metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m681-m682

Hydroxonium tri­aqua­bis­(biuret-κ2O,O′)di­chloridolanthanum(III) dichloride dihydrate

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 10 April 2008; accepted 15 April 2008; online 18 April 2008)

In the title compound, (H3O)[LaCl2(C2H5N3O2)2(H2O)3]Cl2·2H2O, the La atom is bonded to seven O atoms (arising from two O,O′-bidentate biuret mol­ecules and three water mol­ecules) and two chloride ions in an irregular arrangement. A network of N—H⋯O, N—H⋯Cl, O—H⋯O and O—H⋯Cl hydrogen bonds helps to establish the packing, leading to a three-dimensional network. The La atom, one Cl atom and four O atoms lie on a crystallographic mirror plane.

Related literature

For related structures, see: Carugo et al. (1992[Carugo, O., Poli, G. & Manzoni, L. (1992). Acta Cryst. C48, 2013-2016.]); Rogers et al. (1993[Rogers, R. D., Rollins, A. N., Etzenhouser, R. D., Voss, E. J. & Bauer, C. B. (1993). Inorg. Chem. 32, 3451-3462.]); Su et al. (2006[Su, Y., Yang, L., Wang, Z., Jin, X., Weng, S., Yan, C., Yu, Z. & Wu, J. (2006). Carbohydr. Res. 341, 75-83.]); Haddad (1987[Haddad, S. F. (1987). Acta Cryst. C43, 1882-1885.], 1988[Haddad, S. F. (1988). Acta Cryst. C44, 815-818.]); Harrison (2008a[Harrison, W. T. A. (2008a). Acta Cryst. E64, m619.],b[Harrison, W. T. A. (2008b). Acta Cryst. E64, m620.]). For related literature, see: Brese & O'Keeffe (1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]).

[Scheme 1]

Experimental

Crystal data
  • (H3O)[LaCl2(C2H5N3O2)2(H2O)3]Cl2·2H2O

  • Mr = 596.00

  • Orthorhombic, C m c 21

  • a = 17.6252 (7) Å

  • b = 6.8868 (3) Å

  • c = 17.0447 (7) Å

  • V = 2068.91 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.63 mm−1

  • T = 293 (2) K

  • 0.30 × 0.23 × 0.17 mm

Data collection
  • Bruker SMART1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.486, Tmax = 0.636

  • 11912 measured reflections

  • 3793 independent reflections

  • 3716 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.016

  • wR(F2) = 0.042

  • S = 1.09

  • 3793 reflections

  • 121 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.67 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1805 Friedel pairs

  • Flack parameter: 0.001 (9)

Table 1
Selected bond lengths (Å)

La1—O3 2.503 (2)
La1—O2 2.5313 (13)
La1—O1 2.5318 (14)
La1—O4 2.542 (2)
La1—O5 2.562 (2)
La1—Cl1 2.9606 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl2i 0.86 2.94 3.643 (3) 141
N1—H2⋯Cl1ii 0.86 2.83 3.574 (3) 145
N2—H3⋯Cl1ii 0.86 2.28 3.1399 (14) 173
N3—H4⋯O7ii 0.86 2.12 2.927 (3) 156
N3—H5⋯Cl2 0.86 2.75 3.3835 (18) 132
O3—H6⋯Cl2i 0.85 2.28 3.1181 (16) 168
O4—H7⋯Cl2iii 0.84 2.32 3.1396 (17) 164
O5—H8⋯Cl1iv 0.75 2.44 3.1566 (17) 160
O6—H9⋯O2iii 0.88 2.23 3.044 (3) 153
O6—H10⋯O7 0.86 2.35 2.941 (3) 126
O6—H10⋯O7v 0.86 2.35 2.941 (3) 126
O7—H11⋯Cl2vi 0.86 2.48 3.264 (3) 151
O7—H12⋯O1vii 0.84 2.09 2.922 (2) 168
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iv) -x, y+1, z; (v) -x+1, y, z; (vi) x, y-1, z; (vii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

No complexes of lanthanum(III) with biuret (biur), H2N—CO—NH—CO—NH2 (or C2H5N3O2) have been structurally characterized. The structures of two samarium-biuret complexes, Sm(biur)4.(NO3)3 (Haddad, 1987) and Sm(biur)4.(ClO4)3 (Haddad, 1988) have been described. In both cases, an SmO8 square antiprismatic coordination arises for the metal ion. Based on X-ray photographs, it was suggested that all the Ln(biur)4.(NO3)3 and Ln(biur)4.(ClO4)3 compounds are isostructural with their samarium prototypes. In this paper, we describe the synthesis and structure of the title compound, (I), in which three different ligands are bonded to the trivalent cation.

Compound (I) is an ionic salt containing a new [La(biur)2(H2O)5Cl2]+ complex ion. The complete cation is generated by crystallographic mirror symmetry, with La and the three water O atoms lying on the reflecting plane. A hydroxonium cation (with its O6 atom with site symmetry m), an uncoordinated chloride ion (Cl2) and an uncoordinated water molecule (O7) complete the structure (Fig. 1) of (I).

The resulting LaO7Cl2 polyhedral geometry in (I) (Table 1) can only be described as irregular. The Brese & O'Keeffe (1991) bond-valence sum for La1 in (I) of 3.29 is significantly larger than the expected value of 3.00. A local LaO7Cl2 grouping has been seen in various other compounds, including [LaCl2(H2O)(C12H24O6)]+.Cl- (Rogers et al., 1993) and [La(H2O)4Cl(C3H7O3]2+.2Cl-.H2O (Su et al., 2006), but otherwise these phases have no similarity to (I).

The O,O-bidenate coordination of the biuret molecule to the lanthanum ion in (I) results in a six-membered chelate ring that is non-planar. As noted previously (Carugo et al., 1992), the biuret molecule can be regarded as two planar amide fragments linked by the NH bridge. Here, the dihedral angle betwen the N1/C1/O1/N2 and N2/C2/O2/N3 units is 5.06 (10)°. The lanthanum cation deviates from the N1/C1/O1/N2 and N2/C2/O2/N3 mean planes by 0.894 (4)Å and 0.606 (4) Å, respectively.

The component species in (I) are linked by a dense array of N—H···O, N—H···Cl, O—H···Cl and O—H···O hydrogen bonds (Table 2) resulting in a three-dimensional network. Of note are the [001] chains resulting from the O—H···O hydrogen bonds involving the complex cation, H3O6 and H2O7 (Fig. 2).

The structure of (I) is different to those of the recently reported (Harrison, 2008a,b) M(biur)2(H2)4.Cl3 (M = Gd, Y) phases, perhaps because the larger La3+ cation can accommodate nine atoms in its coordination sphere.

Related literature top

For related structures, see: Carugo et al. (1992); Rogers et al. (1993); Su et al. (2006); Haddad (1987, 1988); Harrison (2008a,b)

For related literature, see: Brese & O'Keeffe (1991).

Experimental top

0.1 M Aqueous solutions of LaCl3 (10 ml) and biuret (10 ml) were mixed and a small quantity of dilute hydrochloric acid was added, to result in a colourless solution. Colourless blocks of (I) grew over several days as the water slowly evaporated.

Refinement top

The N-bound hydrogen atoms were geometrically placed (N—H = 0.88 Å) and refined as riding with Uiso(H) = 1.2Ueq(N). The water and hydroxonium H atoms were located in difference maps and refined as riding in their as-found relative positions with Uiso(H) = 1.2Ueq(O). Although a plausible hydrogen bonding scheme results, some of the peaks were barely above the noise level of the data, and thus the positions of the O-bonded H atoms should be regarded as less certain.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I) showing 50% displacement ellipsoids (arbitrary spheres for the H atoms). Symmetry code: (i) -x, y, z.
[Figure 2] Fig. 2. Fragment of the packing for (I) displaying the hydrogen bonds (shows an double dashed lines) leading to chains arising from the complex cation, the hydroxonium ion and the uncoordinated water molecule. Symmetry code: (i) 1/2 - x, 1/2 + y, z.
Hydroxonium triaquabis(biuret-κ2O,O')dichloridolanthanum(III) dichloride dihydrate top
Crystal data top
(H3O)[LaCl2(C2H5N3O2)2(H2O)3]Cl2·2H2OF(000) = 1176
Mr = 596.00Dx = 1.913 Mg m3
Orthorhombic, Cmc21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2c -2Cell parameters from 4771 reflections
a = 17.6252 (7) Åθ = 2.3–32.5°
b = 6.8868 (3) ŵ = 2.63 mm1
c = 17.0447 (7) ÅT = 293 K
V = 2068.91 (15) Å3Block, colourless
Z = 40.30 × 0.23 × 0.17 mm
Data collection top
Bruker SMART1000 CCD
diffractometer
3793 independent reflections
Radiation source: fine-focus sealed tube3716 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 32.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 2626
Tmin = 0.486, Tmax = 0.636k = 109
11912 measured reflectionsl = 2425
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.016H-atom parameters constrained
wR(F2) = 0.042 w = 1/[σ2(Fo2) + (0.0242P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
3793 reflectionsΔρmax = 0.70 e Å3
121 parametersΔρmin = 0.67 e Å3
1 restraintAbsolute structure: Flack (1983), 1805 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.001 (9)
Crystal data top
(H3O)[LaCl2(C2H5N3O2)2(H2O)3]Cl2·2H2OV = 2068.91 (15) Å3
Mr = 596.00Z = 4
Orthorhombic, Cmc21Mo Kα radiation
a = 17.6252 (7) ŵ = 2.63 mm1
b = 6.8868 (3) ÅT = 293 K
c = 17.0447 (7) Å0.30 × 0.23 × 0.17 mm
Data collection top
Bruker SMART1000 CCD
diffractometer
3793 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
3716 reflections with I > 2σ(I)
Tmin = 0.486, Tmax = 0.636Rint = 0.018
11912 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.016H-atom parameters constrained
wR(F2) = 0.042Δρmax = 0.70 e Å3
S = 1.09Δρmin = 0.67 e Å3
3793 reflectionsAbsolute structure: Flack (1983), 1805 Friedel pairs
121 parametersAbsolute structure parameter: 0.001 (9)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.00000.234447 (14)0.341713 (14)0.01947 (3)
Cl10.10789 (2)0.09170 (6)0.32281 (3)0.03634 (12)
C10.18755 (10)0.3315 (3)0.40149 (12)0.0293 (4)
C20.17044 (10)0.4278 (3)0.26382 (12)0.0290 (3)
N10.24102 (12)0.2964 (3)0.45518 (14)0.0459 (5)
H10.22830.26500.50220.055*
H20.28820.30520.44270.055*
N20.21433 (7)0.3826 (2)0.32868 (11)0.0344 (4)
H30.26280.38700.32290.041*
N30.20884 (11)0.4877 (3)0.20138 (13)0.0445 (4)
H40.18510.51810.15910.053*
H50.25750.49630.20320.053*
O10.11900 (8)0.3202 (3)0.41736 (8)0.0333 (3)
O20.10047 (7)0.41314 (19)0.26393 (8)0.0298 (3)
O30.00000.0881 (4)0.47616 (14)0.0488 (7)
H60.04060.07290.50260.059*
O40.00000.1452 (4)0.19698 (13)0.0384 (5)
H70.03770.09350.17500.046*
O50.00000.5850 (3)0.39200 (13)0.0388 (5)
H80.03230.65270.38430.047*
Cl20.36579 (3)0.51610 (15)0.08766 (5)0.04627 (14)
O60.50000.1924 (5)0.17243 (18)0.0617 (7)
H90.46860.14720.20810.074*
H100.50000.13630.12730.074*
O70.39583 (14)0.0187 (4)0.06811 (12)0.0695 (6)
H110.39600.14040.05600.083*
H120.39760.04760.02650.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.01375 (4)0.02565 (5)0.01902 (5)0.0000.0000.00102 (8)
Cl10.01972 (15)0.03484 (19)0.0545 (3)0.00363 (13)0.00053 (17)0.00126 (18)
C10.0219 (8)0.0309 (9)0.0351 (9)0.0001 (6)0.0063 (7)0.0041 (7)
C20.0240 (7)0.0303 (8)0.0325 (9)0.0042 (6)0.0059 (7)0.0006 (7)
N10.0305 (9)0.0593 (11)0.0479 (11)0.0024 (8)0.0163 (9)0.0009 (10)
N20.0164 (5)0.0455 (7)0.0412 (11)0.0021 (5)0.0022 (6)0.0039 (7)
N30.0322 (9)0.0584 (11)0.0430 (10)0.0067 (8)0.0141 (8)0.0071 (9)
O10.0228 (6)0.0510 (8)0.0260 (6)0.0028 (6)0.0025 (5)0.0012 (6)
O20.0211 (6)0.0395 (7)0.0288 (6)0.0032 (5)0.0006 (5)0.0062 (6)
O30.0248 (10)0.086 (2)0.0352 (13)0.0000.0000.0282 (12)
O40.0265 (10)0.0609 (15)0.0279 (10)0.0000.0000.0113 (10)
O50.0301 (10)0.0299 (9)0.0564 (14)0.0000.0000.0004 (9)
Cl20.03018 (19)0.0726 (4)0.0360 (2)0.0037 (3)0.0008 (3)0.0124 (2)
O60.076 (2)0.0640 (16)0.0453 (16)0.0000.0000.0068 (14)
O70.0972 (16)0.0730 (12)0.0384 (10)0.0050 (13)0.0051 (10)0.0115 (10)
Geometric parameters (Å, º) top
La1—O32.503 (2)C2—N21.385 (3)
La1—O22.5313 (13)N1—H10.8600
La1—O2i2.5313 (12)N1—H20.8600
La1—O12.5318 (14)N2—H30.8600
La1—O1i2.5318 (14)N3—H40.8600
La1—O42.542 (2)N3—H50.8600
La1—O52.562 (2)O3—H60.8522
La1—Cl1i2.9606 (4)O4—H70.8418
La1—Cl12.9606 (4)O5—H80.7477
C1—O11.241 (2)O6—H90.8786
C1—N11.336 (3)O6—H100.8615
C1—N21.374 (3)O7—H110.8631
C2—O21.237 (2)O7—H120.8446
C2—N31.327 (3)
O3—La1—O2132.46 (4)O2—La1—Cl182.10 (3)
O3—La1—O2i132.46 (4)O2i—La1—Cl1139.57 (4)
O2—La1—O2i88.78 (6)O1—La1—Cl172.56 (4)
O3—La1—O168.14 (5)O1i—La1—Cl1139.86 (4)
O2—La1—O164.78 (4)O4—La1—Cl173.20 (5)
O2i—La1—O1137.12 (5)O5—La1—Cl1138.709 (15)
O3—La1—O1i68.14 (5)Cl1i—La1—Cl179.930 (17)
O2—La1—O1i137.12 (5)O1—C1—N1121.8 (2)
O2i—La1—O1i64.78 (4)O1—C1—N2123.21 (16)
O1—La1—O1i111.87 (7)N1—C1—N2115.01 (18)
O3—La1—O4142.27 (9)O2—C2—N3122.33 (19)
O2—La1—O467.01 (5)O2—C2—N2122.51 (17)
O2i—La1—O467.01 (5)N3—C2—N2115.16 (17)
O1—La1—O4123.41 (3)C1—N1—H1120.0
O1i—La1—O4123.41 (3)C1—N1—H2120.0
O3—La1—O594.19 (9)H1—N1—H2120.0
O2—La1—O573.56 (5)C1—N2—C2125.93 (14)
O2i—La1—O573.56 (5)C1—N2—H3117.0
O1—La1—O567.03 (4)C2—N2—H3117.0
O1i—La1—O567.03 (4)C2—N3—H4120.0
O4—La1—O5123.54 (8)C2—N3—H5120.0
O3—La1—Cl1i78.13 (5)H4—N3—H5120.0
O2—La1—Cl1i139.57 (4)C1—O1—La1135.26 (12)
O2i—La1—Cl1i82.10 (3)C2—O2—La1137.53 (12)
O1—La1—Cl1i139.86 (4)La1—O3—H6122.3
O1i—La1—Cl1i72.56 (4)La1—O4—H7122.3
O4—La1—Cl1i73.20 (5)La1—O5—H8121.9
O5—La1—Cl1i138.709 (15)H9—O6—H10117.3
O3—La1—Cl178.13 (5)H11—O7—H12108.9
O1—C1—N2—C20.1 (3)Cl1i—La1—O1—C1103.6 (2)
N1—C1—N2—C2179.32 (19)Cl1—La1—O1—C154.6 (2)
O2—C2—N2—C15.1 (3)N3—C2—O2—La1159.25 (15)
N3—C2—N2—C1174.93 (19)N2—C2—O2—La120.7 (3)
N1—C1—O1—La1149.81 (17)O3—La1—O2—C221.4 (2)
N2—C1—O1—La131.0 (3)O2i—La1—O2—C2175.02 (16)
O3—La1—O1—C1138.5 (2)O1—La1—O2—C229.91 (18)
O2—La1—O1—C134.7 (2)O1i—La1—O2—C2125.52 (18)
O2i—La1—O1—C191.9 (2)O4—La1—O2—C2119.5 (2)
O1i—La1—O1—C1167.88 (17)O5—La1—O2—C2101.81 (19)
O4—La1—O1—C10.6 (2)Cl1i—La1—O2—C2108.69 (18)
O5—La1—O1—C1116.7 (2)Cl1—La1—O2—C244.48 (18)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl2ii0.862.943.643 (3)141
N1—H2···Cl1iii0.862.833.574 (3)145
N2—H3···Cl1iii0.862.283.1399 (14)173
N3—H4···O7iii0.862.122.927 (3)156
N3—H5···Cl20.862.753.3835 (18)132
O3—H6···Cl2ii0.852.283.1181 (16)168
O4—H7···Cl2iv0.842.323.1396 (17)164
O5—H8···Cl1v0.752.443.1566 (17)160
O6—H9···O2iv0.882.233.044 (3)153
O6—H10···O70.862.352.941 (3)126
O6—H10···O7vi0.862.352.941 (3)126
O7—H11···Cl2vii0.862.483.264 (3)151
O7—H12···O1viii0.842.092.922 (2)168
Symmetry codes: (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z; (iv) x+1/2, y1/2, z; (v) x, y+1, z; (vi) x+1, y, z; (vii) x, y1, z; (viii) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula(H3O)[LaCl2(C2H5N3O2)2(H2O)3]Cl2·2H2O
Mr596.00
Crystal system, space groupOrthorhombic, Cmc21
Temperature (K)293
a, b, c (Å)17.6252 (7), 6.8868 (3), 17.0447 (7)
V3)2068.91 (15)
Z4
Radiation typeMo Kα
µ (mm1)2.63
Crystal size (mm)0.30 × 0.23 × 0.17
Data collection
DiffractometerBruker SMART1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.486, 0.636
No. of measured, independent and
observed [I > 2σ(I)] reflections
11912, 3793, 3716
Rint0.018
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.042, 1.09
No. of reflections3793
No. of parameters121
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.67
Absolute structureFlack (1983), 1805 Friedel pairs
Absolute structure parameter0.001 (9)

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Selected bond lengths (Å) top
La1—O32.503 (2)La1—O42.542 (2)
La1—O22.5313 (13)La1—O52.562 (2)
La1—O12.5318 (14)La1—Cl12.9606 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl2i0.862.943.643 (3)141
N1—H2···Cl1ii0.862.833.574 (3)145
N2—H3···Cl1ii0.862.283.1399 (14)173
N3—H4···O7ii0.862.122.927 (3)156
N3—H5···Cl20.862.753.3835 (18)132
O3—H6···Cl2i0.852.283.1181 (16)168
O4—H7···Cl2iii0.842.323.1396 (17)164
O5—H8···Cl1iv0.752.443.1566 (17)160
O6—H9···O2iii0.882.233.044 (3)153
O6—H10···O70.862.352.941 (3)126
O6—H10···O7v0.862.352.941 (3)126
O7—H11···Cl2vi0.862.483.264 (3)151
O7—H12···O1vii0.842.092.922 (2)168
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y1/2, z; (iv) x, y+1, z; (v) x+1, y, z; (vi) x, y1, z; (vii) x+1/2, y+1/2, z1/2.
 

References

First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarugo, O., Poli, G. & Manzoni, L. (1992). Acta Cryst. C48, 2013–2016.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHaddad, S. F. (1987). Acta Cryst. C43, 1882–1885.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationHaddad, S. F. (1988). Acta Cryst. C44, 815–818.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarrison, W. T. A. (2008a). Acta Cryst. E64, m619.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarrison, W. T. A. (2008b). Acta Cryst. E64, m620.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRogers, R. D., Rollins, A. N., Etzenhouser, R. D., Voss, E. J. & Bauer, C. B. (1993). Inorg. Chem. 32, 3451–3462.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, Y., Yang, L., Wang, Z., Jin, X., Weng, S., Yan, C., Yu, Z. & Wu, J. (2006). Carbohydr. Res. 341, 75–83.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m681-m682
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds