hydroxonium H atoms were located in difference maps and refined as riding in their as-found relative positions with Uiso(H) = 1.2Ueq(O). Although a plausible hydrogen bonding scheme results, some of the peaks were barely above the noise level of the data, and thus the positions of the O-bonded H atoms should be regarded as less certain.
Data collection: SMART (Bruker, 1999); cell
SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. View of the molecular structure of (I) showing 50% displacement ellipsoids (arbitrary spheres for the H atoms). Symmetry code: (i) -x, y, z. | |
Fig. 2. Fragment of the packing for (I) displaying the hydrogen bonds (shows an double dashed lines) leading to chains arising from the complex cation, the hydroxonium ion and the uncoordinated water molecule. Symmetry code: (i) 1/2 - x, 1/2 + y, z. |
(H3O)[LaCl2(C2H5N3O2)2(H2O)3]Cl2·2H2O | F(000) = 1176 |
Mr = 596.00 | Dx = 1.913 Mg m−3 |
Orthorhombic, Cmc21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C 2c -2 | Cell parameters from 4771 reflections |
a = 17.6252 (7) Å | θ = 2.3–32.5° |
b = 6.8868 (3) Å | µ = 2.63 mm−1 |
c = 17.0447 (7) Å | T = 293 K |
V = 2068.91 (15) Å3 | Block, colourless |
Z = 4 | 0.30 × 0.23 × 0.17 mm |
Bruker SMART1000 CCD diffractometer | 3793 independent reflections |
Radiation source: fine-focus sealed tube | 3716 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
ω scans | θmax = 32.5°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 1999) | h = −26→26 |
Tmin = 0.486, Tmax = 0.636 | k = −10→9 |
11912 measured reflections | l = −24→25 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.016 | H-atom parameters constrained |
wR(F2) = 0.042 | w = 1/[σ2(Fo2) + (0.0242P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max < 0.001 |
3793 reflections | Δρmax = 0.70 e Å−3 |
121 parameters | Δρmin = −0.67 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 1805 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.001 (9) |
(H3O)[LaCl2(C2H5N3O2)2(H2O)3]Cl2·2H2O | V = 2068.91 (15) Å3 |
Mr = 596.00 | Z = 4 |
Orthorhombic, Cmc21 | Mo Kα radiation |
a = 17.6252 (7) Å | µ = 2.63 mm−1 |
b = 6.8868 (3) Å | T = 293 K |
c = 17.0447 (7) Å | 0.30 × 0.23 × 0.17 mm |
Bruker SMART1000 CCD diffractometer | 3793 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1999) | 3716 reflections with I > 2σ(I) |
Tmin = 0.486, Tmax = 0.636 | Rint = 0.018 |
11912 measured reflections |
R[F2 > 2σ(F2)] = 0.016 | H-atom parameters constrained |
wR(F2) = 0.042 | Δρmax = 0.70 e Å−3 |
S = 1.09 | Δρmin = −0.67 e Å−3 |
3793 reflections | Absolute structure: Flack (1983), 1805 Friedel pairs |
121 parameters | Absolute structure parameter: 0.001 (9) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
La1 | 0.0000 | 0.234447 (14) | 0.341713 (14) | 0.01947 (3) | |
Cl1 | 0.10789 (2) | −0.09170 (6) | 0.32281 (3) | 0.03634 (12) | |
C1 | 0.18755 (10) | 0.3315 (3) | 0.40149 (12) | 0.0293 (4) | |
C2 | 0.17044 (10) | 0.4278 (3) | 0.26382 (12) | 0.0290 (3) | |
N1 | 0.24102 (12) | 0.2964 (3) | 0.45518 (14) | 0.0459 (5) | |
H1 | 0.2283 | 0.2650 | 0.5022 | 0.055* | |
H2 | 0.2882 | 0.3052 | 0.4427 | 0.055* | |
N2 | 0.21433 (7) | 0.3826 (2) | 0.32868 (11) | 0.0344 (4) | |
H3 | 0.2628 | 0.3870 | 0.3229 | 0.041* | |
N3 | 0.20884 (11) | 0.4877 (3) | 0.20138 (13) | 0.0445 (4) | |
H4 | 0.1851 | 0.5181 | 0.1591 | 0.053* | |
H5 | 0.2575 | 0.4963 | 0.2032 | 0.053* | |
O1 | 0.11900 (8) | 0.3202 (3) | 0.41736 (8) | 0.0333 (3) | |
O2 | 0.10047 (7) | 0.41314 (19) | 0.26393 (8) | 0.0298 (3) | |
O3 | 0.0000 | 0.0881 (4) | 0.47616 (14) | 0.0488 (7) | |
H6 | 0.0406 | 0.0729 | 0.5026 | 0.059* | |
O4 | 0.0000 | 0.1452 (4) | 0.19698 (13) | 0.0384 (5) | |
H7 | 0.0377 | 0.0935 | 0.1750 | 0.046* | |
O5 | 0.0000 | 0.5850 (3) | 0.39200 (13) | 0.0388 (5) | |
H8 | −0.0323 | 0.6527 | 0.3843 | 0.047* | |
Cl2 | 0.36579 (3) | 0.51610 (15) | 0.08766 (5) | 0.04627 (14) | |
O6 | 0.5000 | 0.1924 (5) | 0.17243 (18) | 0.0617 (7) | |
H9 | 0.4686 | 0.1472 | 0.2081 | 0.074* | |
H10 | 0.5000 | 0.1363 | 0.1273 | 0.074* | |
O7 | 0.39583 (14) | −0.0187 (4) | 0.06811 (12) | 0.0695 (6) | |
H11 | 0.3960 | −0.1404 | 0.0560 | 0.083* | |
H12 | 0.3976 | 0.0476 | 0.0265 | 0.083* |
U11 | U22 | U33 | U12 | U13 | U23 | |
La1 | 0.01375 (4) | 0.02565 (5) | 0.01902 (5) | 0.000 | 0.000 | 0.00102 (8) |
Cl1 | 0.01972 (15) | 0.03484 (19) | 0.0545 (3) | 0.00363 (13) | 0.00053 (17) | −0.00126 (18) |
C1 | 0.0219 (8) | 0.0309 (9) | 0.0351 (9) | −0.0001 (6) | −0.0063 (7) | −0.0041 (7) |
C2 | 0.0240 (7) | 0.0303 (8) | 0.0325 (9) | −0.0042 (6) | 0.0059 (7) | −0.0006 (7) |
N1 | 0.0305 (9) | 0.0593 (11) | 0.0479 (11) | 0.0024 (8) | −0.0163 (9) | 0.0009 (10) |
N2 | 0.0164 (5) | 0.0455 (7) | 0.0412 (11) | −0.0021 (5) | 0.0022 (6) | 0.0039 (7) |
N3 | 0.0322 (9) | 0.0584 (11) | 0.0430 (10) | −0.0067 (8) | 0.0141 (8) | 0.0071 (9) |
O1 | 0.0228 (6) | 0.0510 (8) | 0.0260 (6) | −0.0028 (6) | −0.0025 (5) | −0.0012 (6) |
O2 | 0.0211 (6) | 0.0395 (7) | 0.0288 (6) | −0.0032 (5) | 0.0006 (5) | 0.0062 (6) |
O3 | 0.0248 (10) | 0.086 (2) | 0.0352 (13) | 0.000 | 0.000 | 0.0282 (12) |
O4 | 0.0265 (10) | 0.0609 (15) | 0.0279 (10) | 0.000 | 0.000 | −0.0113 (10) |
O5 | 0.0301 (10) | 0.0299 (9) | 0.0564 (14) | 0.000 | 0.000 | −0.0004 (9) |
Cl2 | 0.03018 (19) | 0.0726 (4) | 0.0360 (2) | 0.0037 (3) | −0.0008 (3) | −0.0124 (2) |
O6 | 0.076 (2) | 0.0640 (16) | 0.0453 (16) | 0.000 | 0.000 | 0.0068 (14) |
O7 | 0.0972 (16) | 0.0730 (12) | 0.0384 (10) | 0.0050 (13) | −0.0051 (10) | 0.0115 (10) |
La1—O3 | 2.503 (2) | C2—N2 | 1.385 (3) |
La1—O2 | 2.5313 (13) | N1—H1 | 0.8600 |
La1—O2i | 2.5313 (12) | N1—H2 | 0.8600 |
La1—O1 | 2.5318 (14) | N2—H3 | 0.8600 |
La1—O1i | 2.5318 (14) | N3—H4 | 0.8600 |
La1—O4 | 2.542 (2) | N3—H5 | 0.8600 |
La1—O5 | 2.562 (2) | O3—H6 | 0.8522 |
La1—Cl1i | 2.9606 (4) | O4—H7 | 0.8418 |
La1—Cl1 | 2.9606 (4) | O5—H8 | 0.7477 |
C1—O1 | 1.241 (2) | O6—H9 | 0.8786 |
C1—N1 | 1.336 (3) | O6—H10 | 0.8615 |
C1—N2 | 1.374 (3) | O7—H11 | 0.8631 |
C2—O2 | 1.237 (2) | O7—H12 | 0.8446 |
C2—N3 | 1.327 (3) | ||
O3—La1—O2 | 132.46 (4) | O2—La1—Cl1 | 82.10 (3) |
O3—La1—O2i | 132.46 (4) | O2i—La1—Cl1 | 139.57 (4) |
O2—La1—O2i | 88.78 (6) | O1—La1—Cl1 | 72.56 (4) |
O3—La1—O1 | 68.14 (5) | O1i—La1—Cl1 | 139.86 (4) |
O2—La1—O1 | 64.78 (4) | O4—La1—Cl1 | 73.20 (5) |
O2i—La1—O1 | 137.12 (5) | O5—La1—Cl1 | 138.709 (15) |
O3—La1—O1i | 68.14 (5) | Cl1i—La1—Cl1 | 79.930 (17) |
O2—La1—O1i | 137.12 (5) | O1—C1—N1 | 121.8 (2) |
O2i—La1—O1i | 64.78 (4) | O1—C1—N2 | 123.21 (16) |
O1—La1—O1i | 111.87 (7) | N1—C1—N2 | 115.01 (18) |
O3—La1—O4 | 142.27 (9) | O2—C2—N3 | 122.33 (19) |
O2—La1—O4 | 67.01 (5) | O2—C2—N2 | 122.51 (17) |
O2i—La1—O4 | 67.01 (5) | N3—C2—N2 | 115.16 (17) |
O1—La1—O4 | 123.41 (3) | C1—N1—H1 | 120.0 |
O1i—La1—O4 | 123.41 (3) | C1—N1—H2 | 120.0 |
O3—La1—O5 | 94.19 (9) | H1—N1—H2 | 120.0 |
O2—La1—O5 | 73.56 (5) | C1—N2—C2 | 125.93 (14) |
O2i—La1—O5 | 73.56 (5) | C1—N2—H3 | 117.0 |
O1—La1—O5 | 67.03 (4) | C2—N2—H3 | 117.0 |
O1i—La1—O5 | 67.03 (4) | C2—N3—H4 | 120.0 |
O4—La1—O5 | 123.54 (8) | C2—N3—H5 | 120.0 |
O3—La1—Cl1i | 78.13 (5) | H4—N3—H5 | 120.0 |
O2—La1—Cl1i | 139.57 (4) | C1—O1—La1 | 135.26 (12) |
O2i—La1—Cl1i | 82.10 (3) | C2—O2—La1 | 137.53 (12) |
O1—La1—Cl1i | 139.86 (4) | La1—O3—H6 | 122.3 |
O1i—La1—Cl1i | 72.56 (4) | La1—O4—H7 | 122.3 |
O4—La1—Cl1i | 73.20 (5) | La1—O5—H8 | 121.9 |
O5—La1—Cl1i | 138.709 (15) | H9—O6—H10 | 117.3 |
O3—La1—Cl1 | 78.13 (5) | H11—O7—H12 | 108.9 |
O1—C1—N2—C2 | −0.1 (3) | Cl1i—La1—O1—C1 | 103.6 (2) |
N1—C1—N2—C2 | −179.32 (19) | Cl1—La1—O1—C1 | 54.6 (2) |
O2—C2—N2—C1 | −5.1 (3) | N3—C2—O2—La1 | 159.25 (15) |
N3—C2—N2—C1 | 174.93 (19) | N2—C2—O2—La1 | −20.7 (3) |
N1—C1—O1—La1 | −149.81 (17) | O3—La1—O2—C2 | 21.4 (2) |
N2—C1—O1—La1 | 31.0 (3) | O2i—La1—O2—C2 | 175.02 (16) |
O3—La1—O1—C1 | 138.5 (2) | O1—La1—O2—C2 | 29.91 (18) |
O2—La1—O1—C1 | −34.7 (2) | O1i—La1—O2—C2 | 125.52 (18) |
O2i—La1—O1—C1 | −91.9 (2) | O4—La1—O2—C2 | −119.5 (2) |
O1i—La1—O1—C1 | −167.88 (17) | O5—La1—O2—C2 | 101.81 (19) |
O4—La1—O1—C1 | −0.6 (2) | Cl1i—La1—O2—C2 | −108.69 (18) |
O5—La1—O1—C1 | −116.7 (2) | Cl1—La1—O2—C2 | −44.48 (18) |
Symmetry code: (i) −x, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl2ii | 0.86 | 2.94 | 3.643 (3) | 141 |
N1—H2···Cl1iii | 0.86 | 2.83 | 3.574 (3) | 145 |
N2—H3···Cl1iii | 0.86 | 2.28 | 3.1399 (14) | 173 |
N3—H4···O7iii | 0.86 | 2.12 | 2.927 (3) | 156 |
N3—H5···Cl2 | 0.86 | 2.75 | 3.3835 (18) | 132 |
O3—H6···Cl2ii | 0.85 | 2.28 | 3.1181 (16) | 168 |
O4—H7···Cl2iv | 0.84 | 2.32 | 3.1396 (17) | 164 |
O5—H8···Cl1v | 0.75 | 2.44 | 3.1566 (17) | 160 |
O6—H9···O2iv | 0.88 | 2.23 | 3.044 (3) | 153 |
O6—H10···O7 | 0.86 | 2.35 | 2.941 (3) | 126 |
O6—H10···O7vi | 0.86 | 2.35 | 2.941 (3) | 126 |
O7—H11···Cl2vii | 0.86 | 2.48 | 3.264 (3) | 151 |
O7—H12···O1viii | 0.84 | 2.09 | 2.922 (2) | 168 |
Symmetry codes: (ii) −x+1/2, −y+1/2, z+1/2; (iii) −x+1/2, y+1/2, z; (iv) −x+1/2, y−1/2, z; (v) −x, y+1, z; (vi) −x+1, y, z; (vii) x, y−1, z; (viii) −x+1/2, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | (H3O)[LaCl2(C2H5N3O2)2(H2O)3]Cl2·2H2O |
Mr | 596.00 |
Crystal system, space group | Orthorhombic, Cmc21 |
Temperature (K) | 293 |
a, b, c (Å) | 17.6252 (7), 6.8868 (3), 17.0447 (7) |
V (Å3) | 2068.91 (15) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.63 |
Crystal size (mm) | 0.30 × 0.23 × 0.17 |
Data collection | |
Diffractometer | Bruker SMART1000 CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 1999) |
Tmin, Tmax | 0.486, 0.636 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11912, 3793, 3716 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.756 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.016, 0.042, 1.09 |
No. of reflections | 3793 |
No. of parameters | 121 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.70, −0.67 |
Absolute structure | Flack (1983), 1805 Friedel pairs |
Absolute structure parameter | 0.001 (9) |
Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).
La1—O3 | 2.503 (2) | La1—O4 | 2.542 (2) |
La1—O2 | 2.5313 (13) | La1—O5 | 2.562 (2) |
La1—O1 | 2.5318 (14) | La1—Cl1 | 2.9606 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl2i | 0.86 | 2.94 | 3.643 (3) | 141 |
N1—H2···Cl1ii | 0.86 | 2.83 | 3.574 (3) | 145 |
N2—H3···Cl1ii | 0.86 | 2.28 | 3.1399 (14) | 173 |
N3—H4···O7ii | 0.86 | 2.12 | 2.927 (3) | 156 |
N3—H5···Cl2 | 0.86 | 2.75 | 3.3835 (18) | 132 |
O3—H6···Cl2i | 0.85 | 2.28 | 3.1181 (16) | 168 |
O4—H7···Cl2iii | 0.84 | 2.32 | 3.1396 (17) | 164 |
O5—H8···Cl1iv | 0.75 | 2.44 | 3.1566 (17) | 160 |
O6—H9···O2iii | 0.88 | 2.23 | 3.044 (3) | 153 |
O6—H10···O7 | 0.86 | 2.35 | 2.941 (3) | 126 |
O6—H10···O7v | 0.86 | 2.35 | 2.941 (3) | 126 |
O7—H11···Cl2vi | 0.86 | 2.48 | 3.264 (3) | 151 |
O7—H12···O1vii | 0.84 | 2.09 | 2.922 (2) | 168 |
Symmetry codes: (i) −x+1/2, −y+1/2, z+1/2; (ii) −x+1/2, y+1/2, z; (iii) −x+1/2, y−1/2, z; (iv) −x, y+1, z; (v) −x+1, y, z; (vi) x, y−1, z; (vii) −x+1/2, −y+1/2, z−1/2. |
References
Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Carugo, O., Poli, G. & Manzoni, L. (1992). Acta Cryst. C48, 2013–2016. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Haddad, S. F. (1987). Acta Cryst. C43, 1882–1885. CSD CrossRef CAS IUCr Journals Google Scholar
Haddad, S. F. (1988). Acta Cryst. C44, 815–818. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Harrison, W. T. A. (2008a). Acta Cryst. E64, m619. Web of Science CSD CrossRef IUCr Journals Google Scholar
Harrison, W. T. A. (2008b). Acta Cryst. E64, m620. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rogers, R. D., Rollins, A. N., Etzenhouser, R. D., Voss, E. J. & Bauer, C. B. (1993). Inorg. Chem. 32, 3451–3462. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Su, Y., Yang, L., Wang, Z., Jin, X., Weng, S., Yan, C., Yu, Z. & Wu, J. (2006). Carbohydr. Res. 341, 75–83. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
No complexes of lanthanum(III) with biuret (biur), H2N—CO—NH—CO—NH2 (or C2H5N3O2) have been structurally characterized. The structures of two samarium-biuret complexes, Sm(biur)4.(NO3)3 (Haddad, 1987) and Sm(biur)4.(ClO4)3 (Haddad, 1988) have been described. In both cases, an SmO8 square antiprismatic coordination arises for the metal ion. Based on X-ray photographs, it was suggested that all the Ln(biur)4.(NO3)3 and Ln(biur)4.(ClO4)3 compounds are isostructural with their samarium prototypes. In this paper, we describe the synthesis and structure of the title compound, (I), in which three different ligands are bonded to the trivalent cation.
Compound (I) is an ionic salt containing a new [La(biur)2(H2O)5Cl2]+ complex ion. The complete cation is generated by crystallographic mirror symmetry, with La and the three water O atoms lying on the reflecting plane. A hydroxonium cation (with its O6 atom with site symmetry m), an uncoordinated chloride ion (Cl2) and an uncoordinated water molecule (O7) complete the structure (Fig. 1) of (I).
The resulting LaO7Cl2 polyhedral geometry in (I) (Table 1) can only be described as irregular. The Brese & O'Keeffe (1991) bond-valence sum for La1 in (I) of 3.29 is significantly larger than the expected value of 3.00. A local LaO7Cl2 grouping has been seen in various other compounds, including [LaCl2(H2O)(C12H24O6)]+.Cl- (Rogers et al., 1993) and [La(H2O)4Cl(C3H7O3]2+.2Cl-.H2O (Su et al., 2006), but otherwise these phases have no similarity to (I).
The O,O-bidenate coordination of the biuret molecule to the lanthanum ion in (I) results in a six-membered chelate ring that is non-planar. As noted previously (Carugo et al., 1992), the biuret molecule can be regarded as two planar amide fragments linked by the NH bridge. Here, the dihedral angle betwen the N1/C1/O1/N2 and N2/C2/O2/N3 units is 5.06 (10)°. The lanthanum cation deviates from the N1/C1/O1/N2 and N2/C2/O2/N3 mean planes by 0.894 (4)Å and 0.606 (4) Å, respectively.
The component species in (I) are linked by a dense array of N—H···O, N—H···Cl, O—H···Cl and O—H···O hydrogen bonds (Table 2) resulting in a three-dimensional network. Of note are the [001] chains resulting from the O—H···O hydrogen bonds involving the complex cation, H3O6 and H2O7 (Fig. 2).
The structure of (I) is different to those of the recently reported (Harrison, 2008a,b) M(biur)2(H2)4.Cl3 (M = Gd, Y) phases, perhaps because the larger La3+ cation can accommodate nine atoms in its coordination sphere.