organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl 2-[(1-methyl-1H-pyrrol-2-yl)methyl­ene­amino]-5-(2-thienylmethyl­ene­amino)thio­phene-3,4-di­carboxyl­ate

aDepartment of Chemistry, University of Montreal, CP 6128, succ. Centre-ville, Montréal, Québec, Canada H3C 3J7
*Correspondence e-mail: w.skene@umontreal.ca

(Received 5 March 2008; accepted 25 March 2008; online 2 April 2008)

Both imine bonds of the title compound, C21H21N3O4S2, were found to be in the E configuration. The terminal pyrrole and thio­phene rings are twisted by 2.5 (3) and 2.3 (2)°, respectively, from the mean plane of the central thio­phene to which they are attached. The structure is disordered by exchange of the terminal heterocyclic rings; the site occupancy factors are ca 0.8 and 0.2. The crystal packing involves some ππ stacking [3.449 (4) Å between pyrrole and terminal thio­phene rings].

Related literature

For general background, see: Dufresne et al. (2007[Dufresne, S., Bourgeaux, M. & Skene, W. G. (2007). J. Mater. Chem. 17, 1166-1177.]). For a similar compound, see: Dufresne et al. (2006[Dufresne, S., Bourgeaux, M. & Skene, W. G. (2006). Acta Cryst. E62, o5602-o5604.]).

[Scheme 1]

Experimental

Crystal data
  • C21H21N3O4S2

  • Mr = 443.53

  • Monoclinic, C 2/c

  • a = 30.7355 (14) Å

  • b = 6.9617 (4) Å

  • c = 19.5163 (9) Å

  • β = 92.732 (2)°

  • V = 4171.2 (4) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 2.60 mm−1

  • T = 150 (2) K

  • 0.14 × 0.09 × 0.05 mm

Data collection
  • Bruker SMART 6K diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.712, Tmax = 0.881

  • 24275 measured reflections

  • 4076 independent reflections

  • 3330 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.115

  • S = 1.03

  • 4076 reflections

  • 394 parameters

  • 544 restraints

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 2004[Bruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: UdMX (Marris, 2004[Marris, T. (2004). UdMX. Université de Montréal, Montréal, Québec, Canada.]).

Supporting information


Comment top

The title comound (I), seen in Fig. 1, was synthesized during the course of our ongoing research relating to conjugated imines (Dufresne et al., 2007). Despite the terminal heterounits of (I) being disordered by 18%, both imines were found to adopt the E isomer. Neither solvent nor counter-ions were found in the closed-packed stacking (Fig. 2).

A major point of interest is the imine bonds, 1.446 (9), 1.278 (2) and 1.377 (2)Å for C4—C5, N1—C5 and N1—C6, respectively. Similarly, the bond lengths for C10—C11, N2—C10 and N2—C9 are 1.423 (9), 1.299 (17) and 1.373 (2) Å. These distances are comparable to those fournd for an analogous all-thiophene compound, 1.441 (4), 1.272 (3) and 1.388 (3)Å (Dufresne et al., 2006).

The terminal heteroaryl groups are slightly twisted from the mean plane of the central thiophene to which they are connected with a dihedral angle of 2.3 (2)° for the terminal thiophene and 2.5 (3)° for the N-methylpyrrole. The small dihedral angles show that the aryl groups of compound (I) are nearly coplanar. This is in contrast to its all-thiophene analogue whose comparable mean plane angles are 9.04 (4)° and 25.07 (6)°.

The crystal packing of (I) is also different from that found for the all-thiophene analogue. The molecules in the all-thiophene network are linearly aligned in one direction. In contrast, the molecules of (I) are misaligned by up to 16.84 (4)°. No traditional H-bonding was found, but π-π-stacking does occur as shown in Figure 2. π-π-stacking interactions occur between the pyrrole and the terminal thiophene of two different molecules, which are separated by 3.449 (4) Å.

Related literature top

For general background, see: Dufresne et al. (2007). For a similar comound, see: Dufresne et al. (2006)

Experimental top

In a 50 ml round bottom flask was added 1-methyl-2-pyrrole-carboxaldehyde (40 mg, 0.37 mmol) dissolved in 25 ml of anhydrous toluene to which was subsequently added 1,4-diazabicyclo[2.2.2]octane (159 mg, 1.42 mmol) and TiCl4 (0.28 ml, 0.28 mmol) as a 1.0 M solution in toluene at 0 °C followed by diethyl 2-((thiophen-2-yl)methyleneamino)-5-aminothiophene-3,4-dicarboxylate (100 mg, 0.28 mmol). The mixture was then refluxed for four hours followed by solvent removal. Purification by flash chromatography yielded the title product as a red solid (63 mg). The selected crystal was obtained by slow evaporation of a concentrated solution in acetone.

Refinement top

During the refinement, it became apparent that the structure was disordered as an inversion of the terminal heterocycles. We first tried to fix each part to half of the weight and then let it vary to the optimized proportion of 82:18. The temperature factors were less than desired because of the disorder requiring many constraints including fixing similar temperature factors and distances for every disordered atom. H atoms were placed in calculated positions (C—H = 0.95–0.98 Å) and included in the refinement in the riding-model approximation, with Uĩso~(H) = 1.2 U~eq~(C).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SMART (Bruker, 2003); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: UdMX (Marris, 2004).

Figures top
[Figure 1] Fig. 1. ORTEP representation of (I) showing the disorder present in the terminal rings with the numbering scheme adopted (Farrugia, 1997). Ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. Supramolecular structure showing the intermolecular π-stacking giving the structural arrangement. Dashed lines indicate the π-stacking. The H atoms and disorder was omitted for clarity. [Symmetry codes: (none) x, 1 - y, -1/2 + z; (i) 1/2 - x, -1/2 + y, 1.5 - z.]
Diethyl 2-[(1-methyl-1H-pyrrol-2-yl)methyleneamino]-5- (2-thienylmethyleneamino)thiophene-3,4-dicarboxylate top
Crystal data top
C21H21N3O4S2F(000) = 1856
Mr = 443.53Dx = 1.413 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 30.7355 (14) Åθ = 15.0–30.0°
b = 6.9617 (4) ŵ = 2.60 mm1
c = 19.5163 (9) ÅT = 150 K
β = 92.732 (2)°Block, red
V = 4171.2 (4) Å30.14 × 0.09 × 0.05 mm
Z = 8
Data collection top
Bruker SMART 6K
diffractometer
4076 independent reflections
Radiation source: Rotating Anode3330 reflections with I > 2σ(I)
Montel 200 optics monochromatorRint = 0.041
Detector resolution: 5.5 pixels mm-1θmax = 71.9°, θmin = 2.9°
ω scansh = 3736
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 78
Tmin = 0.712, Tmax = 0.881l = 2324
24275 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0781P)2]
where P = (Fo2 + 2Fc2)/3
4076 reflections(Δ/σ)max = 0.001
394 parametersΔρmax = 0.28 e Å3
544 restraintsΔρmin = 0.38 e Å3
Crystal data top
C21H21N3O4S2V = 4171.2 (4) Å3
Mr = 443.53Z = 8
Monoclinic, C2/cCu Kα radiation
a = 30.7355 (14) ŵ = 2.60 mm1
b = 6.9617 (4) ÅT = 150 K
c = 19.5163 (9) Å0.14 × 0.09 × 0.05 mm
β = 92.732 (2)°
Data collection top
Bruker SMART 6K
diffractometer
4076 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3330 reflections with I > 2σ(I)
Tmin = 0.712, Tmax = 0.881Rint = 0.041
24275 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041544 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.03Δρmax = 0.28 e Å3
4076 reflectionsΔρmin = 0.38 e Å3
394 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.10022 (4)1.12212 (19)0.84005 (7)0.0407 (3)
O20.10797 (4)0.80068 (19)0.84277 (7)0.0389 (3)
O30.17783 (4)1.0055 (2)0.75085 (6)0.0409 (3)
O40.25038 (4)1.00854 (18)0.76690 (6)0.0336 (3)
N10.12908 (5)0.9423 (2)0.99876 (7)0.0313 (3)
N20.28368 (5)1.0327 (2)0.90462 (7)0.0300 (3)
S20.219461 (14)0.98751 (6)0.99760 (2)0.03223 (14)
C60.16602 (6)0.9698 (2)0.96274 (9)0.0306 (4)
C70.16479 (6)0.9824 (2)0.89280 (9)0.0298 (4)
C80.20672 (6)1.0028 (2)0.86477 (9)0.0288 (4)
C90.24011 (6)1.0096 (2)0.91492 (8)0.0290 (4)
C160.12129 (6)0.9810 (3)0.85451 (9)0.0321 (4)
C170.06400 (6)0.7790 (3)0.81304 (11)0.0482 (5)
H17A0.06370.79960.76280.058*
H17B0.04440.87470.83300.058*
C180.04913 (8)0.5837 (4)0.82806 (14)0.0711 (8)
H18A0.06970.49020.81050.107*
H18B0.02020.56290.80600.107*
H18C0.04760.56770.87780.107*
C190.20984 (6)1.0069 (2)0.78909 (9)0.0302 (4)
C200.25276 (6)1.0069 (3)0.69247 (8)0.0351 (4)
H20A0.23851.12270.67240.042*
H20B0.23790.89180.67290.042*
C210.30039 (6)1.0039 (3)0.67686 (10)0.0399 (4)
H21A0.31481.11820.69650.060*
H21B0.30321.00320.62710.060*
H21C0.31410.88840.69680.060*
S10.04126 (2)0.87795 (11)1.05416 (4)0.0370 (3)0.824 (3)
C10.01520 (10)0.8382 (8)1.1284 (2)0.0404 (7)0.824 (3)
H10.01530.81931.13020.049*0.824 (3)
C20.04307 (17)0.8370 (10)1.1840 (3)0.0417 (10)0.824 (3)
H20.03420.81701.22940.050*0.824 (3)
C30.08692 (15)0.8685 (7)1.1675 (2)0.0352 (8)0.824 (3)
H30.11060.87411.20050.042*0.824 (3)
C40.09117 (17)0.8899 (18)1.0984 (3)0.0307 (6)0.824 (3)
C50.1310 (4)0.925 (5)1.0640 (5)0.0317 (7)0.824 (3)
H50.15810.93491.08940.038*0.824 (3)
C100.3117 (3)1.0332 (16)0.9566 (10)0.0321 (10)0.824 (3)
H100.30071.01011.00050.038*0.824 (3)
C110.3573 (2)1.065 (3)0.9540 (3)0.0333 (6)0.824 (3)
C120.38669 (14)1.0773 (7)1.01056 (16)0.0390 (7)0.824 (3)
H120.37981.06621.05730.047*0.824 (3)
C130.42795 (12)1.1086 (7)0.98639 (14)0.0409 (7)0.824 (3)
H130.45451.12071.01300.049*0.824 (3)
C140.42238 (10)1.1186 (6)0.91597 (15)0.0400 (7)0.824 (3)
H140.44511.14070.88550.048*0.824 (3)
N30.38014 (10)1.0927 (4)0.89645 (15)0.0357 (6)0.824 (3)
C150.36240 (9)1.0926 (4)0.82465 (15)0.0449 (6)0.824 (3)
H15A0.34791.21550.81460.067*0.824 (3)
H15B0.34140.98770.81820.067*0.824 (3)
H15C0.38621.07470.79360.067*0.824 (3)
S1'0.37454 (15)1.1247 (7)0.8684 (3)0.0464 (14)0.176 (3)
C1'0.4267 (4)1.143 (3)0.8980 (8)0.0400 (9)0.176 (3)
H1'0.45071.17080.87070.048*0.176 (3)
C2'0.4294 (6)1.113 (4)0.9662 (8)0.0407 (9)0.176 (3)
H2'0.45591.12630.99270.049*0.176 (3)
C3'0.3897 (7)1.060 (4)0.9958 (8)0.0390 (9)0.176 (3)
H3'0.38741.02191.04210.047*0.176 (3)
C4'0.3551 (9)1.072 (16)0.9488 (14)0.0333 (8)0.176 (3)
C5'0.128 (2)0.92 (2)1.064 (2)0.0318 (9)0.176 (3)
H5'0.15600.92121.08730.038*0.176 (3)
C10'0.3104 (14)1.053 (8)0.957 (5)0.0321 (11)0.176 (3)
H10'0.29951.05421.00140.039*0.176 (3)
C11'0.0926 (8)0.881 (9)1.1072 (13)0.0307 (8)0.176 (3)
C12'0.0912 (8)0.835 (4)1.1755 (12)0.0351 (9)0.176 (3)
H12'0.11550.82341.20730.042*0.176 (3)
C13'0.0477 (9)0.809 (5)1.1897 (12)0.0416 (11)0.176 (3)
H13'0.03620.78841.23340.050*0.176 (3)
C14'0.0245 (6)0.819 (4)1.1278 (10)0.0406 (9)0.176 (3)
H14'0.00610.80351.12120.049*0.176 (3)
N3'0.0527 (4)0.8565 (19)1.0768 (6)0.041 (3)0.176 (3)
C15'0.0380 (4)0.8571 (17)1.0042 (6)0.040 (3)0.176 (3)
H15D0.00840.80520.99940.059*0.176 (3)
H15E0.05760.77760.97800.059*0.176 (3)
H15F0.03820.98900.98670.059*0.176 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0392 (7)0.0416 (8)0.0411 (7)0.0086 (6)0.0006 (6)0.0000 (6)
O20.0287 (7)0.0390 (7)0.0488 (8)0.0035 (5)0.0020 (6)0.0017 (6)
O30.0338 (7)0.0578 (9)0.0313 (7)0.0018 (6)0.0021 (6)0.0045 (6)
O40.0316 (7)0.0439 (7)0.0256 (6)0.0015 (5)0.0058 (5)0.0011 (5)
N10.0290 (8)0.0329 (8)0.0327 (8)0.0002 (6)0.0090 (6)0.0012 (6)
N20.0288 (8)0.0312 (8)0.0302 (7)0.0012 (6)0.0042 (6)0.0008 (6)
S20.0290 (2)0.0407 (3)0.0274 (2)0.00037 (17)0.00565 (17)0.00015 (17)
C60.0293 (9)0.0304 (9)0.0325 (9)0.0006 (7)0.0052 (7)0.0023 (7)
C70.0303 (9)0.0280 (9)0.0316 (9)0.0006 (7)0.0049 (7)0.0006 (7)
C80.0294 (9)0.0282 (9)0.0292 (8)0.0003 (6)0.0057 (7)0.0026 (7)
C90.0301 (9)0.0293 (9)0.0280 (8)0.0010 (6)0.0061 (7)0.0011 (7)
C160.0298 (9)0.0381 (10)0.0289 (8)0.0020 (7)0.0080 (7)0.0026 (7)
C170.0331 (10)0.0482 (12)0.0622 (13)0.0047 (9)0.0093 (9)0.0014 (10)
C180.0580 (16)0.0732 (18)0.0798 (18)0.0287 (13)0.0214 (14)0.0224 (14)
C190.0299 (9)0.0297 (9)0.0315 (9)0.0018 (7)0.0046 (7)0.0013 (7)
C200.0407 (11)0.0407 (10)0.0243 (9)0.0030 (8)0.0068 (7)0.0017 (7)
C210.0411 (11)0.0450 (11)0.0346 (10)0.0044 (8)0.0112 (8)0.0025 (8)
S10.0284 (4)0.0440 (4)0.0388 (6)0.0025 (3)0.0032 (3)0.0030 (3)
C10.0288 (16)0.0424 (16)0.0513 (11)0.0017 (15)0.0147 (12)0.0097 (10)
C20.0397 (15)0.046 (2)0.0412 (13)0.0025 (14)0.0167 (11)0.0029 (12)
C30.0323 (14)0.039 (2)0.0350 (15)0.0005 (12)0.0062 (10)0.0008 (12)
C40.0291 (10)0.0334 (15)0.0299 (16)0.0004 (9)0.0041 (10)0.0020 (18)
C50.027 (2)0.0327 (10)0.0354 (9)0.000 (2)0.0052 (10)0.0023 (7)
C100.0342 (11)0.031 (3)0.0311 (9)0.0010 (13)0.0056 (9)0.001 (2)
C110.0328 (11)0.0312 (11)0.0360 (14)0.0008 (12)0.0025 (9)0.000 (2)
C120.0371 (12)0.0433 (15)0.0364 (16)0.0017 (10)0.0007 (12)0.0064 (14)
C130.0331 (11)0.0445 (12)0.0444 (17)0.0007 (9)0.0045 (14)0.0032 (17)
C140.0296 (11)0.0443 (15)0.0469 (19)0.0015 (9)0.0115 (11)0.0047 (13)
N30.0340 (12)0.0396 (14)0.0336 (14)0.0007 (9)0.0031 (12)0.0051 (11)
C150.0393 (14)0.0672 (18)0.0285 (14)0.0014 (12)0.0060 (11)0.0073 (12)
S1'0.036 (2)0.054 (2)0.051 (3)0.0032 (14)0.011 (2)0.002 (2)
C1'0.0299 (14)0.0443 (17)0.047 (2)0.0016 (13)0.0112 (14)0.0045 (16)
C2'0.0328 (13)0.0445 (14)0.044 (2)0.0007 (12)0.0038 (17)0.003 (2)
C3'0.0372 (15)0.0431 (17)0.0367 (18)0.0018 (13)0.0010 (15)0.0061 (17)
C4'0.0328 (13)0.0312 (13)0.0358 (16)0.0009 (15)0.0020 (12)0.001 (2)
C5'0.028 (2)0.0327 (13)0.0353 (12)0.000 (2)0.0048 (13)0.0023 (11)
C10'0.0341 (13)0.031 (3)0.0312 (12)0.0011 (15)0.0055 (12)0.000 (2)
C11'0.0288 (12)0.0333 (17)0.0303 (18)0.0003 (12)0.0040 (13)0.002 (2)
C12'0.0324 (16)0.039 (2)0.0349 (17)0.0005 (15)0.0064 (13)0.0009 (15)
C13'0.0397 (17)0.045 (3)0.0411 (15)0.0021 (16)0.0160 (14)0.0028 (14)
C14'0.0293 (19)0.0423 (18)0.0512 (14)0.0018 (17)0.0142 (15)0.0094 (13)
N3'0.041 (4)0.041 (4)0.040 (4)0.001 (3)0.003 (3)0.007 (3)
C15'0.040 (5)0.047 (6)0.032 (6)0.005 (4)0.006 (4)0.001 (4)
Geometric parameters (Å, º) top
O1—C161.203 (2)C5—H50.9500
O2—C161.337 (2)C10—C111.423 (9)
O2—C171.453 (2)C10—H100.9500
O3—C191.206 (2)C11—N31.366 (5)
O4—C191.339 (2)C11—C121.395 (5)
O4—C201.4578 (19)C12—C131.391 (4)
N1—C51.278 (9)C12—H120.9500
N1—C5'1.28 (4)C13—C141.379 (4)
N1—C61.377 (2)C13—H130.9500
N2—C10'1.28 (8)C14—N31.347 (4)
N2—C101.299 (17)C14—H140.9500
N2—C91.373 (2)N3—C151.479 (3)
S2—C61.7519 (18)C15—H15A0.9800
S2—C91.7685 (16)C15—H15B0.9800
C6—C71.367 (2)C15—H15C0.9800
C7—C81.431 (2)S1'—C1'1.683 (14)
C7—C161.500 (2)S1'—C4'1.744 (16)
C8—C91.385 (2)C1'—C2'1.345 (14)
C8—C191.485 (2)C1'—H1'0.9500
C17—C181.468 (3)C2'—C3'1.422 (15)
C17—H17A0.9900C2'—H2'0.9500
C17—H17B0.9900C3'—C4'1.374 (17)
C18—H18A0.9800C3'—H3'0.9500
C18—H18B0.9800C4'—C10'1.40 (4)
C18—H18C0.9800C5'—C11'1.44 (4)
C20—C211.509 (3)C5'—H5'0.9500
C20—H20A0.9900C10'—H10'0.9500
C20—H20B0.9900C11'—N3'1.348 (17)
C21—H21A0.9800C11'—C12'1.374 (18)
C21—H21B0.9800C12'—C13'1.391 (18)
C21—H21C0.9800C12'—H12'0.9500
S1—C11.711 (4)C13'—C14'1.375 (18)
S1—C41.726 (4)C13'—H13'0.9500
C1—C21.350 (5)C14'—N3'1.375 (16)
C1—H10.9500C14'—H14'0.9500
C2—C31.418 (4)N3'—C15'1.467 (12)
C2—H20.9500C15'—H15D0.9800
C3—C41.368 (5)C15'—H15E0.9800
C3—H30.9500C15'—H15F0.9800
C4—C51.446 (9)
C16—O2—C17115.94 (15)N1—C5—C4118.5 (10)
C19—O4—C20114.46 (14)N1—C5—H5120.7
C5—N1—C6121.4 (5)C4—C5—H5120.7
C5'—N1—C6126 (3)N2—C10—C11126.2 (13)
C10'—N2—C9119 (3)N2—C10—H10116.9
C10—N2—C9120.1 (6)C11—C10—H10116.9
C6—S2—C991.28 (8)N3—C11—C12107.7 (4)
C7—C6—N1122.32 (17)N3—C11—C10126.6 (9)
C7—C6—S2111.36 (13)C12—C11—C10125.7 (9)
N1—C6—S2126.31 (13)C13—C12—C11107.9 (3)
C6—C7—C8113.93 (16)C13—C12—H12126.0
C6—C7—C16118.61 (16)C11—C12—H12126.1
C8—C7—C16127.42 (15)C14—C13—C12105.9 (3)
C9—C8—C7112.57 (15)C14—C13—H13127.0
C9—C8—C19128.43 (16)C12—C13—H13127.1
C7—C8—C19118.96 (16)N3—C14—C13110.3 (3)
N2—C9—C8126.55 (15)N3—C14—H14124.8
N2—C9—S2122.60 (13)C13—C14—H14124.8
C8—C9—S2110.85 (13)C14—N3—C11108.2 (3)
O1—C16—O2124.72 (17)C14—N3—C15125.1 (3)
O1—C16—C7124.68 (17)C11—N3—C15126.8 (3)
O2—C16—C7110.46 (15)C1'—S1'—C4'94.0 (9)
O2—C17—C18108.00 (17)C2'—C1'—S1'109.9 (11)
O2—C17—H17A110.1C2'—C1'—H1'125.0
C18—C17—H17A110.1S1'—C1'—H1'125.1
O2—C17—H17B110.1C1'—C2'—C3'115.3 (14)
C18—C17—H17B110.1C1'—C2'—H2'122.3
H17A—C17—H17B108.4C3'—C2'—H2'122.3
C17—C18—H18A109.5C4'—C3'—C2'111.5 (15)
C17—C18—H18B109.5C4'—C3'—H3'124.3
H18A—C18—H18B109.5C2'—C3'—H3'124.2
C17—C18—H18C109.5C3'—C4'—C10'131 (4)
H18A—C18—H18C109.5C3'—C4'—S1'108.9 (14)
H18B—C18—H18C109.5C10'—C4'—S1'120 (4)
O3—C19—O4122.97 (16)N1—C5'—C11'131 (5)
O3—C19—C8121.73 (16)N1—C5'—H5'114.2
O4—C19—C8115.29 (15)C11'—C5'—H5'114.3
O4—C20—C21107.25 (15)N2—C10'—C4'121 (7)
O4—C20—H20A110.3N2—C10'—H10'119.7
C21—C20—H20A110.3C4'—C10'—H10'119.9
O4—C20—H20B110.3N3'—C11'—C12'109.1 (17)
C21—C20—H20B110.3N3'—C11'—C5'118 (3)
H20A—C20—H20B108.5C12'—C11'—C5'132 (3)
C20—C21—H21A109.5C11'—C12'—C13'107.3 (16)
C20—C21—H21B109.5C11'—C12'—H12'126.4
H21A—C21—H21B109.5C13'—C12'—H12'126.3
C20—C21—H21C109.5C14'—C13'—C12'106.5 (16)
H21A—C21—H21C109.5C14'—C13'—H13'126.8
H21B—C21—H21C109.5C12'—C13'—H13'126.8
C1—S1—C491.4 (2)N3'—C14'—C13'109.0 (15)
C2—C1—S1112.1 (3)N3'—C14'—H14'125.5
C2—C1—H1123.9C13'—C14'—H14'125.5
S1—C1—H1123.9C11'—N3'—C14'107.4 (14)
C1—C2—C3113.0 (4)C11'—N3'—C15'131.1 (14)
C1—C2—H2123.5C14'—N3'—C15'121.5 (13)
C3—C2—H2123.5N3'—C15'—H15D109.5
C4—C3—C2112.2 (4)N3'—C15'—H15E109.5
C4—C3—H3123.9H15D—C15'—H15E109.5
C2—C3—H3123.9N3'—C15'—H15F109.5
C3—C4—C5126.8 (6)H15D—C15'—H15F109.5
C3—C4—S1111.3 (3)H15E—C15'—H15F109.5
C5—C4—S1121.9 (6)
C5—N1—C6—C7177.8 (17)C1—S1—C4—C31.4 (8)
C5'—N1—C6—C7175 (9)C1—S1—C4—C5179.5 (18)
C5—N1—C6—S20.6 (17)C5'—N1—C5—C427 (91)
C5'—N1—C6—S23 (9)C6—N1—C5—C4177.9 (15)
C9—S2—C6—C70.63 (13)C3—C4—C5—N1179.7 (16)
C9—S2—C6—N1177.95 (16)S1—C4—C5—N12 (3)
N1—C6—C7—C8177.47 (15)C9—N2—C10—C11176.7 (13)
S2—C6—C7—C81.18 (19)N2—C10—C11—N33 (3)
N1—C6—C7—C164.7 (2)N2—C10—C11—C12175.7 (13)
S2—C6—C7—C16176.64 (12)N3—C11—C12—C131.3 (17)
C6—C7—C8—C91.3 (2)C10—C11—C12—C13179.8 (16)
C16—C7—C8—C9176.33 (16)C11—C12—C13—C141.2 (11)
C6—C7—C8—C19176.62 (15)C12—C13—C14—N30.7 (5)
C16—C7—C8—C195.8 (3)C13—C14—N3—C110.1 (11)
C10'—N2—C9—C8174 (3)C13—C14—N3—C15179.4 (3)
C10—N2—C9—C8178.8 (6)C12—C11—N3—C140.8 (16)
C10'—N2—C9—S25 (3)C10—C11—N3—C14179.7 (17)
C10—N2—C9—S22.1 (6)C12—C11—N3—C15179.8 (7)
C7—C8—C9—N2178.42 (16)C10—C11—N3—C151 (3)
C19—C8—C9—N24.0 (3)C4'—S1'—C1'—C2'1 (4)
C7—C8—C9—S20.73 (19)S1'—C1'—C2'—C3'4 (3)
C19—C8—C9—S2176.89 (14)C1'—C2'—C3'—C4'7 (6)
C6—S2—C9—N2179.12 (15)C2'—C3'—C4'—C10'173 (9)
C6—S2—C9—C80.07 (13)C2'—C3'—C4'—S1'6 (8)
C17—O2—C16—O12.7 (3)C1'—S1'—C4'—C3'3 (7)
C17—O2—C16—C7173.15 (15)C1'—S1'—C4'—C10'176 (8)
C6—C7—C16—O190.3 (2)C5—N1—C5'—C11'151 (100)
C8—C7—C16—O187.2 (2)C6—N1—C5'—C11'178 (10)
C6—C7—C16—O285.62 (19)C9—N2—C10'—C4'178 (6)
C8—C7—C16—O296.9 (2)C3'—C4'—C10'—N2167 (8)
C16—O2—C17—C18158.52 (19)S1'—C4'—C10'—N215 (11)
C20—O4—C19—O30.5 (2)N1—C5'—C11'—N3'5 (19)
C20—O4—C19—C8178.27 (14)N1—C5'—C11'—C12'173 (10)
C9—C8—C19—O3177.86 (18)N3'—C11'—C12'—C13'9 (5)
C7—C8—C19—O34.7 (2)C5'—C11'—C12'—C13'177 (10)
C9—C8—C19—O43.4 (2)C11'—C12'—C13'—C14'6 (4)
C7—C8—C19—O4174.11 (15)C12'—C13'—C14'—N3'2 (4)
C19—O4—C20—C21178.59 (14)C12'—C11'—N3'—C14'8 (5)
C4—S1—C1—C20.8 (6)C5'—C11'—N3'—C14'178 (8)
S1—C1—C2—C30.0 (7)C12'—C11'—N3'—C15'170 (2)
C1—C2—C3—C41.0 (9)C5'—C11'—N3'—C15'1 (10)
C2—C3—C4—C5179.6 (19)C13'—C14'—N3'—C11'4 (4)
C2—C3—C4—S11.6 (10)C13'—C14'—N3'—C15'174 (2)

Experimental details

Crystal data
Chemical formulaC21H21N3O4S2
Mr443.53
Crystal system, space groupMonoclinic, C2/c
Temperature (K)150
a, b, c (Å)30.7355 (14), 6.9617 (4), 19.5163 (9)
β (°) 92.732 (2)
V3)4171.2 (4)
Z8
Radiation typeCu Kα
µ (mm1)2.60
Crystal size (mm)0.14 × 0.09 × 0.05
Data collection
DiffractometerBruker SMART 6K
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.712, 0.881
No. of measured, independent and
observed [I > 2σ(I)] reflections
24275, 4076, 3330
Rint0.041
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.115, 1.03
No. of reflections4076
No. of parameters394
No. of restraints544
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.38

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), UdMX (Marris, 2004).

 

Acknowledgements

The authors acknowledge financial support from the Natural Sciences and Engineering Research Council Canada, the Centre for Self-Assembled Chemical Structures, and Canada Foundation for Innovation. SD thanks the Université de Montréal for a graduate scholarship.

References

First citationBruker (2003). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDufresne, S., Bourgeaux, M. & Skene, W. G. (2006). Acta Cryst. E62, o5602–o5604.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDufresne, S., Bourgeaux, M. & Skene, W. G. (2007). J. Mater. Chem. 17, 1166–1177.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMarris, T. (2004). UdMX. Université de Montréal, Montréal, Québec, Canada.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds