organic compounds
Quinoxaline–3-aminophenol–water (2/1/2)
aFaculty of Chemistry, Adam Mickiewicz University, 60-780 Poznań, Poland
*Correspondence e-mail: magdan@amu.edu.pl
The 8H6N2·C6H7NO·2H2O, contains two quinoxaline molecules, one molecule of 3-aminophenol and two water molecules which are hydrogen bonded to form a two-dimensional polymeric structure. Each of the symmetry-independent quinoxaline molecules forms separate stacks of different symmetry. In one set of stacks, the molecules are related by a screw axis and are slightly tilted [dihedral angle = 7.12 (1)°]. In the second set of stacks, adjacent molecules are parallel and related by an inversion center [interplanar distances = 3.376 (4) and 3.473 (4) Å].
of the title compound, 2CRelated literature
For supramolecular ladders, see: Sokolov & MacGillivray (2006); Sokolov et al. (2006). For complexes of aromatic diazaheterocycles with see: Thalladi et al. (2000); Kadzewski & Gdaniec (2006).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808010568/fl2194sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808010568/fl2194Isup2.hkl
The title compound was obtained by dissolving quinoxaline (0.2 g, 1.54 mmol) and 3-aminophenol (0.084 g, 0.77 mmol) in 5 ml of methanol followed slow evaporation to yield colorless plates suitable for data collection.
All H atoms were located in electron-density difference maps. C-bonded H atoms were placed at calculated positions, with C—H = 0.93 Å, and were refined as riding on their carrier C atoms, with Uĩso~(H) = 1.2Ueq(C). The H atoms of the OH and NH groups were freely refined (coordinates and isotropic displacement parameters).
Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell
CrysAlis CCD (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. : The molecular structure of the title compound with displacement ellipsoids shown at the 50% probability level. Hydrogen bonds are shown as dashed lines. | |
Fig. 2. : Crystal packing viewed down the y axis. Hydrogen bonds are shown with dashed lines. | |
Fig. 3. a) the H2O helix with the 3-aminophenol molecules attached to the helix via hydrogen bonds to the amino group, b) two-dimensional polymeric structure formed by hydrogen-bonded quinoxaline A molecules and water molecules. |
2C8H6N2·C6H7NO·2H2O | F(000) = 856 |
Mr = 405.45 | Dx = 1.309 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 5665 reflections |
a = 15.2951 (10) Å | θ = 2.1–27.9° |
b = 7.1383 (4) Å | µ = 0.09 mm−1 |
c = 20.1614 (14) Å | T = 130 K |
β = 110.775 (8)° | Plate, colourless |
V = 2058.1 (3) Å3 | 0.40 × 0.40 × 0.07 mm |
Z = 4 |
Kuma KM-4-CCD κ-geometry diffractometer | 3620 independent reflections |
Radiation source: fine-focus sealed tube | 2285 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
ω scans | θmax = 25.0°, θmin = 4.1° |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | h = −18→17 |
Tmin = 0.966, Tmax = 1.000 | k = −8→8 |
16706 measured reflections | l = −23→23 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.031 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.070 | w = 1/[σ2(Fo2) + (0.0362P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.91 | (Δ/σ)max = 0.001 |
3620 reflections | Δρmax = 0.20 e Å−3 |
300 parameters | Δρmin = −0.14 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0029 (5) |
2C8H6N2·C6H7NO·2H2O | V = 2058.1 (3) Å3 |
Mr = 405.45 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 15.2951 (10) Å | µ = 0.09 mm−1 |
b = 7.1383 (4) Å | T = 130 K |
c = 20.1614 (14) Å | 0.40 × 0.40 × 0.07 mm |
β = 110.775 (8)° |
Kuma KM-4-CCD κ-geometry diffractometer | 3620 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | 2285 reflections with I > 2σ(I) |
Tmin = 0.966, Tmax = 1.000 | Rint = 0.037 |
16706 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 0 restraints |
wR(F2) = 0.070 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.91 | Δρmax = 0.20 e Å−3 |
3620 reflections | Δρmin = −0.14 e Å−3 |
300 parameters |
Experimental. Absorption correction: SCALE3 ABSPACK scaling algorithm of the Crysalis RED program (Oxford Diffraction, 2007) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1A | 0.40385 (8) | 0.19751 (16) | 0.55810 (6) | 0.0257 (3) | |
C2A | 0.33478 (10) | 0.1595 (2) | 0.49872 (7) | 0.0268 (4) | |
H2A | 0.2767 | 0.1284 | 0.5008 | 0.032* | |
C3A | 0.34523 (10) | 0.1639 (2) | 0.43241 (8) | 0.0272 (4) | |
H3A | 0.2937 | 0.1354 | 0.3923 | 0.033* | |
N4A | 0.42444 (8) | 0.20642 (17) | 0.42434 (6) | 0.0257 (3) | |
C5A | 0.58438 (10) | 0.3015 (2) | 0.48061 (8) | 0.0295 (4) | |
H5A | 0.5917 | 0.3043 | 0.4368 | 0.035* | |
C6A | 0.65726 (10) | 0.3465 (2) | 0.54049 (9) | 0.0346 (4) | |
H6A | 0.7144 | 0.3799 | 0.5373 | 0.042* | |
C7A | 0.64723 (10) | 0.3431 (2) | 0.60726 (8) | 0.0346 (4) | |
H7A | 0.6977 | 0.3744 | 0.6477 | 0.042* | |
C8A | 0.56397 (10) | 0.2943 (2) | 0.61310 (8) | 0.0295 (4) | |
H8A | 0.5578 | 0.2925 | 0.6574 | 0.035* | |
C9A | 0.48741 (9) | 0.24661 (19) | 0.55196 (7) | 0.0223 (3) | |
C10A | 0.49775 (9) | 0.25055 (19) | 0.48513 (7) | 0.0215 (3) | |
N1B | −0.01606 (8) | 0.88628 (16) | 0.35287 (6) | 0.0237 (3) | |
C2B | −0.10425 (10) | 0.88544 (19) | 0.34628 (7) | 0.0257 (4) | |
H2B | −0.1194 | 0.8923 | 0.3870 | 0.031* | |
C3B | −0.17739 (10) | 0.8745 (2) | 0.27975 (8) | 0.0294 (4) | |
H3B | −0.2388 | 0.8749 | 0.2785 | 0.035* | |
N4B | −0.16252 (8) | 0.86390 (17) | 0.21969 (6) | 0.0297 (3) | |
C5B | −0.04863 (11) | 0.8530 (2) | 0.16312 (7) | 0.0312 (4) | |
H5B | −0.0964 | 0.8453 | 0.1191 | 0.037* | |
C6B | 0.04198 (11) | 0.8538 (2) | 0.16717 (8) | 0.0333 (4) | |
H6B | 0.0558 | 0.8487 | 0.1259 | 0.040* | |
C7B | 0.11481 (11) | 0.8625 (2) | 0.23343 (8) | 0.0331 (4) | |
H7B | 0.1766 | 0.8617 | 0.2357 | 0.040* | |
C8B | 0.09583 (10) | 0.8720 (2) | 0.29450 (8) | 0.0294 (4) | |
H8B | 0.1445 | 0.8775 | 0.3381 | 0.035* | |
C9B | 0.00272 (9) | 0.87338 (19) | 0.29139 (7) | 0.0210 (3) | |
C10B | −0.07063 (10) | 0.86356 (19) | 0.22497 (7) | 0.0229 (3) | |
C1C | 0.15035 (9) | 0.7993 (2) | 0.52107 (7) | 0.0208 (3) | |
O1C | 0.11852 (7) | 0.96292 (14) | 0.48513 (5) | 0.0286 (3) | |
H1C | 0.0737 (11) | 0.936 (2) | 0.4413 (9) | 0.061 (6)* | |
C2C | 0.22485 (9) | 0.8116 (2) | 0.58454 (7) | 0.0217 (3) | |
H2C | 0.2511 | 0.9280 | 0.6007 | 0.026* | |
C3C | 0.26114 (9) | 0.6520 (2) | 0.62471 (7) | 0.0240 (4) | |
N1C | 0.33268 (10) | 0.6689 (2) | 0.68974 (8) | 0.0443 (4) | |
H2NC | 0.3584 (10) | 0.561 (2) | 0.7146 (8) | 0.044 (5)* | |
H1NC | 0.3613 (10) | 0.780 (2) | 0.6997 (8) | 0.037 (5)* | |
C4C | 0.22258 (9) | 0.4776 (2) | 0.59862 (7) | 0.0274 (4) | |
H4C | 0.2472 | 0.3690 | 0.6238 | 0.033* | |
C5C | 0.14761 (10) | 0.4673 (2) | 0.53511 (7) | 0.0268 (4) | |
H5C | 0.1218 | 0.3509 | 0.5183 | 0.032* | |
C6C | 0.11020 (9) | 0.6262 (2) | 0.49608 (7) | 0.0249 (4) | |
H6C | 0.0592 | 0.6176 | 0.4539 | 0.030* | |
O1D | 0.40947 (7) | 0.06594 (16) | 0.69381 (7) | 0.0325 (3) | |
H1D | 0.4028 (12) | 0.121 (3) | 0.6539 (11) | 0.071 (7)* | |
H2D | 0.4209 (13) | 0.161 (3) | 0.7281 (11) | 0.089 (8)* | |
O1E | 0.43284 (8) | 0.14985 (16) | 0.28706 (6) | 0.0320 (3) | |
H1E | 0.4870 (14) | 0.078 (3) | 0.2927 (10) | 0.086 (7)* | |
H2E | 0.4315 (12) | 0.175 (3) | 0.3316 (11) | 0.077 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1A | 0.0264 (7) | 0.0255 (8) | 0.0254 (7) | −0.0008 (5) | 0.0097 (6) | 0.0018 (5) |
C2A | 0.0243 (8) | 0.0269 (10) | 0.0292 (9) | −0.0017 (7) | 0.0095 (7) | 0.0011 (7) |
C3A | 0.0255 (9) | 0.0251 (10) | 0.0263 (9) | −0.0008 (7) | 0.0036 (7) | −0.0005 (7) |
N4A | 0.0280 (7) | 0.0239 (7) | 0.0249 (7) | 0.0011 (5) | 0.0090 (6) | 0.0006 (5) |
C5A | 0.0293 (9) | 0.0268 (10) | 0.0378 (10) | 0.0035 (7) | 0.0185 (8) | 0.0019 (7) |
C6A | 0.0228 (9) | 0.0256 (10) | 0.0568 (12) | −0.0007 (7) | 0.0158 (8) | −0.0005 (8) |
C7A | 0.0274 (9) | 0.0274 (10) | 0.0396 (10) | 0.0002 (7) | 0.0001 (8) | −0.0030 (8) |
C8A | 0.0312 (9) | 0.0283 (9) | 0.0253 (9) | −0.0006 (7) | 0.0054 (7) | −0.0015 (7) |
C9A | 0.0239 (8) | 0.0169 (9) | 0.0256 (9) | 0.0009 (6) | 0.0083 (7) | 0.0018 (6) |
C10A | 0.0247 (8) | 0.0155 (9) | 0.0248 (9) | 0.0030 (6) | 0.0094 (7) | 0.0005 (6) |
N1B | 0.0234 (7) | 0.0231 (8) | 0.0242 (7) | 0.0012 (5) | 0.0078 (6) | 0.0024 (5) |
C2B | 0.0298 (9) | 0.0242 (9) | 0.0269 (9) | 0.0032 (7) | 0.0146 (7) | 0.0049 (7) |
C3B | 0.0218 (8) | 0.0331 (10) | 0.0348 (10) | 0.0012 (7) | 0.0120 (7) | 0.0063 (7) |
N4B | 0.0254 (7) | 0.0345 (9) | 0.0283 (7) | 0.0002 (6) | 0.0083 (6) | 0.0050 (6) |
C5B | 0.0410 (10) | 0.0298 (10) | 0.0233 (9) | 0.0000 (7) | 0.0120 (8) | 0.0015 (7) |
C6B | 0.0486 (11) | 0.0281 (10) | 0.0331 (10) | 0.0024 (8) | 0.0266 (8) | 0.0046 (7) |
C7B | 0.0314 (9) | 0.0270 (10) | 0.0492 (11) | 0.0029 (7) | 0.0246 (8) | 0.0043 (8) |
C8B | 0.0233 (9) | 0.0296 (10) | 0.0339 (9) | 0.0026 (7) | 0.0084 (7) | 0.0029 (7) |
C9B | 0.0241 (8) | 0.0164 (8) | 0.0235 (8) | 0.0019 (6) | 0.0099 (7) | 0.0027 (6) |
C10B | 0.0261 (8) | 0.0183 (9) | 0.0247 (8) | 0.0013 (6) | 0.0093 (7) | 0.0038 (6) |
C1C | 0.0210 (8) | 0.0218 (9) | 0.0215 (8) | 0.0031 (7) | 0.0100 (7) | 0.0026 (7) |
O1C | 0.0286 (6) | 0.0246 (7) | 0.0255 (6) | −0.0010 (5) | 0.0009 (5) | 0.0019 (5) |
C2C | 0.0192 (8) | 0.0232 (9) | 0.0239 (8) | −0.0042 (6) | 0.0088 (6) | −0.0024 (6) |
C3C | 0.0173 (8) | 0.0311 (10) | 0.0243 (8) | −0.0010 (7) | 0.0082 (7) | 0.0038 (7) |
N1C | 0.0365 (9) | 0.0366 (10) | 0.0408 (9) | −0.0100 (8) | −0.0099 (7) | 0.0144 (8) |
C4C | 0.0256 (9) | 0.0270 (10) | 0.0314 (9) | 0.0025 (7) | 0.0124 (7) | 0.0085 (7) |
C5C | 0.0298 (9) | 0.0236 (9) | 0.0294 (9) | −0.0049 (7) | 0.0136 (7) | −0.0030 (7) |
C6C | 0.0244 (8) | 0.0272 (10) | 0.0221 (8) | −0.0031 (7) | 0.0069 (7) | −0.0014 (7) |
O1D | 0.0400 (7) | 0.0326 (7) | 0.0252 (7) | −0.0059 (5) | 0.0119 (5) | −0.0024 (6) |
O1E | 0.0382 (7) | 0.0348 (7) | 0.0229 (6) | 0.0000 (5) | 0.0106 (5) | 0.0005 (5) |
N1A—C2A | 1.3136 (16) | C6B—C7B | 1.405 (2) |
N1A—C9A | 1.3725 (17) | C6B—H6B | 0.9300 |
C2A—C3A | 1.402 (2) | C7B—C8B | 1.363 (2) |
C2A—H2A | 0.9300 | C7B—H7B | 0.9300 |
C3A—N4A | 1.3138 (17) | C8B—C9B | 1.4031 (18) |
C3A—H3A | 0.9300 | C8B—H8B | 0.9300 |
N4A—C10A | 1.3726 (16) | C9B—C10B | 1.4111 (18) |
C5A—C6A | 1.3597 (19) | C1C—O1C | 1.3697 (16) |
C5A—C10A | 1.4078 (18) | C1C—C2C | 1.3818 (17) |
C5A—H5A | 0.9300 | C1C—C6C | 1.3919 (19) |
C6A—C7A | 1.408 (2) | O1C—H1C | 0.927 (17) |
C6A—H6A | 0.9300 | C2C—C3C | 1.3940 (19) |
C7A—C8A | 1.365 (2) | C2C—H2C | 0.9300 |
C7A—H7A | 0.9300 | C3C—N1C | 1.3832 (18) |
C8A—C9A | 1.4080 (18) | C3C—C4C | 1.398 (2) |
C8A—H8A | 0.9300 | N1C—H2NC | 0.927 (16) |
C9A—C10A | 1.4116 (19) | N1C—H1NC | 0.891 (16) |
N1B—C2B | 1.3077 (16) | C4C—C5C | 1.3850 (18) |
N1B—C9B | 1.3711 (17) | C4C—H4C | 0.9300 |
C2B—C3B | 1.4114 (19) | C5C—C6C | 1.3839 (19) |
C2B—H2B | 0.9300 | C5C—H5C | 0.9300 |
C3B—N4B | 1.3112 (18) | C6C—H6C | 0.9300 |
C3B—H3B | 0.9300 | O1D—H1D | 0.87 (2) |
N4B—C10B | 1.3714 (16) | O1D—H2D | 0.94 (2) |
C5B—C6B | 1.3591 (19) | O1E—H1E | 0.95 (2) |
C5B—C10B | 1.404 (2) | O1E—H2E | 0.92 (2) |
C5B—H5B | 0.9300 | ||
C2A—N1A—C9A | 116.37 (12) | C5B—C6B—H6B | 119.8 |
N1A—C2A—C3A | 122.51 (14) | C7B—C6B—H6B | 119.8 |
N1A—C2A—H2A | 118.7 | C8B—C7B—C6B | 120.66 (14) |
C3A—C2A—H2A | 118.7 | C8B—C7B—H7B | 119.7 |
N4A—C3A—C2A | 123.05 (13) | C6B—C7B—H7B | 119.7 |
N4A—C3A—H3A | 118.5 | C7B—C8B—C9B | 119.86 (14) |
C2A—C3A—H3A | 118.5 | C7B—C8B—H8B | 120.1 |
C3A—N4A—C10A | 116.07 (12) | C9B—C8B—H8B | 120.1 |
C6A—C5A—C10A | 119.83 (15) | N1B—C9B—C8B | 119.66 (12) |
C6A—C5A—H5A | 120.1 | N1B—C9B—C10B | 120.68 (12) |
C10A—C5A—H5A | 120.1 | C8B—C9B—C10B | 119.65 (13) |
C5A—C6A—C7A | 120.79 (15) | N4B—C10B—C5B | 119.54 (13) |
C5A—C6A—H6A | 119.6 | N4B—C10B—C9B | 121.44 (13) |
C7A—C6A—H6A | 119.6 | C5B—C10B—C9B | 119.02 (13) |
C8A—C7A—C6A | 120.54 (14) | O1C—C1C—C2C | 117.20 (13) |
C8A—C7A—H7A | 119.7 | O1C—C1C—C6C | 122.48 (12) |
C6A—C7A—H7A | 119.7 | C2C—C1C—C6C | 120.32 (13) |
C7A—C8A—C9A | 119.86 (14) | C1C—O1C—H1C | 109.2 (11) |
C7A—C8A—H8A | 120.1 | C1C—C2C—C3C | 120.90 (13) |
C9A—C8A—H8A | 120.1 | C1C—C2C—H2C | 119.6 |
N1A—C9A—C8A | 119.65 (13) | C3C—C2C—H2C | 119.6 |
N1A—C9A—C10A | 120.96 (12) | N1C—C3C—C2C | 119.84 (14) |
C8A—C9A—C10A | 119.40 (13) | N1C—C3C—C4C | 121.36 (14) |
N4A—C10A—C5A | 119.40 (13) | C2C—C3C—C4C | 118.78 (13) |
N4A—C10A—C9A | 121.01 (13) | C3C—N1C—H2NC | 118.7 (10) |
C5A—C10A—C9A | 119.59 (13) | C3C—N1C—H1NC | 116.8 (10) |
C2B—N1B—C9B | 116.56 (11) | H2NC—N1C—H1NC | 122.4 (14) |
N1B—C2B—C3B | 122.56 (14) | C5C—C4C—C3C | 119.71 (13) |
N1B—C2B—H2B | 118.7 | C5C—C4C—H4C | 120.1 |
C3B—C2B—H2B | 118.7 | C3C—C4C—H4C | 120.1 |
N4B—C3B—C2B | 122.83 (14) | C6C—C5C—C4C | 121.45 (14) |
N4B—C3B—H3B | 118.6 | C6C—C5C—H5C | 119.3 |
C2B—C3B—H3B | 118.6 | C4C—C5C—H5C | 119.3 |
C3B—N4B—C10B | 115.92 (12) | C5C—C6C—C1C | 118.79 (13) |
C6B—C5B—C10B | 120.46 (14) | C5C—C6C—H6C | 120.6 |
C6B—C5B—H5B | 119.8 | C1C—C6C—H6C | 120.6 |
C10B—C5B—H5B | 119.8 | H1D—O1D—H2D | 106.6 (18) |
C5B—C6B—C7B | 120.34 (14) | H1E—O1E—H2E | 107.9 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1C—H1C···N1B | 0.927 (17) | 1.857 (17) | 2.7844 (14) | 178.7 (16) |
N1C—H2NC···O1Ei | 0.927 (16) | 2.125 (17) | 3.0400 (19) | 168.8 (14) |
N1C—H1NC···O1Dii | 0.891 (16) | 2.191 (17) | 3.058 (2) | 164.4 (13) |
O1D—H1D···N1A | 0.87 (2) | 2.01 (2) | 2.8651 (17) | 166.8 (17) |
O1D—H2D···O1Ei | 0.94 (2) | 1.77 (2) | 2.7022 (16) | 174.5 (19) |
O1E—H1E···O1Diii | 0.95 (2) | 1.82 (2) | 2.7711 (17) | 177.8 (19) |
O1E—H2E···N4A | 0.92 (2) | 1.92 (2) | 2.8446 (16) | 175.4 (18) |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, y+1, z; (iii) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | 2C8H6N2·C6H7NO·2H2O |
Mr | 405.45 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 130 |
a, b, c (Å) | 15.2951 (10), 7.1383 (4), 20.1614 (14) |
β (°) | 110.775 (8) |
V (Å3) | 2058.1 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.40 × 0.40 × 0.07 |
Data collection | |
Diffractometer | Kuma KM-4-CCD κ-geometry diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2007) |
Tmin, Tmax | 0.966, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16706, 3620, 2285 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.070, 0.91 |
No. of reflections | 3620 |
No. of parameters | 300 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.20, −0.14 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury Macrae et al., 2006).
D—H···A | D—H | H···A | D···A | D—H···A |
O1C—H1C···N1B | 0.927 (17) | 1.857 (17) | 2.7844 (14) | 178.7 (16) |
N1C—H2NC···O1Ei | 0.927 (16) | 2.125 (17) | 3.0400 (19) | 168.8 (14) |
N1C—H1NC···O1Dii | 0.891 (16) | 2.191 (17) | 3.058 (2) | 164.4 (13) |
O1D—H1D···N1A | 0.87 (2) | 2.01 (2) | 2.8651 (17) | 166.8 (17) |
O1D—H2D···O1Ei | 0.94 (2) | 1.77 (2) | 2.7022 (16) | 174.5 (19) |
O1E—H1E···O1Diii | 0.95 (2) | 1.82 (2) | 2.7711 (17) | 177.8 (19) |
O1E—H2E···N4A | 0.92 (2) | 1.92 (2) | 2.8446 (16) | 175.4 (18) |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, y+1, z; (iii) −x+1, −y, −z+1. |
References
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Kadzewski, A. & Gdaniec, M. (2006). Acta Cryst. E62, o3498–o3500. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, Oxfordshire, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sokolov, A. N., Friščić, T., Blais, S., Ripmeester, J. A. & MacGillivray, L. R. (2006). Cryst. Growth Des. 6, 2427–2428. Web of Science CSD CrossRef CAS Google Scholar
Sokolov, A. N. & MacGillivray, L. R. (2006). Cryst. Growth Des. 6, 2615–2624. Web of Science CrossRef CAS Google Scholar
Thalladi, V. R., Smolka, T., Boese, R. & Sustmann, R. (2000). CrystEngComm, 2, 96–101. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
3-Aminophenol shows the ability to direct the assembly of supramolecular ladders via hydrogen bonding and π–π stacking interactions in the solid state (Sokolov et al., 2006; Sokolov & MacGillivray, 2006). On the other hand, heterocycles like phenazine and quinoxaline are known to form a robust host framework with one-dimensional channels filled with small aromatic guest molecules (Thalladi et al., 2000; Kadzewski & Gdaniec, 2006). In the course of our studies on molecular complexes of diazaaromatic heterocycles we cocrystallized quinoxaline with 3-aminophenol expecting to obtain ladder-type assemblies analogous to those observed in cocrystals of bipyridines with 3-aminophenol (Sokolov et al., 2006). Unfortunately, the molecular complex with the expected 2:1 component ratio crystallized as a dihydrate (Fig. 1) that had a significant impact on the organization of molecules in the crystal.
Crystal packing of the title compound is shown in Fig. 2. The asymmetric unit contains two quinoxaline molecules, one 3-aminophenol molecule and two water molecules. The water molecules are hydrogen-bonded (for the hydrogen-bond geometry see Table 2) to form a helix extending along the b axis with the amino group of the 3-aminophenol linked to the helix via N—H···O interactions in the manner shown in Fig. 3a. The quinoxaline B molecules join to this assembly via hydrogen bonds to the phenolic OH groups whereas the quinoxaline A molecules bridge the water helices via O—H···N bonding and π–π stacking interactions generating a supramolecular two dimensional polymeric structure (Figure 3 b). The quinoxaline B molecules are also organized into π–π stacks extending along the b axis. The B molecules in the stacks are related by a screw-axis and are slightly tilted [dihedral angle of 7.12 (1)°] whereas the A molecules are parallel and related by inversion centers [interplanar distances of 3.376 (4) and 3.473 (4) Å].