organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Hydr­­oxy-3-nitro­benzaldehyde

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 27 February 2008; accepted 20 April 2008; online 26 April 2008)

The hydroxyl group in each of the two independent mol­ecules of the title compound, C7H5NO4, participates in two O—H⋯O hydrogen bonds, viz. one intra­molecular bond to the nitro group and one inter­molecular bond to the aldehyde group of the same mol­ecule in the next unit, resulting in a linear chain structure. The dihedral angle between the aromatic ring and the nitro group is 10.9 (3)° in one mol­ecule and 9.9 (2)° in the other.

Related literature

For the structure of 2-nitro­phenol, see: Iwasaki & Kawano (1978[Iwasaki, F. & Kawano, Y. (1978). Acta Cryst. B34, 1286-1290.]). For the structure of 4-hydroxy­benzaldehyde, see: Jasinski et al. (2008[Jasinski, J. P., Butcher, R. J., Narayana, B., Swamy, M. T. & Yathirajan, H. S. (2008). Acta Cryst. E64, o187.]).

[Scheme 1]

Experimental

Crystal data
  • C7H5NO4

  • Mr = 167.12

  • Triclinic, [P \overline 1]

  • a = 8.042 (1) Å

  • b = 8.036 (1) Å

  • c = 12.242 (2) Å

  • α = 71.975 (2)°

  • β = 70.820 (2)°

  • γ = 67.323 (2)°

  • V = 674.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 100 (2) K

  • 0.40 × 0.05 × 0.05 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: none

  • 4245 measured reflections

  • 3068 independent reflections

  • 2134 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.121

  • S = 0.99

  • 3068 reflections

  • 225 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4o⋯O1i 0.84 (1) 2.13 (3) 2.676 (2) 122 (3)
O4—H4o⋯O3 0.84 (1) 1.91 (2) 2.638 (2) 144 (3)
O8—H8o⋯O5ii 0.84 (1) 2.10 (3) 2.687 (2) 128 (3)
O8—H8o⋯O7 0.84 (1) 1.94 (2) 2.635 (2) 139 (3)
Symmetry codes: (i) x+1, y-1, z; (ii) x-1, y+1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

A nitro group either ortho or para to a hydroxyl group can significantly increase the acidity of the resulting phenol. The crystal structures of a large number of 2-nitrophenol compounds have reported; the title compound represents another example. The hydroxyl group of the two independent molecules of the title compound (Fig. 1) is intramolecularly linked to the nitro group by an O–H···O hydrogen bond; the hydroxy group is intermolecularly linked to the aldehyde group of the molecule in the next unit cell by an similar hydrogen bond to result in a linear chain structure (Fig. 2). 2-Nitrophenol itself features an intramolecular hydrogen bond of 2.602 Å (Iwasaki & Kawano, 1978). On the other hand, 4-hydroxybenzaldehyde exists as a hydrogen-bonded chain [O–H···O 2.731 (2) Å] (Jasinski et al., 2008).

Related literature top

For the structure of 2-nitrophenol, see: Iwasaki & Kawano (1978). For the structure of 4-hydroxybenzaldehyde, see: Jasinski et al. (2008).

Experimental top

The commercially available compound (Sigma Aldrich) was recrystallized from water.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The hydroxy H-atoms were located in a difference Fourier map, and were refined with an O–H distance restraint of 0.84±0.01 Å; their temperature factors were freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the two independent molecules of the title compound at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Chain structure of 4-hydroxy-3-nitrobenzaldehyde. Dashed lines denote hydrogen bonds.
4-Hydroxy-3-nitrobenzaldehyde top
Crystal data top
C7H5NO4Z = 4
Mr = 167.12F(000) = 344
Triclinic, P1Dx = 1.647 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.042 (1) ÅCell parameters from 1123 reflections
b = 8.036 (1) Åθ = 3.0–28.8°
c = 12.242 (2) ŵ = 0.14 mm1
α = 71.975 (2)°T = 100 K
β = 70.820 (2)°Prism, yellow
γ = 67.323 (2)°0.40 × 0.05 × 0.05 mm
V = 674.1 (2) Å3
Data collection top
Bruker SMART APEXII
diffractometer
2134 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
Graphite monochromatorθmax = 27.5°, θmin = 1.8°
ϕ and ω scansh = 1010
4245 measured reflectionsk = 109
3068 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0598P)2 + 0.2315P]
where P = (Fo2 + 2Fc2)/3
3068 reflections(Δ/σ)max = 0.001
225 parametersΔρmax = 0.31 e Å3
2 restraintsΔρmin = 0.32 e Å3
Crystal data top
C7H5NO4γ = 67.323 (2)°
Mr = 167.12V = 674.1 (2) Å3
Triclinic, P1Z = 4
a = 8.042 (1) ÅMo Kα radiation
b = 8.036 (1) ŵ = 0.14 mm1
c = 12.242 (2) ÅT = 100 K
α = 71.975 (2)°0.40 × 0.05 × 0.05 mm
β = 70.820 (2)°
Data collection top
Bruker SMART APEXII
diffractometer
2134 reflections with I > 2σ(I)
4245 measured reflectionsRint = 0.016
3068 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0452 restraints
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.31 e Å3
3068 reflectionsΔρmin = 0.32 e Å3
225 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4321 (2)0.8384 (2)0.8786 (1)0.0221 (3)
O20.9772 (2)0.2412 (2)1.1704 (1)0.0225 (4)
O31.1859 (2)0.0816 (2)1.0449 (1)0.0224 (4)
O41.1227 (2)0.1121 (2)0.8402 (1)0.0204 (3)
O51.0630 (2)0.6755 (2)0.4971 (1)0.0220 (3)
O60.4719 (2)1.2568 (2)0.7806 (1)0.0277 (4)
O70.2851 (2)1.4257 (2)0.6664 (1)0.0231 (4)
O80.3813 (2)1.4045 (2)0.4424 (1)0.0199 (3)
N11.0379 (2)0.2049 (2)1.0719 (2)0.0173 (4)
N20.4272 (2)1.2985 (2)0.6866 (2)0.0189 (4)
C10.5276 (3)0.7418 (3)0.9488 (2)0.0175 (4)
C20.6821 (3)0.5734 (3)0.9247 (2)0.0157 (4)
C30.7856 (3)0.4675 (3)1.0075 (2)0.0160 (4)
C40.9342 (3)0.3115 (3)0.9816 (2)0.0153 (4)
C50.9815 (3)0.2577 (3)0.8741 (2)0.0162 (4)
C60.8705 (3)0.3642 (3)0.7931 (2)0.0193 (4)
C70.7247 (3)0.5181 (3)0.8181 (2)0.0185 (4)
C80.9568 (3)0.7675 (3)0.5691 (2)0.0181 (4)
C90.8044 (3)0.9364 (3)0.5399 (2)0.0157 (4)
C100.6886 (3)1.0378 (3)0.6244 (2)0.0157 (4)
C110.5444 (3)1.1966 (3)0.5950 (2)0.0157 (4)
C120.5144 (3)1.2565 (3)0.4804 (2)0.0155 (4)
C130.6380 (3)1.1535 (3)0.3950 (2)0.0174 (4)
C140.7784 (3)0.9973 (3)0.4242 (2)0.0173 (4)
H4o1.185 (4)0.068 (4)0.892 (2)0.06 (1)*
H8o0.308 (3)1.452 (4)0.499 (2)0.05 (1)*
H10.50130.77651.02160.021*
H30.75570.50101.08120.019*
H60.89690.32900.72030.023*
H70.65140.58840.76230.022*
H80.97240.72900.64770.022*
H100.70700.99980.70230.019*
H130.62381.19310.31610.021*
H140.85930.92900.36550.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0187 (8)0.0176 (8)0.0236 (8)0.0041 (6)0.0081 (6)0.0052 (6)
O20.0246 (8)0.0218 (8)0.0174 (7)0.0016 (7)0.0057 (6)0.0057 (6)
O30.0171 (8)0.0177 (8)0.0261 (8)0.0048 (6)0.0082 (6)0.0059 (6)
O40.0169 (8)0.0172 (8)0.0234 (8)0.0048 (6)0.0073 (6)0.0096 (6)
O50.0191 (8)0.0171 (8)0.0251 (8)0.0038 (6)0.0071 (6)0.0083 (6)
O60.0294 (9)0.0283 (9)0.0199 (8)0.0037 (7)0.0080 (7)0.0121 (7)
O70.0175 (8)0.0186 (8)0.0241 (8)0.0047 (6)0.0035 (6)0.0075 (6)
O80.0155 (8)0.0171 (7)0.0197 (8)0.0049 (6)0.0051 (6)0.0060 (6)
N10.0170 (9)0.0152 (9)0.0187 (9)0.0028 (7)0.0058 (7)0.0035 (7)
N20.0171 (9)0.0166 (9)0.0189 (9)0.0004 (7)0.0029 (7)0.0063 (7)
C10.0149 (10)0.0145 (10)0.0201 (10)0.0005 (8)0.0023 (8)0.0065 (8)
C20.0104 (9)0.0135 (10)0.0198 (10)0.0007 (8)0.0025 (8)0.0040 (8)
C30.0149 (10)0.0149 (10)0.0163 (10)0.0025 (8)0.0033 (8)0.0038 (8)
C40.0134 (10)0.0138 (10)0.0167 (10)0.0026 (8)0.0055 (8)0.0006 (8)
C50.0117 (10)0.0142 (10)0.0204 (10)0.0006 (8)0.0038 (8)0.0048 (8)
C60.0177 (11)0.0187 (11)0.0197 (10)0.0010 (8)0.0060 (9)0.0085 (8)
C70.0149 (10)0.0175 (10)0.0202 (10)0.0001 (8)0.0070 (8)0.0034 (8)
C80.0167 (10)0.0153 (10)0.0199 (10)0.0018 (8)0.0057 (8)0.0034 (8)
C90.0145 (10)0.0119 (10)0.0195 (10)0.0020 (8)0.0054 (8)0.0031 (8)
C100.0154 (10)0.0147 (10)0.0155 (10)0.0034 (8)0.0047 (8)0.0017 (8)
C110.0132 (10)0.0135 (10)0.0182 (10)0.0018 (8)0.0021 (8)0.0053 (8)
C120.0123 (10)0.0121 (9)0.0196 (10)0.0013 (8)0.0040 (8)0.0032 (8)
C130.0153 (10)0.0170 (10)0.0171 (10)0.0000 (8)0.0057 (8)0.0043 (8)
C140.0150 (10)0.0152 (10)0.0189 (10)0.0006 (8)0.0033 (8)0.0075 (8)
Geometric parameters (Å, º) top
O1—C11.222 (2)C8—C91.475 (3)
O2—N11.223 (2)C9—C101.380 (3)
O3—N11.242 (2)C9—C141.406 (3)
O4—C51.341 (2)C10—C111.397 (3)
O5—C81.214 (3)C11—C121.405 (3)
O6—N21.226 (2)C12—C131.408 (3)
O7—N21.241 (2)C13—C141.368 (3)
O8—C121.335 (2)O4—H4o0.84 (1)
N1—C41.457 (3)O8—H8o0.84 (1)
N2—C111.447 (3)C1—H10.9500
C1—C21.473 (3)C3—H30.9500
C2—C31.385 (3)C6—H60.9500
C2—C71.403 (3)C7—H70.9500
C3—C41.394 (3)C8—H80.9500
C4—C51.399 (3)C10—H100.9500
C5—C61.408 (3)C13—H130.9500
C6—C71.370 (3)C14—H140.9500
O2—N1—O3122.8 (2)C10—C11—N2117.7 (2)
O2—N1—C4119.0 (2)C12—C11—N2121.0 (2)
O3—N1—C4118.1 (2)O8—C12—C11126.7 (2)
O6—N2—O7122.6 (2)O8—C12—C13115.7 (2)
O6—N2—C11119.1 (2)C11—C12—C13117.7 (2)
O7—N2—C11118.3 (2)C14—C13—C12120.9 (2)
O1—C1—C2122.4 (2)C13—C14—C9120.9 (2)
C3—C2—C7119.4 (2)C5—O4—H4o106 (2)
C3—C2—C1120.4 (2)C12—O8—H8o110 (2)
C7—C2—C1120.3 (2)O1—C1—H1118.8
C2—C3—C4119.4 (2)C2—C1—H1118.8
C3—C4—C5121.8 (2)C2—C3—H3120.3
C3—C4—N1117.1 (2)C4—C3—H3120.3
C5—C4—N1121.1 (2)C7—C6—H6119.7
O4—C5—C4126.4 (2)C5—C6—H6119.7
O4—C5—C6115.9 (2)C6—C7—H7119.5
C4—C5—C6117.7 (2)C2—C7—H7119.5
C7—C6—C5120.6 (2)O5—C8—H8118.5
C6—C7—C2121.1 (2)C9—C8—H8118.5
O5—C8—C9122.9 (2)C9—C10—H10120.1
C10—C9—C14119.4 (2)C11—C10—H10120.1
C10—C9—C8120.8 (2)C14—C13—H13119.5
C14—C9—C8119.8 (2)C12—C13—H13119.5
C9—C10—C11119.8 (2)C13—C14—H14119.6
C10—C11—C12121.3 (2)C9—C14—H14119.6
O1—C1—C2—C3179.5 (2)O5—C8—C9—C10179.1 (2)
O1—C1—C2—C70.0 (3)O5—C8—C9—C140.3 (3)
C7—C2—C3—C42.1 (3)C14—C9—C10—C111.7 (3)
C1—C2—C3—C4178.3 (2)C8—C9—C10—C11179.5 (2)
C2—C3—C4—C50.4 (3)C9—C10—C11—C120.3 (3)
C2—C3—C4—N1179.8 (2)C9—C10—C11—N2179.8 (2)
O2—N1—C4—C39.5 (3)O6—N2—C11—C109.2 (3)
O3—N1—C4—C3169.8 (2)O7—N2—C11—C10171.1 (2)
O2—N1—C4—C5170.0 (2)O6—N2—C11—C12170.3 (2)
O3—N1—C4—C510.7 (3)O7—N2—C11—C129.4 (3)
C3—C4—C5—O4179.0 (2)C10—C11—C12—O8179.6 (2)
N1—C4—C5—O41.6 (3)N2—C11—C12—O80.9 (3)
C3—C4—C5—C61.6 (3)C10—C11—C12—C131.6 (3)
N1—C4—C5—C6177.8 (2)N2—C11—C12—C13177.9 (2)
O4—C5—C6—C7178.7 (2)O8—C12—C13—C14179.0 (2)
C4—C5—C6—C71.9 (3)C11—C12—C13—C142.1 (3)
C5—C6—C7—C20.1 (3)C12—C13—C14—C90.8 (3)
C3—C2—C7—C62.0 (3)C10—C9—C14—C131.2 (3)
C1—C2—C7—C6178.5 (2)C8—C9—C14—C13180.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4o···O1i0.84 (1)2.13 (3)2.676 (2)122 (3)
O4—H4o···O30.84 (1)1.91 (2)2.638 (2)144 (3)
O8—H8o···O5ii0.84 (1)2.10 (3)2.687 (2)128 (3)
O8—H8o···O70.84 (1)1.94 (2)2.635 (2)139 (3)
Symmetry codes: (i) x+1, y1, z; (ii) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaC7H5NO4
Mr167.12
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.042 (1), 8.036 (1), 12.242 (2)
α, β, γ (°)71.975 (2), 70.820 (2), 67.323 (2)
V3)674.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.40 × 0.05 × 0.05
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4245, 3068, 2134
Rint0.016
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.121, 0.99
No. of reflections3068
No. of parameters225
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.32

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4o···O1i0.84 (1)2.13 (3)2.676 (2)122 (3)
O4—H4o···O30.84 (1)1.91 (2)2.638 (2)144 (3)
O8—H8o···O5ii0.84 (1)2.10 (3)2.687 (2)128 (3)
O8—H8o···O70.84 (1)1.94 (2)2.635 (2)139 (3)
Symmetry codes: (i) x+1, y1, z; (ii) x1, y+1, z.
 

Acknowledgements

We thank the University of Malaya for the purchase of the diffractometer.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationIwasaki, F. & Kawano, Y. (1978). Acta Cryst. B34, 1286–1290.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationJasinski, J. P., Butcher, R. J., Narayana, B., Swamy, M. T. & Yathirajan, H. S. (2008). Acta Cryst. E64, o187.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds