organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Quinoxaline–3-amino­phenol–water (2/1/2)

aFaculty of Chemistry, Adam Mickiewicz University, 60-780 Poznań, Poland
*Correspondence e-mail: magdan@amu.edu.pl

(Received 3 April 2008; accepted 16 April 2008; online 23 April 2008)

The asymmetric unit of the title compound, 2C8H6N2·C6H7NO·2H2O, contains two quinoxaline mol­ecules, one mol­ecule of 3-amino­phenol and two water mol­ecules which are hydrogen bonded to form a two-dimensional polymeric structure. Each of the symmetry-independent quinoxaline mol­ecules forms separate stacks of different symmetry. In one set of stacks, the mol­ecules are related by a screw axis and are slightly tilted [dihedral angle = 7.12 (1)°]. In the second set of stacks, adjacent mol­ecules are parallel and related by an inversion center [inter­planar distances = 3.376 (4) and 3.473 (4) Å].

Related literature

For supra­molecular ladders, see: Sokolov & MacGillivray (2006[Sokolov, A. N. & MacGillivray, L. R. (2006). Cryst. Growth Des. 6, 2615-2624.]); Sokolov et al. (2006[Sokolov, A. N., Friščić, T., Blais, S., Ripmeester, J. A. & MacGillivray, L. R. (2006). Cryst. Growth Des. 6, 2427-2428.]). For complexes of aromatic diaza­heterocycles with phenols, see: Thalladi et al. (2000[Thalladi, V. R., Smolka, T., Boese, R. & Sustmann, R. (2000). CrystEngComm, 2, 96-101.]); Kadzewski & Gdaniec (2006[Kadzewski, A. & Gdaniec, M. (2006). Acta Cryst. E62, o3498-o3500.]).

[Scheme 1]

Experimental

Crystal data
  • 2C8H6N2·C6H7NO·2H2O

  • Mr = 405.45

  • Monoclinic, P 21 /c

  • a = 15.2951 (10) Å

  • b = 7.1383 (4) Å

  • c = 20.1614 (14) Å

  • β = 110.775 (8)°

  • V = 2058.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 130.0 (2) K

  • 0.40 × 0.40 × 0.07 mm

Data collection
  • Kuma KM-4-CCD κ-geometry diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, Oxfordshire, England.]) Tmin = 0.966, Tmax = 1.000 (expected range = 0.960–0.994)

  • 16706 measured reflections

  • 3620 independent reflections

  • 2285 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.070

  • S = 0.91

  • 3620 reflections

  • 300 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1C—H1C⋯N1B 0.927 (17) 1.857 (17) 2.7844 (14) 178.7 (16)
N1C—H2NC⋯O1Ei 0.927 (16) 2.125 (17) 3.0400 (19) 168.8 (14)
N1C—H1NC⋯O1Dii 0.891 (16) 2.191 (17) 3.058 (2) 164.4 (13)
O1D—H1D⋯N1A 0.87 (2) 2.01 (2) 2.8651 (17) 166.8 (17)
O1D—H2D⋯O1Ei 0.94 (2) 1.77 (2) 2.7022 (16) 174.5 (19)
O1E—H1E⋯O1Diii 0.95 (2) 1.82 (2) 2.7711 (17) 177.8 (19)
O1E—H2E⋯N4A 0.92 (2) 1.92 (2) 2.8446 (16) 175.4 (18)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x, y+1, z; (iii) -x+1, -y, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

3-Aminophenol shows the ability to direct the assembly of supramolecular ladders via hydrogen bonding and ππ stacking interactions in the solid state (Sokolov et al., 2006; Sokolov & MacGillivray, 2006). On the other hand, heterocycles like phenazine and quinoxaline are known to form a robust host framework with one-dimensional channels filled with small aromatic guest molecules (Thalladi et al., 2000; Kadzewski & Gdaniec, 2006). In the course of our studies on molecular complexes of diazaaromatic heterocycles we cocrystallized quinoxaline with 3-aminophenol expecting to obtain ladder-type assemblies analogous to those observed in cocrystals of bipyridines with 3-aminophenol (Sokolov et al., 2006). Unfortunately, the molecular complex with the expected 2:1 component ratio crystallized as a dihydrate (Fig. 1) that had a significant impact on the organization of molecules in the crystal.

Crystal packing of the title compound is shown in Fig. 2. The asymmetric unit contains two quinoxaline molecules, one 3-aminophenol molecule and two water molecules. The water molecules are hydrogen-bonded (for the hydrogen-bond geometry see Table 2) to form a helix extending along the b axis with the amino group of the 3-aminophenol linked to the helix via N—H···O interactions in the manner shown in Fig. 3a. The quinoxaline B molecules join to this assembly via hydrogen bonds to the phenolic OH groups whereas the quinoxaline A molecules bridge the water helices via O—H···N bonding and ππ stacking interactions generating a supramolecular two dimensional polymeric structure (Figure 3 b). The quinoxaline B molecules are also organized into ππ stacks extending along the b axis. The B molecules in the stacks are related by a screw-axis and are slightly tilted [dihedral angle of 7.12 (1)°] whereas the A molecules are parallel and related by inversion centers [interplanar distances of 3.376 (4) and 3.473 (4) Å].

Related literature top

For supramolecular ladders, see: Sokolov & MacGillivray (2006); Sokolov et al. (2006). For complexes of aromatic diazaheterocycles with phenols, see: Thalladi et al. (2000); Kadzewski & Gdaniec (2006).

Experimental top

The title compound was obtained by dissolving quinoxaline (0.2 g, 1.54 mmol) and 3-aminophenol (0.084 g, 0.77 mmol) in 5 ml of methanol followed slow evaporation to yield colorless plates suitable for data collection.

Refinement top

All H atoms were located in electron-density difference maps. C-bonded H atoms were placed at calculated positions, with C—H = 0.93 Å, and were refined as riding on their carrier C atoms, with Uĩso~(H) = 1.2Ueq(C). The H atoms of the OH and NH groups were freely refined (coordinates and isotropic displacement parameters).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis CCD (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : The molecular structure of the title compound with displacement ellipsoids shown at the 50% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. : Crystal packing viewed down the y axis. Hydrogen bonds are shown with dashed lines.
[Figure 3] Fig. 3. a) the H2O helix with the 3-aminophenol molecules attached to the helix via hydrogen bonds to the amino group, b) two-dimensional polymeric structure formed by hydrogen-bonded quinoxaline A molecules and water molecules.
Quinoxaline–3-aminophenol–water (2/1/2) top
Crystal data top
2C8H6N2·C6H7NO·2H2OF(000) = 856
Mr = 405.45Dx = 1.309 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5665 reflections
a = 15.2951 (10) Åθ = 2.1–27.9°
b = 7.1383 (4) ŵ = 0.09 mm1
c = 20.1614 (14) ÅT = 130 K
β = 110.775 (8)°Plate, colourless
V = 2058.1 (3) Å30.40 × 0.40 × 0.07 mm
Z = 4
Data collection top
Kuma KM-4-CCD κ-geometry
diffractometer
3620 independent reflections
Radiation source: fine-focus sealed tube2285 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 25.0°, θmin = 4.1°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
h = 1817
Tmin = 0.966, Tmax = 1.000k = 88
16706 measured reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0362P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.91(Δ/σ)max = 0.001
3620 reflectionsΔρmax = 0.20 e Å3
300 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0029 (5)
Crystal data top
2C8H6N2·C6H7NO·2H2OV = 2058.1 (3) Å3
Mr = 405.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.2951 (10) ŵ = 0.09 mm1
b = 7.1383 (4) ÅT = 130 K
c = 20.1614 (14) Å0.40 × 0.40 × 0.07 mm
β = 110.775 (8)°
Data collection top
Kuma KM-4-CCD κ-geometry
diffractometer
3620 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
2285 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 1.000Rint = 0.037
16706 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 0.91Δρmax = 0.20 e Å3
3620 reflectionsΔρmin = 0.14 e Å3
300 parameters
Special details top

Experimental. Absorption correction: SCALE3 ABSPACK scaling algorithm of the Crysalis RED program (Oxford Diffraction, 2007)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N1A0.40385 (8)0.19751 (16)0.55810 (6)0.0257 (3)
C2A0.33478 (10)0.1595 (2)0.49872 (7)0.0268 (4)
H2A0.27670.12840.50080.032*
C3A0.34523 (10)0.1639 (2)0.43241 (8)0.0272 (4)
H3A0.29370.13540.39230.033*
N4A0.42444 (8)0.20642 (17)0.42434 (6)0.0257 (3)
C5A0.58438 (10)0.3015 (2)0.48061 (8)0.0295 (4)
H5A0.59170.30430.43680.035*
C6A0.65726 (10)0.3465 (2)0.54049 (9)0.0346 (4)
H6A0.71440.37990.53730.042*
C7A0.64723 (10)0.3431 (2)0.60726 (8)0.0346 (4)
H7A0.69770.37440.64770.042*
C8A0.56397 (10)0.2943 (2)0.61310 (8)0.0295 (4)
H8A0.55780.29250.65740.035*
C9A0.48741 (9)0.24661 (19)0.55196 (7)0.0223 (3)
C10A0.49775 (9)0.25055 (19)0.48513 (7)0.0215 (3)
N1B0.01606 (8)0.88628 (16)0.35287 (6)0.0237 (3)
C2B0.10425 (10)0.88544 (19)0.34628 (7)0.0257 (4)
H2B0.11940.89230.38700.031*
C3B0.17739 (10)0.8745 (2)0.27975 (8)0.0294 (4)
H3B0.23880.87490.27850.035*
N4B0.16252 (8)0.86390 (17)0.21969 (6)0.0297 (3)
C5B0.04863 (11)0.8530 (2)0.16312 (7)0.0312 (4)
H5B0.09640.84530.11910.037*
C6B0.04198 (11)0.8538 (2)0.16717 (8)0.0333 (4)
H6B0.05580.84870.12590.040*
C7B0.11481 (11)0.8625 (2)0.23343 (8)0.0331 (4)
H7B0.17660.86170.23570.040*
C8B0.09583 (10)0.8720 (2)0.29450 (8)0.0294 (4)
H8B0.14450.87750.33810.035*
C9B0.00272 (9)0.87338 (19)0.29139 (7)0.0210 (3)
C10B0.07063 (10)0.86356 (19)0.22497 (7)0.0229 (3)
C1C0.15035 (9)0.7993 (2)0.52107 (7)0.0208 (3)
O1C0.11852 (7)0.96292 (14)0.48513 (5)0.0286 (3)
H1C0.0737 (11)0.936 (2)0.4413 (9)0.061 (6)*
C2C0.22485 (9)0.8116 (2)0.58454 (7)0.0217 (3)
H2C0.25110.92800.60070.026*
C3C0.26114 (9)0.6520 (2)0.62471 (7)0.0240 (4)
N1C0.33268 (10)0.6689 (2)0.68974 (8)0.0443 (4)
H2NC0.3584 (10)0.561 (2)0.7146 (8)0.044 (5)*
H1NC0.3613 (10)0.780 (2)0.6997 (8)0.037 (5)*
C4C0.22258 (9)0.4776 (2)0.59862 (7)0.0274 (4)
H4C0.24720.36900.62380.033*
C5C0.14761 (10)0.4673 (2)0.53511 (7)0.0268 (4)
H5C0.12180.35090.51830.032*
C6C0.11020 (9)0.6262 (2)0.49608 (7)0.0249 (4)
H6C0.05920.61760.45390.030*
O1D0.40947 (7)0.06594 (16)0.69381 (7)0.0325 (3)
H1D0.4028 (12)0.121 (3)0.6539 (11)0.071 (7)*
H2D0.4209 (13)0.161 (3)0.7281 (11)0.089 (8)*
O1E0.43284 (8)0.14985 (16)0.28706 (6)0.0320 (3)
H1E0.4870 (14)0.078 (3)0.2927 (10)0.086 (7)*
H2E0.4315 (12)0.175 (3)0.3316 (11)0.077 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0264 (7)0.0255 (8)0.0254 (7)0.0008 (5)0.0097 (6)0.0018 (5)
C2A0.0243 (8)0.0269 (10)0.0292 (9)0.0017 (7)0.0095 (7)0.0011 (7)
C3A0.0255 (9)0.0251 (10)0.0263 (9)0.0008 (7)0.0036 (7)0.0005 (7)
N4A0.0280 (7)0.0239 (7)0.0249 (7)0.0011 (5)0.0090 (6)0.0006 (5)
C5A0.0293 (9)0.0268 (10)0.0378 (10)0.0035 (7)0.0185 (8)0.0019 (7)
C6A0.0228 (9)0.0256 (10)0.0568 (12)0.0007 (7)0.0158 (8)0.0005 (8)
C7A0.0274 (9)0.0274 (10)0.0396 (10)0.0002 (7)0.0001 (8)0.0030 (8)
C8A0.0312 (9)0.0283 (9)0.0253 (9)0.0006 (7)0.0054 (7)0.0015 (7)
C9A0.0239 (8)0.0169 (9)0.0256 (9)0.0009 (6)0.0083 (7)0.0018 (6)
C10A0.0247 (8)0.0155 (9)0.0248 (9)0.0030 (6)0.0094 (7)0.0005 (6)
N1B0.0234 (7)0.0231 (8)0.0242 (7)0.0012 (5)0.0078 (6)0.0024 (5)
C2B0.0298 (9)0.0242 (9)0.0269 (9)0.0032 (7)0.0146 (7)0.0049 (7)
C3B0.0218 (8)0.0331 (10)0.0348 (10)0.0012 (7)0.0120 (7)0.0063 (7)
N4B0.0254 (7)0.0345 (9)0.0283 (7)0.0002 (6)0.0083 (6)0.0050 (6)
C5B0.0410 (10)0.0298 (10)0.0233 (9)0.0000 (7)0.0120 (8)0.0015 (7)
C6B0.0486 (11)0.0281 (10)0.0331 (10)0.0024 (8)0.0266 (8)0.0046 (7)
C7B0.0314 (9)0.0270 (10)0.0492 (11)0.0029 (7)0.0246 (8)0.0043 (8)
C8B0.0233 (9)0.0296 (10)0.0339 (9)0.0026 (7)0.0084 (7)0.0029 (7)
C9B0.0241 (8)0.0164 (8)0.0235 (8)0.0019 (6)0.0099 (7)0.0027 (6)
C10B0.0261 (8)0.0183 (9)0.0247 (8)0.0013 (6)0.0093 (7)0.0038 (6)
C1C0.0210 (8)0.0218 (9)0.0215 (8)0.0031 (7)0.0100 (7)0.0026 (7)
O1C0.0286 (6)0.0246 (7)0.0255 (6)0.0010 (5)0.0009 (5)0.0019 (5)
C2C0.0192 (8)0.0232 (9)0.0239 (8)0.0042 (6)0.0088 (6)0.0024 (6)
C3C0.0173 (8)0.0311 (10)0.0243 (8)0.0010 (7)0.0082 (7)0.0038 (7)
N1C0.0365 (9)0.0366 (10)0.0408 (9)0.0100 (8)0.0099 (7)0.0144 (8)
C4C0.0256 (9)0.0270 (10)0.0314 (9)0.0025 (7)0.0124 (7)0.0085 (7)
C5C0.0298 (9)0.0236 (9)0.0294 (9)0.0049 (7)0.0136 (7)0.0030 (7)
C6C0.0244 (8)0.0272 (10)0.0221 (8)0.0031 (7)0.0069 (7)0.0014 (7)
O1D0.0400 (7)0.0326 (7)0.0252 (7)0.0059 (5)0.0119 (5)0.0024 (6)
O1E0.0382 (7)0.0348 (7)0.0229 (6)0.0000 (5)0.0106 (5)0.0005 (5)
Geometric parameters (Å, º) top
N1A—C2A1.3136 (16)C6B—C7B1.405 (2)
N1A—C9A1.3725 (17)C6B—H6B0.9300
C2A—C3A1.402 (2)C7B—C8B1.363 (2)
C2A—H2A0.9300C7B—H7B0.9300
C3A—N4A1.3138 (17)C8B—C9B1.4031 (18)
C3A—H3A0.9300C8B—H8B0.9300
N4A—C10A1.3726 (16)C9B—C10B1.4111 (18)
C5A—C6A1.3597 (19)C1C—O1C1.3697 (16)
C5A—C10A1.4078 (18)C1C—C2C1.3818 (17)
C5A—H5A0.9300C1C—C6C1.3919 (19)
C6A—C7A1.408 (2)O1C—H1C0.927 (17)
C6A—H6A0.9300C2C—C3C1.3940 (19)
C7A—C8A1.365 (2)C2C—H2C0.9300
C7A—H7A0.9300C3C—N1C1.3832 (18)
C8A—C9A1.4080 (18)C3C—C4C1.398 (2)
C8A—H8A0.9300N1C—H2NC0.927 (16)
C9A—C10A1.4116 (19)N1C—H1NC0.891 (16)
N1B—C2B1.3077 (16)C4C—C5C1.3850 (18)
N1B—C9B1.3711 (17)C4C—H4C0.9300
C2B—C3B1.4114 (19)C5C—C6C1.3839 (19)
C2B—H2B0.9300C5C—H5C0.9300
C3B—N4B1.3112 (18)C6C—H6C0.9300
C3B—H3B0.9300O1D—H1D0.87 (2)
N4B—C10B1.3714 (16)O1D—H2D0.94 (2)
C5B—C6B1.3591 (19)O1E—H1E0.95 (2)
C5B—C10B1.404 (2)O1E—H2E0.92 (2)
C5B—H5B0.9300
C2A—N1A—C9A116.37 (12)C5B—C6B—H6B119.8
N1A—C2A—C3A122.51 (14)C7B—C6B—H6B119.8
N1A—C2A—H2A118.7C8B—C7B—C6B120.66 (14)
C3A—C2A—H2A118.7C8B—C7B—H7B119.7
N4A—C3A—C2A123.05 (13)C6B—C7B—H7B119.7
N4A—C3A—H3A118.5C7B—C8B—C9B119.86 (14)
C2A—C3A—H3A118.5C7B—C8B—H8B120.1
C3A—N4A—C10A116.07 (12)C9B—C8B—H8B120.1
C6A—C5A—C10A119.83 (15)N1B—C9B—C8B119.66 (12)
C6A—C5A—H5A120.1N1B—C9B—C10B120.68 (12)
C10A—C5A—H5A120.1C8B—C9B—C10B119.65 (13)
C5A—C6A—C7A120.79 (15)N4B—C10B—C5B119.54 (13)
C5A—C6A—H6A119.6N4B—C10B—C9B121.44 (13)
C7A—C6A—H6A119.6C5B—C10B—C9B119.02 (13)
C8A—C7A—C6A120.54 (14)O1C—C1C—C2C117.20 (13)
C8A—C7A—H7A119.7O1C—C1C—C6C122.48 (12)
C6A—C7A—H7A119.7C2C—C1C—C6C120.32 (13)
C7A—C8A—C9A119.86 (14)C1C—O1C—H1C109.2 (11)
C7A—C8A—H8A120.1C1C—C2C—C3C120.90 (13)
C9A—C8A—H8A120.1C1C—C2C—H2C119.6
N1A—C9A—C8A119.65 (13)C3C—C2C—H2C119.6
N1A—C9A—C10A120.96 (12)N1C—C3C—C2C119.84 (14)
C8A—C9A—C10A119.40 (13)N1C—C3C—C4C121.36 (14)
N4A—C10A—C5A119.40 (13)C2C—C3C—C4C118.78 (13)
N4A—C10A—C9A121.01 (13)C3C—N1C—H2NC118.7 (10)
C5A—C10A—C9A119.59 (13)C3C—N1C—H1NC116.8 (10)
C2B—N1B—C9B116.56 (11)H2NC—N1C—H1NC122.4 (14)
N1B—C2B—C3B122.56 (14)C5C—C4C—C3C119.71 (13)
N1B—C2B—H2B118.7C5C—C4C—H4C120.1
C3B—C2B—H2B118.7C3C—C4C—H4C120.1
N4B—C3B—C2B122.83 (14)C6C—C5C—C4C121.45 (14)
N4B—C3B—H3B118.6C6C—C5C—H5C119.3
C2B—C3B—H3B118.6C4C—C5C—H5C119.3
C3B—N4B—C10B115.92 (12)C5C—C6C—C1C118.79 (13)
C6B—C5B—C10B120.46 (14)C5C—C6C—H6C120.6
C6B—C5B—H5B119.8C1C—C6C—H6C120.6
C10B—C5B—H5B119.8H1D—O1D—H2D106.6 (18)
C5B—C6B—C7B120.34 (14)H1E—O1E—H2E107.9 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1C—H1C···N1B0.927 (17)1.857 (17)2.7844 (14)178.7 (16)
N1C—H2NC···O1Ei0.927 (16)2.125 (17)3.0400 (19)168.8 (14)
N1C—H1NC···O1Dii0.891 (16)2.191 (17)3.058 (2)164.4 (13)
O1D—H1D···N1A0.87 (2)2.01 (2)2.8651 (17)166.8 (17)
O1D—H2D···O1Ei0.94 (2)1.77 (2)2.7022 (16)174.5 (19)
O1E—H1E···O1Diii0.95 (2)1.82 (2)2.7711 (17)177.8 (19)
O1E—H2E···N4A0.92 (2)1.92 (2)2.8446 (16)175.4 (18)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula2C8H6N2·C6H7NO·2H2O
Mr405.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)130
a, b, c (Å)15.2951 (10), 7.1383 (4), 20.1614 (14)
β (°) 110.775 (8)
V3)2058.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.40 × 0.07
Data collection
DiffractometerKuma KM-4-CCD κ-geometry
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.966, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
16706, 3620, 2285
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.070, 0.91
No. of reflections3620
No. of parameters300
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.14

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1C—H1C···N1B0.927 (17)1.857 (17)2.7844 (14)178.7 (16)
N1C—H2NC···O1Ei0.927 (16)2.125 (17)3.0400 (19)168.8 (14)
N1C—H1NC···O1Dii0.891 (16)2.191 (17)3.058 (2)164.4 (13)
O1D—H1D···N1A0.87 (2)2.01 (2)2.8651 (17)166.8 (17)
O1D—H2D···O1Ei0.94 (2)1.77 (2)2.7022 (16)174.5 (19)
O1E—H1E···O1Diii0.95 (2)1.82 (2)2.7711 (17)177.8 (19)
O1E—H2E···N4A0.92 (2)1.92 (2)2.8446 (16)175.4 (18)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x+1, y, z+1.
 

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKadzewski, A. & Gdaniec, M. (2006). Acta Cryst. E62, o3498–o3500.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSokolov, A. N., Friščić, T., Blais, S., Ripmeester, J. A. & MacGillivray, L. R. (2006). Cryst. Growth Des. 6, 2427–2428.  Web of Science CSD CrossRef CAS Google Scholar
First citationSokolov, A. N. & MacGillivray, L. R. (2006). Cryst. Growth Des. 6, 2615–2624.  Web of Science CrossRef CAS Google Scholar
First citationThalladi, V. R., Smolka, T., Boese, R. & Sustmann, R. (2000). CrystEngComm, 2, 96–101.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds