organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3-Chloro­phen­yl)male­imide

aDepartamento de Química - Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, bFacultad de Ciencias Químicas, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain, and cInstituto de Física, Universidade de São Paulo, São Carlos, Brazil.
*Correspondence e-mail: rodimo26@yahoo.es

(Received 14 April 2008; accepted 23 April 2008; online 30 April 2008)

The title compound, C10H6ClNO2, has a dihedral angle of 46.46 (5)° between the benzene and maleimide rings. A short inter­molecular halogen–oxygen contact is observed, with a Cl⋯O distance of 3.0966 (13) Å. Both CO groups are involved in two C—H⋯O inter­actions, which gives rise to sheets parallel to (100). In addition, these sheets exhibit a ππ stacking inter­action between the benzene and maleimide rings [mean inter­planar distance of 3.337 (3) Å].

Related literature

For related literature, see: Etter (1990[Etter, M. (1990). Acc. Chem. Res. 23, 120-126.]); Howell & Zhang (2006[Howell, B. & Zhang, J. (2006). J. Therm. Anal. Calorim. 83, 83-86.]); Metrangolo & Resnati (2001[Metrangolo, P. & Resnati, G. (2001). Chem. Eur. J. 7, 2511-2519.]); Miller et al. (2000[Miller, C. W., Hoyle, C. E., Valente, E. J., Zobkowski, J. D. & Jönsson, E. S. (2000). J. Chem. Crystallogr. 30, 9, 563-571.], 2001[Miller, C. W., Jönsson, E. S., Hoyle, C. E., Viswanathan, K. & Valente, E. J. (2001). J. Phys. Chem. B, 105, 2707-2717.]); Moreno-Fuquen et al. (2006[Moreno-Fuquen, R., Valencia, H., Pardo, Z. D., D'Vries, R. & Kennedy, A. R. (2006). Acta Cryst. E62, o2734-o2735.]); Sureshan et al. (2001[Sureshan, K. M., Gonnade, R. G., Shashidhar, M. S., Puranik, V. G. & Bhadbhade, M. M. (2001). Chem. Commun. pp. 881-882.]).

[Scheme 1]

Experimental

Crystal data
  • C10H6ClNO2

  • Mr = 207.61

  • Monoclinic, P 21 /n

  • a = 7.3434 (3) Å

  • b = 11.9458 (5) Å

  • c = 10.3044 (4) Å

  • β = 101.121 (2)°

  • V = 886.96 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 291 (2) K

  • 0.18 × 0.10 × 0.04 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 4426 measured reflections

  • 2042 independent reflections

  • 1680 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.101

  • S = 1.08

  • 2042 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2i 0.93 2.53 3.455 (2) 170
C8—H8⋯O2ii 0.93 2.71 3.513 (2) 146
C8—H8⋯O1iii 0.93 2.59 3.256 (2) 129
C2—H2⋯O1iv 0.93 2.72 3.308 (2) 122
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+2, -y, -z+1; (iv) -x+2, -y, -z.

Data collection: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PARST95 (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Due to the interest created by the N-substituted maleimides in free radical polymerization process upon exposure to light (Howell & Zhang, 2006), the synthesis and study of the crystal structure of N-(m-chlorophenylmaleimide) (I) was undertaken. N-(m-nitrophenylmaleimide) (3NPMI) (Moreno-Fuquen et al., 2006) and N-(o-chlorophenyl) maleimide (2ClPMI) (Miller et al., 2001) systems can be taken as a reference systems to compare with the structural characteristics of (I). Perspective view of (I), showing the atomic numbering scheme, is given in Fig. 1. Photochemical properties of arylmaleimide systems have shown that they depend on the value of the dihedral angle between the benzene and imidic rings (Miller et al., 2000). This angle is 56.2 (1)° and 52.9 (1)° for 3NPMI, 66.10 (4) ° for 2ClPMI, and 46.46 (5)° for (I). The molecules of (I) are linked into sheets by a combination of C—H···O hydrogen bonds (Nardelli, 1995) (Table 1). Indeed, the atoms C3i in the molecule at (3/2 - x, 1/2 + y, 1/2 - z) and C8ii in the molecule at (-1/2 + x, 1/2 - y, -1/2 + z) act as hydrogen-bond donors to maleimidic O2 atom in the molecule at (x, y, z), so generating by 21 screw axis a C(6) chain (Etter, 1990), which is running parallel to [010] direction (Fig. 2, supp. material). Within the asymmetric unit the atom C2 at (x, y, z) acts as hydrogen bond donor to maleimidic O1iii in the molecule at (2 - x, -y, -z), so forming by translation a R22(14) centrosymmetric rings (Etter, 1990); in addition, atom C8 at (x, y, z) acts as a hydrogen bond donor to maleimidic O1ii in the molecule at (2 - x, -y, 1 - z), so generating by translation a R22(8) centrosymmetric rings. Both rings are running along [001] direction (Fig.3, supp. material). In addition, (I) exhibits an aromatic π···π stacking interactions between benzene and maleimide rings with a mean interplanar distance of 3.337 (3) Å. The halogen-oxygen interaction is recognized as a strong driving force in formation of molecular crystals (Sureshan et al., 2001). (I) shows a short Cl···O intermolecular contact, disposed about an inversion centre. The Cl1···O2, shows a distance of 3.0966 (13) Å, [O2 with symmetry 2 - x, 1 - y, -z] and this contact is shorter than the sum of their van der Waalś radii (3.27 Å, Metrangolo & Resnati, 2001). In (I), the angle of the oxygen O2 relative to the C6—Cl bond shows a slight deviation from linearity with a value of 174.31 (6)° and the angle of the chlorine atom relative to the C10—O2 bond shows a value of 136.96 (11)°, suggesting strong halogen bonding. This could also prevent a larger rotation between the planes of (I). The title system does not have enough influence on the processes of polymerization because the dihedral angle between their rings possess a low value with respect to other systems with substituents in the position ortho (Miller et al., 2000).

Related literature top

For related literature, see: Etter (1990); Howell & Zhang (2006); Metrangolo & Resnati (2001); Miller et al. (2000, 2001); Moreno-Fuquen et al. (2006); Sureshan et al. (2001).

Experimental top

Reagents and solvents for the synthesis were from Aldrich Chemical Co. and they were used without additional purification. Column chromatography was performed using silica gel H60 to purify the intermediates and final products. Thin layer chromatography (TLC) was used to confirm the structure of the individual compounds.

Refinement top

The space group P 21/n for (I) was uniquely assigned from the systematic absences. All H-atoms were located from difference maps and then treated as riding atoms [C—H= 0.93Å and Uiso(H)= 1.2Ueq(C)].

Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 2000); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 2000); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PARST95 (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 1997) plot of (I), with the atomic labelling scheme. The shapes of the ellipsoids correspond to 50% probability contours of atomic displacement.
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing the formation of the C(12) and C(13) chains along [010]. Symmetry codes: (i) 3/2 - x, 1/2 + y, 1/2 - z; (ii) -1/2 + x, 1/2 - y, -1/2 + z; (iii) x, 1 + y, z; (iv) -1/2 + x, 1/2 - y, -1/2 + z; (v) 3/2 - x, 3/2 + y, 1/2 - z. For the sake of clarity, the H atoms not involved in the motif shown have been omitted.
[Figure 3] Fig. 3. Part of the crystal structure of (I) showing the formation of a sheet of R22(8) and R22(14) centrosymmetric rings parallel to (100) generated by the C—H···O hydrogen bonds. Symmetry codes: (i) x, y, 1 - z; (ii) -x, -y, -z; (iii) -x, -y, 1 - z; (iv) x, y, 1 + z; (v) -x, -y, 2 - z. For the sake of clarity, the H atoms not involved in the motif have been omitted.
[Figure 4] Fig. 4. The formation of the title compound.
N-(3-Chlorophenyl)maleimide top
Crystal data top
C10H6ClNO2F(000) = 424
Mr = 207.61Dx = 1.550 Mg m3
Monoclinic, P21/nMelting point: 364(1) K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 7.3434 (3) ÅCell parameters from 4426 reflections
b = 11.9458 (5) Åθ = 2.9–27.5°
c = 10.3044 (4) ŵ = 0.40 mm1
β = 101.121 (2)°T = 291 K
V = 886.96 (6) Å3Needle, colorless
Z = 40.18 × 0.10 × 0.04 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
1680 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Graphite monochromatorθmax = 27.5°, θmin = 2.9°
ϕ and ω scansh = 98
4426 measured reflectionsk = 1515
2042 independent reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0496P)2 + 0.2501P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2042 reflectionsΔρmax = 0.25 e Å3
128 parametersΔρmin = 0.39 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.031 (5)
Crystal data top
C10H6ClNO2V = 886.96 (6) Å3
Mr = 207.61Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.3434 (3) ŵ = 0.40 mm1
b = 11.9458 (5) ÅT = 291 K
c = 10.3044 (4) Å0.18 × 0.10 × 0.04 mm
β = 101.121 (2)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
1680 reflections with I > 2σ(I)
4426 measured reflectionsRint = 0.036
2042 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.09Δρmax = 0.25 e Å3
2042 reflectionsΔρmin = 0.39 e Å3
128 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.04083 (6)0.39876 (4)0.16126 (4)0.03549 (17)
O11.08785 (18)0.03863 (10)0.33200 (12)0.0348 (3)
O20.83189 (18)0.38885 (10)0.29127 (12)0.0348 (3)
N10.95758 (18)0.21271 (11)0.27188 (13)0.0253 (3)
C10.8978 (2)0.19208 (15)0.14130 (16)0.0309 (4)
H10.88530.18770.23270.037*
C20.8435 (2)0.10389 (13)0.07035 (17)0.0300 (4)
H20.79440.03960.11480.036*
C30.8613 (2)0.10986 (13)0.06635 (16)0.0267 (4)
H30.82240.05070.11310.032*
C40.9379 (2)0.20552 (13)0.13225 (15)0.0245 (3)
C50.9937 (2)0.29538 (13)0.06274 (15)0.0267 (4)
H51.04480.35940.10670.032*
C60.9710 (2)0.28685 (14)0.07360 (16)0.0285 (4)
C71.0295 (2)0.12740 (14)0.36145 (16)0.0280 (4)
C81.0201 (2)0.17113 (15)0.49571 (16)0.0321 (4)
H81.05940.13320.57500.038*
C90.9469 (2)0.27274 (14)0.48355 (16)0.0320 (4)
H90.92630.31760.55300.038*
C100.9026 (2)0.30376 (13)0.34085 (16)0.0276 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0406 (3)0.0386 (3)0.0306 (3)0.00442 (17)0.01531 (18)0.01000 (17)
O10.0433 (7)0.0275 (6)0.0336 (7)0.0019 (5)0.0076 (5)0.0034 (5)
O20.0438 (7)0.0307 (7)0.0318 (7)0.0066 (5)0.0122 (5)0.0004 (5)
N10.0308 (7)0.0245 (7)0.0215 (7)0.0005 (5)0.0071 (5)0.0015 (5)
C10.0321 (8)0.0380 (9)0.0236 (8)0.0098 (7)0.0074 (6)0.0012 (7)
C20.0310 (8)0.0294 (8)0.0290 (8)0.0061 (6)0.0047 (7)0.0048 (6)
C30.0277 (8)0.0254 (8)0.0270 (8)0.0030 (6)0.0056 (6)0.0007 (6)
C40.0245 (7)0.0270 (8)0.0228 (7)0.0039 (6)0.0063 (6)0.0005 (6)
C50.0284 (8)0.0280 (8)0.0251 (8)0.0015 (6)0.0083 (6)0.0001 (6)
C60.0286 (8)0.0314 (8)0.0277 (8)0.0064 (6)0.0110 (6)0.0043 (6)
C70.0295 (8)0.0278 (8)0.0265 (8)0.0057 (6)0.0050 (6)0.0039 (6)
C80.0376 (9)0.0355 (9)0.0237 (8)0.0080 (7)0.0073 (7)0.0024 (7)
C90.0389 (9)0.0351 (9)0.0240 (8)0.0076 (7)0.0109 (7)0.0021 (7)
C100.0290 (8)0.0285 (8)0.0270 (8)0.0032 (6)0.0093 (6)0.0012 (6)
Geometric parameters (Å, º) top
Cl1—C61.7450 (17)C3—C41.392 (2)
O1—C71.204 (2)C3—H30.9300
O2—C101.209 (2)C4—C51.395 (2)
N1—C101.401 (2)C5—C61.386 (2)
N1—C71.408 (2)C5—H50.9300
N1—C41.421 (2)C7—C81.493 (2)
C1—C61.383 (2)C8—C91.324 (3)
C1—C21.384 (2)C8—H80.9300
C1—H10.9300C9—C101.490 (2)
C2—C31.391 (2)C9—H90.9300
C2—H20.9300
C10—N1—C7109.76 (13)C4—C5—H5120.9
C10—N1—C4125.30 (13)C1—C6—C5122.04 (15)
C7—N1—C4124.90 (13)C1—C6—Cl1119.38 (13)
C6—C1—C2118.70 (15)C5—C6—Cl1118.57 (13)
C6—C1—H1120.6O1—C7—N1125.39 (15)
C2—C1—H1120.6O1—C7—C8128.61 (16)
C1—C2—C3121.03 (15)N1—C7—C8106.00 (14)
C1—C2—H2119.5C9—C8—C7108.89 (15)
C3—C2—H2119.5C9—C8—H8125.6
C2—C3—C4119.09 (15)C7—C8—H8125.6
C2—C3—H3120.5C8—C9—C10109.20 (15)
C4—C3—H3120.5C8—C9—H9125.4
C3—C4—C5120.84 (15)C10—C9—H9125.4
C3—C4—N1119.76 (14)O2—C10—N1125.51 (15)
C5—C4—N1119.40 (14)O2—C10—C9128.34 (15)
C6—C5—C4118.28 (15)N1—C10—C9106.14 (14)
C6—C5—H5120.9
C6—C1—C2—C30.2 (2)C10—N1—C7—O1179.89 (16)
C1—C2—C3—C41.1 (2)C4—N1—C7—O11.9 (3)
C2—C3—C4—C51.1 (2)C10—N1—C7—C80.97 (17)
C2—C3—C4—N1179.78 (14)C4—N1—C7—C8178.92 (14)
C10—N1—C4—C3131.50 (16)O1—C7—C8—C9179.73 (17)
C7—N1—C4—C346.1 (2)N1—C7—C8—C90.62 (18)
C10—N1—C4—C547.7 (2)C7—C8—C9—C100.05 (19)
C7—N1—C4—C5134.69 (16)C7—N1—C10—O2178.35 (16)
C3—C4—C5—C60.1 (2)C4—N1—C10—O20.4 (3)
N1—C4—C5—C6179.23 (14)C7—N1—C10—C90.94 (17)
C2—C1—C6—C50.9 (2)C4—N1—C10—C9178.88 (14)
C2—C1—C6—Cl1179.82 (12)C8—C9—C10—O2178.72 (17)
C4—C5—C6—C10.9 (2)C8—C9—C10—N10.54 (19)
C4—C5—C6—Cl1179.88 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.932.533.455 (2)170
C8—H8···O2ii0.932.713.513 (2)146
C8—H8···O1iii0.932.593.256 (2)129
C2—H2···O1iv0.932.723.308 (2)122
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+2, y, z+1; (iv) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC10H6ClNO2
Mr207.61
Crystal system, space groupMonoclinic, P21/n
Temperature (K)291
a, b, c (Å)7.3434 (3), 11.9458 (5), 10.3044 (4)
β (°) 101.121 (2)
V3)886.96 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.18 × 0.10 × 0.04
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4426, 2042, 1680
Rint0.036
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.101, 1.09
No. of reflections2042
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.39

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PARST95 (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.932.533.455 (2)170.2
C8—H8···O2ii0.932.713.513 (2)145.6
C8—H8···O1iii0.932.593.256 (2)129.1
C2—H2···O1iv0.932.723.308 (2)122.3
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+2, y, z+1; (iv) x+2, y, z.
 

Acknowledgements

RMF is grateful to the Instituto de Química Física Rocasolano, CSIC, Spain, for the use of the license for the Cambridge Structural Database System (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). RMF and ZPB acknowledge the Universidad del Valle, Colombia for partial financial support.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHowell, B. & Zhang, J. (2006). J. Therm. Anal. Calorim. 83, 83–86.  Web of Science CrossRef CAS Google Scholar
First citationMetrangolo, P. & Resnati, G. (2001). Chem. Eur. J. 7, 2511–2519.  CrossRef PubMed CAS Google Scholar
First citationMiller, C. W., Hoyle, C. E., Valente, E. J., Zobkowski, J. D. & Jönsson, E. S. (2000). J. Chem. Crystallogr. 30, 9, 563–571.  Google Scholar
First citationMiller, C. W., Jönsson, E. S., Hoyle, C. E., Viswanathan, K. & Valente, E. J. (2001). J. Phys. Chem. B, 105, 2707–2717.  Web of Science CrossRef CAS Google Scholar
First citationMoreno-Fuquen, R., Valencia, H., Pardo, Z. D., D'Vries, R. & Kennedy, A. R. (2006). Acta Cryst. E62, o2734–o2735.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSureshan, K. M., Gonnade, R. G., Shashidhar, M. S., Puranik, V. G. & Bhadbhade, M. M. (2001). Chem. Commun. pp. 881–882.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds