organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 6-methyl-4-[2-(4,4,5,5-tetra­methyl-1,3,2-dioxaborolan-2-yl)thio­phen-3-yl]-2-thioxo-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate

aDepartment of Chemistry, University of New Brunswick, Fredericton, NB, Canada E3B 6E2, and bDepartment of Chemistry, Mount Allison University, 63C York Street, Sackville, NB, Canada E4L 1G8
*Correspondence e-mail: adecken@unb.ca

(Received 15 February 2008; accepted 3 March 2008; online 26 April 2008)

A new Biginelli compound, C18H25BN2O4S2, containing a boronate ester group was synthesized from a lithium bromide-catalysed reaction. The compound crystallizes with two independent mol­ecules in the asymmetric unit that differ mainly in the conformation of the ester functionality. The crystal structure is stabilized by inter­molecular N—H⋯O and N—H⋯S hydrogen bonds involving the 3,4-dihydro­pyrimidine-2(1H)-thione NH groups as donors and the carbonyl O and thio­phene S atoms as acceptors.

Related literature

Blacquiere et al. (2005[Blacquiere, J. M., Sicora, O., Vogels, C. M., Čuperlović-Culf, M., Decken, A., Ouellette, R. J. & Westcott, S. A. (2005). Can. J. Chem. 83, 2052-2059.]) report on previously studied boronic acid Ugi compounds. Miyaura & Suzuki (1995[Miyaura, N. & Suzuki, A. (1995). Chem. Rev. 95, 2457-2483.]) give an excellent review on the Suzuki–Miyaura cross-coupling reaction of aryl halides with organoboron derivatives. Vogels et al. (2006[Vogels, C. M., Decken, A. & Westcott, S. A. (2006). Tetrahedron Lett. 47, 2419-2422.]) describe the synthesis and characterization of aryl boronate esters derived from aniline. Yang et al. (2003[Yang, W., Gao, X. & Wang, B. (2003). Med. Res. Rev. 23, 346-368.]) highlight recent advances of boron chemistry in medicinal research.

[Scheme 1]

Experimental

Crystal data
  • C18H25BN2O4S2

  • Mr = 408.33

  • Triclinic, [P \overline 1]

  • a = 11.9274 (17) Å

  • b = 13.5021 (19) Å

  • c = 15.225 (2) Å

  • α = 112.172 (2)°

  • β = 93.531 (2)°

  • γ = 109.706 (2)°

  • V = 2086.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 173 (1) K

  • 0.6 × 0.6 × 0.4 mm

Data collection
  • Bruker SMART1000/P4 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.850, Tmax = 0.896

  • 14611 measured reflections

  • 9077 independent reflections

  • 7758 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.113

  • S = 1.03

  • 9077 reflections

  • 499 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H8⋯S3 0.88 2.91 3.7702 (15) 167
N6—H6⋯O49i 0.88 2.06 2.8666 (17) 152
N36—H36⋯O19ii 0.88 2.14 2.9670 (17) 155
N38—H38⋯S2iii 0.88 2.61 3.4817 (14) 170
Symmetry codes: (i) x, y-1, z; (ii) x-1, y, z; (iii) -x, -y+1, -z.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 2006[Bruker (2006). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Compounds containing boronic acids [RB(OH)2] or boronate esters [RB(OR')2] have found remarkable synthetic utility in Suzuki-Miyaura cross coupling reactions (Miyaura and Suzuki, 1995) over the past decade. Interest in these compounds also arises from their diverse and potent biological activities (Yang et al., 2003). Indeed, we have recently shown that dihydropyrimidinones (Biginelli products) containing boronic acids show significant promise for their ability to inhibit the MCF7 breast cancer cell line (Blacquiere et al., 2005). Biginelli compounds containing thiophenes showed the most promise in this study. Some of the biological properties of boron compounds have been attributed to the ability of the three-coordinate boron atom to form bonds with biomolecules, as well as form hydrogen bonds with the adjacent O atoms of the boronic acid or boronate ester group. We are preparing a family of boron-containing Biginelli products in order to understand the mechanism of action of these compounds in an effort to design more potent candidates.

The title compound crystallizes with two independent molecules per asymmetric unit. In one of the independent molecules the ester group is coplanar with the pyrimidine ring [torsion angles: C40—C48—O50—C51 = 177.11 (13)° and C48—O50—C51—C52 = 179.83 (16)°], the second independent molecule shows rotation of the ethyl group of the ester moiety that displaces the methyl group from the pyrimidine ring plane [torsion angles: C10—C18—O20—C21 = -179.33 (13)° and C18—O20—C21—C22 = -81.2 (2)°]. Conversely, the latter molecule displays coplanar dioxaborolane and thiophene rings [torsion angles: C2—C1—B1—O2 = 6.2 (3)° and S1—C1—B1—O1 = 3.4 (2)°], while the former shows rotation about the inter-ring linkage [torsion angles: C32—C31—B31—O32 = 20.9 (2)° and S3—C31—B31—O31 = 24.7 (3)°]. However, these torsion angles allow for orbital overlap between the boron pz orbital and the aryl π-electron system. The Bpin skeleton displays similar bond lengths and angles as found in related aniline derivatives (Vogels et al., 2006). Although steric crowding at the boron center is not present, the title compound shows no appreciable intra- or intermolecular Lewis acid-base interactions. However, hydrogen bonding is observed for all N—H groups of the 3,4-dihydropyrimidine-2(1H)-thione fragment. Two NH···O bonds are present for H6 and H36 (H6···O49i = 2.06 Å, (i): x, y - 1, z and H36···O19ii = 2.14 Å. (ii): x - 1, y, z) while two very long NH···S bonds are found for H8 and H38 (H8···S3 = 2.91 Å and H38···S2iii = 2.61 Å, (iii): -x, -y + 1, -z).

Related literature top

Blacquiere et al. (2005) report on previously studied boronic acid Ugi compounds. Miyaura & Suzuki (1995) give an excellent review on the Suzuki–Miyaura cross-coupling reaction of aryl halides with organoboron derivatives. Vogels et al. (2006) describe the synthesis and characterization of aryl boronate esters derived from aniline. Yang et al. (2003) highlight recent advances of boron chemistry in medicinal research.

Experimental top

2-(4,4,5,5-Tetramethyl-1,3,2,-dioxaborolan-3-yl)thiophenecarboxaldehyde (548 mg, 2.30 mmol), ethyl acetoacetate (456 mg, 3.50 mmol) and thiourea (266 mg, 3.49 mmol) were added together with CH3CN (15 ml) and a catalytic amount of lithium bromide (40 mg, 0.46 mmol). The reaction was heated at reflux for 60 h. The solvent was reduced to 5 ml and allowed to stand at room temperature. The title compound precipitated as colourless crystals. Yield: 740 mg (79%); m.p. 469 – 471 K.

Refinement top

Hydrogen atoms were included in calculated positions at distances of 0.88 (NH), 0.95 (CH-sp2), 0.98 (CH3), 0.99 (CH2), and 1.0 Å (CH-sp3) from the parent atom and refined using a riding model. Ueq were 1.5 times of the parent atom for CH3 hydrogen atoms and 1.2 times for all remaining hydrogen atoms.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SMART (Bruker, 1999); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted.
Ethyl 6-methyl-4-[2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)thiophen-3-yl]- 2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate top
Crystal data top
C18H25BN2O4S2Z = 4
Mr = 408.33F(000) = 864
Triclinic, P1Dx = 1.300 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.9274 (17) ÅCell parameters from 5490 reflections
b = 13.5021 (19) Åθ = 2.7–28.5°
c = 15.225 (2) ŵ = 0.28 mm1
α = 112.172 (2)°T = 173 K
β = 93.531 (2)°Irregular, colourless
γ = 109.706 (2)°0.6 × 0.6 × 0.4 mm
V = 2086.9 (5) Å3
Data collection top
Bruker SMART1000/P4
diffractometer
9077 independent reflections
Radiation source: fine-focus sealed tube7758 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1515
Tmin = 0.850, Tmax = 0.896k = 1617
14611 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.061P)2 + 0.8428P]
where P = (Fo2 + 2Fc2)/3
9077 reflections(Δ/σ)max = 0.001
499 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C18H25BN2O4S2γ = 109.706 (2)°
Mr = 408.33V = 2086.9 (5) Å3
Triclinic, P1Z = 4
a = 11.9274 (17) ÅMo Kα radiation
b = 13.5021 (19) ŵ = 0.28 mm1
c = 15.225 (2) ÅT = 173 K
α = 112.172 (2)°0.6 × 0.6 × 0.4 mm
β = 93.531 (2)°
Data collection top
Bruker SMART1000/P4
diffractometer
9077 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
7758 reflections with I > 2σ(I)
Tmin = 0.850, Tmax = 0.896Rint = 0.017
14611 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.04Δρmax = 0.51 e Å3
9077 reflectionsΔρmin = 0.41 e Å3
499 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
B10.58518 (16)0.09209 (15)0.27239 (12)0.0268 (3)
O10.61743 (12)0.02062 (10)0.30254 (8)0.0377 (3)
O20.55784 (13)0.05290 (10)0.17436 (8)0.0392 (3)
C10.57648 (13)0.20455 (12)0.34609 (10)0.0241 (3)
C20.53195 (13)0.27993 (12)0.33090 (10)0.0230 (3)
C30.52890 (16)0.36718 (14)0.41845 (11)0.0324 (3)
H30.50020.42550.42070.039*
C40.57164 (17)0.35812 (14)0.49885 (11)0.0346 (4)
H40.57620.40910.56350.042*
C50.48905 (13)0.27052 (12)0.23100 (10)0.0232 (3)
H50.51270.21160.18190.028*
N60.35516 (12)0.23074 (11)0.20829 (9)0.0274 (3)
H60.31250.15670.19180.033*
C70.29331 (14)0.29623 (13)0.21037 (10)0.0271 (3)
N80.36068 (13)0.40921 (12)0.22901 (10)0.0324 (3)
H80.32440.45850.24420.039*
C90.48338 (15)0.45081 (13)0.22532 (11)0.0296 (3)
C100.54748 (14)0.38534 (13)0.22401 (10)0.0262 (3)
C110.59061 (18)0.08779 (14)0.21602 (12)0.0366 (4)
C120.5912 (2)0.04760 (16)0.13318 (13)0.0435 (5)
C130.4647 (2)0.17160 (18)0.21154 (18)0.0577 (6)
H13A0.46380.17940.27290.086*
H13B0.44600.24770.15800.086*
H13C0.40350.14150.20080.086*
C140.6837 (2)0.13695 (18)0.22800 (16)0.0526 (5)
H14A0.76570.07980.23770.079*
H14B0.66820.20790.16960.079*
H14C0.67780.15510.28450.079*
C150.5030 (3)0.1337 (2)0.03940 (16)0.0806 (10)
H15A0.41950.15070.04960.121*
H15B0.51800.20530.01590.121*
H15C0.51360.10130.00880.121*
C160.7206 (3)0.0007 (2)0.1157 (2)0.0859 (10)
H16A0.72080.03860.07320.129*
H16B0.74600.06540.08500.129*
H16C0.77750.05450.17800.129*
C170.52927 (18)0.56795 (15)0.22327 (14)0.0409 (4)
H17A0.59240.62420.28190.061*
H17B0.46160.59320.22090.061*
H17C0.56370.56290.16570.061*
C180.67612 (15)0.42200 (14)0.21689 (11)0.0305 (3)
O190.74306 (12)0.51853 (11)0.22815 (9)0.0418 (3)
O200.71312 (11)0.33367 (11)0.19778 (9)0.0371 (3)
C210.83969 (17)0.35731 (19)0.18969 (14)0.0436 (4)
H21A0.86520.30010.20150.052*
H21B0.89250.43560.23980.052*
C220.8558 (2)0.3510 (2)0.09137 (15)0.0562 (5)
H22A0.80120.27450.04150.084*
H22B0.94050.36280.08670.084*
H22C0.83620.41140.08140.084*
S10.61592 (4)0.24412 (3)0.46920 (3)0.02971 (10)
S20.14012 (4)0.24790 (4)0.19037 (3)0.03629 (11)
B310.02234 (17)0.68959 (16)0.39397 (12)0.0284 (3)
O310.00329 (13)0.61897 (11)0.43996 (9)0.0414 (3)
O320.01311 (12)0.77979 (11)0.43404 (9)0.0381 (3)
C310.07500 (14)0.66371 (13)0.30092 (11)0.0258 (3)
C320.06028 (13)0.69246 (12)0.22483 (10)0.0238 (3)
C330.11366 (16)0.64187 (15)0.14773 (12)0.0328 (3)
H330.11090.65250.08950.039*
C340.16881 (17)0.57679 (17)0.16648 (13)0.0391 (4)
H340.20990.53740.12360.047*
C350.00662 (13)0.76922 (13)0.22187 (10)0.0241 (3)
H350.01430.81280.28930.029*
N360.13008 (12)0.69678 (11)0.15964 (9)0.0280 (3)
H360.18280.65520.18280.034*
C370.17010 (14)0.68757 (13)0.07252 (11)0.0274 (3)
N380.09181 (13)0.76047 (12)0.04064 (9)0.0315 (3)
H380.11430.75230.01870.038*
C390.02087 (15)0.84658 (14)0.09561 (11)0.0287 (3)
C400.06281 (14)0.85601 (13)0.18401 (11)0.0263 (3)
C410.03602 (17)0.67207 (16)0.52899 (12)0.0356 (4)
C420.07393 (17)0.76491 (15)0.51102 (12)0.0355 (4)
C430.1385 (2)0.5765 (2)0.53879 (17)0.0565 (5)
H43A0.20230.53410.47910.085*
H43B0.17280.61050.59390.085*
H43C0.10680.52290.54970.085*
C440.0726 (2)0.7245 (2)0.61186 (15)0.0584 (6)
H44A0.10040.66400.61190.088*
H44B0.04920.75810.67350.088*
H44C0.13860.78540.60400.088*
C450.2104 (2)0.7200 (2)0.46867 (17)0.0579 (6)
H45A0.22600.77460.44680.087*
H45B0.25640.71270.51860.087*
H45C0.23620.64390.41340.087*
C460.0335 (2)0.88144 (19)0.59638 (15)0.0570 (6)
H46A0.05520.91310.61920.086*
H46B0.07340.87260.64890.086*
H46C0.05610.93460.57660.086*
C470.08465 (18)0.92231 (16)0.04776 (13)0.0403 (4)
H47A0.08851.00120.08390.060*
H47B0.03950.89070.01920.060*
H47C0.16760.92440.04740.060*
C480.18103 (15)0.94540 (13)0.24476 (11)0.0280 (3)
O490.25664 (11)1.01361 (11)0.22269 (9)0.0409 (3)
O500.19949 (10)0.94226 (10)0.33108 (8)0.0307 (2)
C510.31590 (15)1.02263 (15)0.39685 (12)0.0339 (3)
H51A0.32661.10370.41180.041*
H51B0.38361.00780.36730.041*
C520.3146 (2)1.0030 (2)0.48767 (15)0.0570 (6)
H52A0.24621.01650.51530.085*
H52B0.39141.05680.53500.085*
H52C0.30540.92290.47190.085*
S30.15505 (4)0.57455 (4)0.27683 (3)0.03606 (11)
S40.31028 (4)0.59544 (4)0.00464 (3)0.03619 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
B10.0314 (9)0.0225 (8)0.0266 (8)0.0111 (7)0.0046 (7)0.0102 (7)
O10.0608 (8)0.0294 (6)0.0272 (6)0.0273 (6)0.0044 (5)0.0087 (5)
O20.0701 (9)0.0296 (6)0.0245 (5)0.0290 (6)0.0087 (5)0.0101 (5)
C10.0282 (7)0.0220 (7)0.0214 (6)0.0092 (6)0.0049 (5)0.0093 (5)
C20.0270 (7)0.0199 (6)0.0228 (6)0.0093 (6)0.0060 (5)0.0096 (5)
C30.0467 (10)0.0283 (8)0.0271 (7)0.0214 (7)0.0099 (7)0.0103 (6)
C40.0493 (10)0.0309 (8)0.0242 (7)0.0202 (8)0.0089 (7)0.0081 (6)
C50.0275 (7)0.0197 (7)0.0233 (6)0.0089 (6)0.0055 (5)0.0101 (5)
N60.0289 (7)0.0222 (6)0.0308 (6)0.0072 (5)0.0038 (5)0.0140 (5)
C70.0319 (8)0.0298 (8)0.0201 (6)0.0125 (6)0.0045 (6)0.0106 (6)
N80.0352 (7)0.0268 (7)0.0376 (7)0.0163 (6)0.0044 (6)0.0129 (6)
C90.0371 (8)0.0226 (7)0.0262 (7)0.0084 (6)0.0005 (6)0.0112 (6)
C100.0330 (8)0.0219 (7)0.0232 (7)0.0081 (6)0.0055 (6)0.0115 (6)
C110.0522 (11)0.0266 (8)0.0310 (8)0.0208 (8)0.0056 (7)0.0078 (7)
C120.0767 (14)0.0308 (9)0.0301 (8)0.0310 (9)0.0170 (9)0.0105 (7)
C130.0665 (14)0.0335 (10)0.0689 (14)0.0158 (10)0.0229 (12)0.0195 (10)
C140.0705 (14)0.0420 (11)0.0486 (11)0.0375 (11)0.0057 (10)0.0101 (9)
C150.151 (3)0.0480 (13)0.0311 (10)0.0518 (16)0.0135 (13)0.0019 (9)
C160.119 (3)0.0636 (16)0.101 (2)0.0466 (17)0.083 (2)0.0432 (16)
C170.0500 (11)0.0251 (8)0.0476 (10)0.0113 (8)0.0009 (8)0.0201 (8)
C180.0352 (8)0.0289 (8)0.0247 (7)0.0077 (7)0.0063 (6)0.0130 (6)
O190.0404 (7)0.0334 (6)0.0465 (7)0.0030 (5)0.0085 (6)0.0219 (6)
O200.0338 (6)0.0349 (6)0.0438 (7)0.0133 (5)0.0150 (5)0.0170 (5)
C210.0352 (9)0.0517 (11)0.0443 (10)0.0170 (8)0.0140 (8)0.0198 (9)
C220.0513 (12)0.0645 (14)0.0458 (11)0.0183 (11)0.0217 (9)0.0184 (10)
S10.0382 (2)0.0288 (2)0.02272 (18)0.01457 (17)0.00229 (15)0.01086 (15)
S20.0301 (2)0.0475 (3)0.0326 (2)0.01577 (18)0.00692 (16)0.01790 (19)
B310.0318 (9)0.0316 (9)0.0264 (8)0.0150 (7)0.0083 (7)0.0144 (7)
O310.0678 (9)0.0464 (7)0.0334 (6)0.0363 (7)0.0252 (6)0.0262 (6)
O320.0580 (8)0.0422 (7)0.0335 (6)0.0314 (6)0.0248 (6)0.0231 (5)
C310.0286 (7)0.0256 (7)0.0268 (7)0.0135 (6)0.0075 (6)0.0120 (6)
C320.0241 (7)0.0231 (7)0.0255 (7)0.0089 (6)0.0084 (5)0.0113 (6)
C330.0382 (9)0.0375 (9)0.0287 (7)0.0191 (7)0.0146 (7)0.0153 (7)
C340.0428 (10)0.0458 (10)0.0356 (9)0.0274 (8)0.0172 (7)0.0141 (8)
C350.0249 (7)0.0250 (7)0.0252 (7)0.0097 (6)0.0075 (5)0.0132 (6)
N360.0244 (6)0.0313 (7)0.0314 (6)0.0087 (5)0.0084 (5)0.0178 (6)
C370.0276 (7)0.0283 (7)0.0275 (7)0.0140 (6)0.0091 (6)0.0099 (6)
N380.0335 (7)0.0358 (7)0.0234 (6)0.0089 (6)0.0046 (5)0.0149 (6)
C390.0328 (8)0.0278 (8)0.0283 (7)0.0112 (6)0.0084 (6)0.0149 (6)
C400.0291 (8)0.0245 (7)0.0282 (7)0.0098 (6)0.0080 (6)0.0145 (6)
C410.0440 (10)0.0445 (10)0.0257 (7)0.0211 (8)0.0138 (7)0.0182 (7)
C420.0457 (10)0.0397 (9)0.0286 (8)0.0225 (8)0.0172 (7)0.0157 (7)
C430.0691 (15)0.0523 (12)0.0567 (12)0.0208 (11)0.0256 (11)0.0325 (11)
C440.0548 (13)0.0888 (17)0.0381 (10)0.0383 (13)0.0068 (9)0.0250 (11)
C450.0492 (12)0.0742 (16)0.0594 (13)0.0369 (12)0.0166 (10)0.0256 (12)
C460.0811 (16)0.0480 (12)0.0403 (10)0.0300 (12)0.0205 (10)0.0116 (9)
C470.0455 (10)0.0405 (10)0.0341 (8)0.0059 (8)0.0041 (7)0.0252 (8)
C480.0320 (8)0.0249 (7)0.0308 (7)0.0112 (6)0.0062 (6)0.0156 (6)
O490.0372 (7)0.0382 (7)0.0454 (7)0.0009 (5)0.0016 (5)0.0290 (6)
O500.0304 (6)0.0308 (6)0.0272 (5)0.0060 (5)0.0029 (4)0.0143 (5)
C510.0315 (8)0.0316 (8)0.0325 (8)0.0084 (7)0.0003 (6)0.0117 (7)
C520.0549 (13)0.0628 (14)0.0447 (11)0.0078 (11)0.0086 (9)0.0302 (10)
S30.0420 (2)0.0420 (2)0.0362 (2)0.0287 (2)0.01057 (18)0.01775 (18)
S40.0273 (2)0.0421 (2)0.0285 (2)0.00897 (17)0.00539 (15)0.00812 (17)
Geometric parameters (Å, º) top
B1—O21.357 (2)B31—O311.352 (2)
B1—O11.361 (2)B31—O321.361 (2)
B1—C11.553 (2)B31—C311.552 (2)
O1—C111.4688 (19)O31—C411.4639 (19)
O2—C121.465 (2)O32—C421.4575 (19)
C1—C21.378 (2)C31—C321.373 (2)
C1—S11.7280 (14)C31—S31.7265 (15)
C2—C31.420 (2)C32—C331.425 (2)
C2—C51.5185 (19)C32—C351.517 (2)
C3—C41.361 (2)C33—C341.357 (2)
C3—H30.9500C33—H330.9500
C4—S11.7045 (17)C34—S31.7088 (18)
C4—H40.9500C34—H340.9500
C5—N61.4737 (19)C35—N361.4766 (19)
C5—C101.5184 (19)C35—C401.5184 (19)
C5—H51.0000C35—H351.0000
N6—C71.322 (2)N36—C371.327 (2)
N6—H60.8800N36—H360.8800
C7—N81.368 (2)C37—N381.369 (2)
C7—S21.6836 (16)C37—S41.6808 (16)
N8—C91.393 (2)N38—C391.390 (2)
N8—H80.8800N38—H380.8800
C9—C101.346 (2)C39—C401.350 (2)
C9—C171.503 (2)C39—C471.504 (2)
C10—C181.470 (2)C40—C481.466 (2)
C11—C141.507 (3)C41—C441.509 (3)
C11—C131.524 (3)C41—C431.512 (3)
C11—C121.549 (2)C41—C421.574 (2)
C12—C151.495 (3)C42—C461.505 (3)
C12—C161.540 (3)C42—C451.531 (3)
C13—H13A0.9800C43—H43A0.9800
C13—H13B0.9800C43—H43B0.9800
C13—H13C0.9800C43—H43C0.9800
C14—H14A0.9800C44—H44A0.9800
C14—H14B0.9800C44—H44B0.9800
C14—H14C0.9800C44—H44C0.9800
C15—H15A0.9800C45—H45A0.9800
C15—H15B0.9800C45—H45B0.9800
C15—H15C0.9800C45—H45C0.9800
C16—H16A0.9800C46—H46A0.9800
C16—H16B0.9800C46—H46B0.9800
C16—H16C0.9800C46—H46C0.9800
C17—H17A0.9800C47—H47A0.9800
C17—H17B0.9800C47—H47B0.9800
C17—H17C0.9800C47—H47C0.9800
C18—O191.216 (2)C48—O491.2187 (19)
C18—O201.346 (2)C48—O501.3379 (18)
O20—C211.457 (2)O50—C511.4494 (19)
C21—C221.495 (3)C51—C521.503 (3)
C21—H21A0.9900C51—H51A0.9900
C21—H21B0.9900C51—H51B0.9900
C22—H22A0.9800C52—H52A0.9800
C22—H22B0.9800C52—H52B0.9800
C22—H22C0.9800C52—H52C0.9800
O2—B1—O1113.78 (14)O31—B31—O32114.26 (14)
O2—B1—C1124.84 (14)O31—B31—C31121.32 (15)
O1—B1—C1121.33 (14)O32—B31—C31124.37 (14)
B1—O1—C11107.00 (12)B31—O31—C41108.06 (13)
B1—O2—C12106.97 (12)B31—O32—C42107.96 (12)
C2—C1—B1130.36 (13)C32—C31—B31130.28 (14)
C2—C1—S1109.91 (11)C32—C31—S3110.11 (11)
B1—C1—S1119.54 (11)B31—C31—S3119.35 (11)
C1—C2—C3113.10 (13)C31—C32—C33113.05 (14)
C1—C2—C5123.78 (12)C31—C32—C35123.94 (13)
C3—C2—C5123.12 (13)C33—C32—C35123.01 (13)
C4—C3—C2112.63 (14)C34—C33—C32112.64 (14)
C4—C3—H3123.7C34—C33—H33123.7
C2—C3—H3123.7C32—C33—H33123.7
C3—C4—S1111.65 (12)C33—C34—S3111.55 (12)
C3—C4—H4124.2C33—C34—H34124.2
S1—C4—H4124.2S3—C34—H34124.2
N6—C5—C10109.92 (12)N36—C35—C32109.80 (12)
N6—C5—C2109.99 (11)N36—C35—C40109.87 (12)
C10—C5—C2111.69 (12)C32—C35—C40110.98 (12)
N6—C5—H5108.4N36—C35—H35108.7
C10—C5—H5108.4C32—C35—H35108.7
C2—C5—H5108.4C40—C35—H35108.7
C7—N6—C5125.95 (13)C37—N36—C35127.04 (13)
C7—N6—H6117.0C37—N36—H36116.5
C5—N6—H6117.0C35—N36—H36116.5
N6—C7—N8116.36 (14)N36—C37—N38116.33 (14)
N6—C7—S2123.93 (12)N36—C37—S4123.02 (12)
N8—C7—S2119.70 (12)N38—C37—S4120.63 (12)
C7—N8—C9123.85 (14)C37—N38—C39124.42 (13)
C7—N8—H8118.1C37—N38—H38117.8
C9—N8—H8118.1C39—N38—H38117.8
C10—C9—N8118.87 (14)C40—C39—N38119.54 (14)
C10—C9—C17127.11 (16)C40—C39—C47126.23 (15)
N8—C9—C17114.02 (15)N38—C39—C47114.23 (14)
C9—C10—C18121.80 (14)C39—C40—C48121.59 (14)
C9—C10—C5120.77 (14)C39—C40—C35121.27 (14)
C18—C10—C5117.42 (13)C48—C40—C35117.01 (13)
O1—C11—C14108.90 (14)O31—C41—C44106.68 (15)
O1—C11—C13106.61 (15)O31—C41—C43107.56 (16)
C14—C11—C13109.29 (17)C44—C41—C43110.40 (17)
O1—C11—C12102.07 (13)O31—C41—C42102.79 (12)
C14—C11—C12116.75 (17)C44—C41—C42113.58 (17)
C13—C11—C12112.48 (17)C43—C41—C42115.03 (16)
O2—C12—C15109.08 (17)O32—C42—C46108.64 (16)
O2—C12—C16106.04 (17)O32—C42—C45105.51 (15)
C15—C12—C16110.6 (2)C46—C42—C45109.92 (17)
O2—C12—C11102.69 (13)O32—C42—C41103.19 (12)
C15—C12—C11116.02 (18)C46—C42—C41115.69 (16)
C16—C12—C11111.7 (2)C45—C42—C41113.09 (17)
C11—C13—H13A109.5C41—C43—H43A109.5
C11—C13—H13B109.5C41—C43—H43B109.5
H13A—C13—H13B109.5H43A—C43—H43B109.5
C11—C13—H13C109.5C41—C43—H43C109.5
H13A—C13—H13C109.5H43A—C43—H43C109.5
H13B—C13—H13C109.5H43B—C43—H43C109.5
C11—C14—H14A109.5C41—C44—H44A109.5
C11—C14—H14B109.5C41—C44—H44B109.5
H14A—C14—H14B109.5H44A—C44—H44B109.5
C11—C14—H14C109.5C41—C44—H44C109.5
H14A—C14—H14C109.5H44A—C44—H44C109.5
H14B—C14—H14C109.5H44B—C44—H44C109.5
C12—C15—H15A109.5C42—C45—H45A109.5
C12—C15—H15B109.5C42—C45—H45B109.5
H15A—C15—H15B109.5H45A—C45—H45B109.5
C12—C15—H15C109.5C42—C45—H45C109.5
H15A—C15—H15C109.5H45A—C45—H45C109.5
H15B—C15—H15C109.5H45B—C45—H45C109.5
C12—C16—H16A109.5C42—C46—H46A109.5
C12—C16—H16B109.5C42—C46—H46B109.5
H16A—C16—H16B109.5H46A—C46—H46B109.5
C12—C16—H16C109.5C42—C46—H46C109.5
H16A—C16—H16C109.5H46A—C46—H46C109.5
H16B—C16—H16C109.5H46B—C46—H46C109.5
C9—C17—H17A109.5C39—C47—H47A109.5
C9—C17—H17B109.5C39—C47—H47B109.5
H17A—C17—H17B109.5H47A—C47—H47B109.5
C9—C17—H17C109.5C39—C47—H47C109.5
H17A—C17—H17C109.5H47A—C47—H47C109.5
H17B—C17—H17C109.5H47B—C47—H47C109.5
O19—C18—O20123.16 (16)O49—C48—O50122.17 (14)
O19—C18—C10126.16 (16)O49—C48—C40127.06 (14)
O20—C18—C10110.66 (13)O50—C48—C40110.75 (13)
C18—O20—C21117.03 (14)C48—O50—C51116.55 (12)
O20—C21—C22111.17 (16)O50—C51—C52106.59 (14)
O20—C21—H21A109.4O50—C51—H51A110.4
C22—C21—H21A109.4C52—C51—H51A110.4
O20—C21—H21B109.4O50—C51—H51B110.4
C22—C21—H21B109.4C52—C51—H51B110.4
H21A—C21—H21B108.0H51A—C51—H51B108.6
C21—C22—H22A109.5C51—C52—H52A109.5
C21—C22—H22B109.5C51—C52—H52B109.5
H22A—C22—H22B109.5H52A—C52—H52B109.5
C21—C22—H22C109.5C51—C52—H52C109.5
H22A—C22—H22C109.5H52A—C52—H52C109.5
H22B—C22—H22C109.5H52B—C52—H52C109.5
C4—S1—C192.71 (7)C34—S3—C3192.65 (8)
C2—C1—B1—O26.2 (3)C18—O20—C21—C2281.2 (2)
S1—C1—B1—O13.4 (2)C48—O50—C51—C52179.83 (16)
C32—C31—B31—O3224.7 (3)C10—C18—O20—C21179.33 (13)
S3—C31—B31—O3120.9 (2)C40—C48—O50—C51177.11 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···S30.882.913.7702 (15)167
N6—H6···O49i0.882.062.8666 (17)152
N36—H36···O19ii0.882.142.9670 (17)155
N38—H38···S2iii0.882.613.4817 (14)170
Symmetry codes: (i) x, y1, z; (ii) x1, y, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H25BN2O4S2
Mr408.33
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)11.9274 (17), 13.5021 (19), 15.225 (2)
α, β, γ (°)112.172 (2), 93.531 (2), 109.706 (2)
V3)2086.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.6 × 0.6 × 0.4
Data collection
DiffractometerBruker SMART1000/P4
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.850, 0.896
No. of measured, independent and
observed [I > 2σ(I)] reflections
14611, 9077, 7758
Rint0.017
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.113, 1.04
No. of reflections9077
No. of parameters499
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.41

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···S30.882.913.7702 (15)167
N6—H6···O49i0.882.062.8666 (17)152
N36—H36···O19ii0.882.142.9670 (17)155
N38—H38···S2iii0.882.613.4817 (14)170
Symmetry codes: (i) x, y1, z; (ii) x1, y, z; (iii) x, y+1, z.
 

Acknowledgements

This work was funded by the Natural Science and Engineering Research Council and AIF/ACOA (Canada).

References

First citationBlacquiere, J. M., Sicora, O., Vogels, C. M., Čuperlović-Culf, M., Decken, A., Ouellette, R. J. & Westcott, S. A. (2005). Can. J. Chem. 83, 2052–2059.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1999). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMiyaura, N. & Suzuki, A. (1995). Chem. Rev. 95, 2457–2483.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVogels, C. M., Decken, A. & Westcott, S. A. (2006). Tetrahedron Lett. 47, 2419–2422.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, W., Gao, X. & Wang, B. (2003). Med. Res. Rev. 23, 346–368.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds