organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1,3-Tri­methyl-3-phenyl­indane

aCollege of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
*Correspondence e-mail: gaosunday@yahoo.com.cn

(Received 17 March 2008; accepted 8 April 2008; online 16 April 2008)

In the title compound, C18H20, the five-membered ring of the indane fragment adopts an envelope conformation, with the flap atom deviating by 0.399 (3) Å from the plane of the remaining four atoms. The dihedral angle between the phenyl ring and the indane benzene ring is 79.58 (7)°.

Related literature

For related literature, see: Bateman & Gordon (1974[Bateman, J. & Gordon, D. A. (1974). US Patent 3856752.], 1976[Bateman, J. & Gordon, D. A. (1976). US Patent 3983092.]); Ghosh & Mittal (1996[Ghosh, M. K. & Mittal, K. L. (1996). Polyimides: Fundamentals and Applications. New York: Dekker.]); Feger et al. (1989[Feger, C., Khohasteh, M. M. & McGrath, J. E. (1989). Editors. Polyimides: Chemistry, Materials and Characterization. Amsterdam: Elsevier.]).

[Scheme 1]

Experimental

Crystal data
  • C18H20

  • Mr = 236.34

  • Triclinic, [P \overline 1]

  • a = 8.192 (2) Å

  • b = 8.426 (3) Å

  • c = 11.113 (4) Å

  • α = 69.30 (3)°

  • β = 79.44 (5)°

  • γ = 80.37 (2)°

  • V = 701.0 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 291 (2) K

  • 0.46 × 0.44 × 0.42 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 3682 measured reflections

  • 2582 independent reflections

  • 1770 reflections with I > 2σ(I)

  • Rint = 0.007

  • 3 standard reflections every 200 reflections intensity decay: 0.7%

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.117

  • S = 1.06

  • 2582 reflections

  • 170 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: DIFRAC (Gabe & White, 1993[Gabe, E. J. & White, P. S. (1993). Am. Crystallogr. Assoc. Pittsburgh Meet. Abstract PA104.]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Polyimides are well known for possessing excellent thermal and oxidative stability, as well as excellent mechanical properties (Ghosh & Mittal, 1996; Feger et al., 1989). Furthermore, polyimides with phenylindane diamines and/or dianhydrides incorporated into the polyimide backbone have been found to be soluble in high concentration in polar organic solvents (Bateman & Gordon, 1974). Phenylindane diamines are prepared by a process comprising acid-catalyzed dimerization of α-methylstyrene and subsequent nitration and reduction of the 1,1,3-trimethyl-3-phenyl-2,3-dihydro-1H-indene (Bateman & Gordon, 1976).

The molecule of the title compound is shown in Fig. 1. Rings A (C1–C6) and B (C13–C18) are planar and form dihedral angle of 79.58 (7)°. The B ring forms dihedral angle of 25.38 (14)° with the plane defined by the indane Csp3 atoms C7, C9 and C10.

Related literature top

For related literature, see: Bateman & Gordon (1974, 1976); Ghosh & Mittal (1996); Feger et al. (1989).

Experimental top

α-Methylstyrene (32.0 g, 0.30 mol) was added to a 500 ml flask equipped with a condenser and a mechanical stirrer, followed by slow addition of a previously prepared mixture of H2SO4 (68 ml) and H2O (130 ml). The reaction mixture was refluxed for 20 h. After it was cooled to room temperature, the lower acid phase was drawn off and discarded. The organic phase containing the phenylindane was washed with water several times. The product was recrystallized from methanol that afforded white crystals (24 g, yield 68%, m.p. 323–324 K).

Refinement top

H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq (aromatic, methylene) or Uiso(H) = 1.5Ueq(methyl).

Computing details top

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC (Gabe & White, 1993); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
1,1,3-Trimethyl-3-phenylindane top
Crystal data top
C18H20Z = 2
Mr = 236.34F(000) = 256
Triclinic, P1Dx = 1.120 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.192 (2) ÅCell parameters from 28 reflections
b = 8.426 (3) Åθ = 4.4–7.7°
c = 11.113 (4) ŵ = 0.06 mm1
α = 69.30 (3)°T = 291 K
β = 79.44 (5)°Block, colourless
γ = 80.37 (2)°0.46 × 0.44 × 0.42 mm
V = 701.0 (7) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.007
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 2.6°
Graphite monochromatorh = 99
ω/2τ scansk = 310
3682 measured reflectionsl = 1213
2582 independent reflections3 standard reflections every 200 reflections
1770 reflections with I > 2σ(I) intensity decay: 0.7%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0549P)2 + 0.0915P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2582 reflectionsΔρmax = 0.17 e Å3
170 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.154 (10)
Crystal data top
C18H20γ = 80.37 (2)°
Mr = 236.34V = 701.0 (7) Å3
Triclinic, P1Z = 2
a = 8.192 (2) ÅMo Kα radiation
b = 8.426 (3) ŵ = 0.06 mm1
c = 11.113 (4) ÅT = 291 K
α = 69.30 (3)°0.46 × 0.44 × 0.42 mm
β = 79.44 (5)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.007
3682 measured reflections3 standard reflections every 200 reflections
2582 independent reflections intensity decay: 0.7%
1770 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.06Δρmax = 0.17 e Å3
2582 reflectionsΔρmin = 0.14 e Å3
170 parameters
Special details top

Experimental. 1H NMR (400 MHz, CDCl3): δ = 1.03, 1.35, 1.69 (s, 3H, –CH3), 2.21 and 2.40 (d, 2H, –CH2–), 7.11–7.29 (m, 9H, Ar—H).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C180.39195 (18)0.00422 (18)0.21135 (14)0.0428 (4)
C60.20481 (17)0.27044 (18)0.22736 (14)0.0436 (4)
C140.6116 (2)0.1842 (2)0.32179 (15)0.0527 (4)
H140.71360.20110.35260.063*
C130.54458 (18)0.02135 (18)0.25548 (14)0.0421 (4)
C70.34020 (18)0.19224 (19)0.14280 (14)0.0453 (4)
C170.3069 (2)0.1345 (2)0.23220 (17)0.0567 (4)
H170.20430.11810.20250.068*
C100.61857 (19)0.14541 (19)0.22095 (15)0.0478 (4)
C10.1330 (2)0.4375 (2)0.17672 (18)0.0595 (5)
H10.16700.50060.09080.071*
C50.1502 (2)0.1821 (2)0.35573 (16)0.0542 (4)
H50.19510.06970.39280.065*
C30.0391 (2)0.4221 (3)0.3779 (2)0.0665 (5)
H30.12010.47240.42790.080*
C150.5266 (2)0.3214 (2)0.34208 (17)0.0606 (5)
H150.57160.43130.38630.073*
C20.0126 (2)0.5121 (2)0.2504 (2)0.0696 (5)
H20.03390.62400.21370.083*
C40.0303 (2)0.2575 (3)0.43009 (18)0.0653 (5)
H40.00340.19570.51640.078*
C90.5091 (2)0.2673 (2)0.11982 (16)0.0543 (4)
H9A0.56500.27820.03290.065*
H9B0.48920.37950.12890.065*
C160.3754 (2)0.2966 (2)0.29712 (18)0.0640 (5)
H160.31920.38990.31070.077*
C80.2796 (2)0.2204 (2)0.01297 (16)0.0664 (5)
H8A0.36170.16540.03740.100*
H8B0.26350.34050.03400.100*
H8C0.17590.17280.02930.100*
C110.5994 (3)0.1997 (2)0.34135 (19)0.0690 (5)
H11A0.48320.21280.37490.104*
H11B0.64460.30620.31800.104*
H11C0.65850.11390.40650.104*
C120.8028 (2)0.1333 (3)0.1630 (2)0.0723 (6)
H12A0.84260.24290.13770.109*
H12B0.81460.09800.08830.109*
H12C0.86690.05130.22660.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C180.0409 (8)0.0477 (9)0.0410 (8)0.0052 (7)0.0006 (6)0.0185 (7)
C60.0386 (8)0.0477 (9)0.0461 (9)0.0021 (7)0.0125 (7)0.0155 (7)
C140.0555 (10)0.0501 (10)0.0506 (9)0.0029 (8)0.0100 (8)0.0171 (8)
C130.0434 (8)0.0441 (8)0.0388 (8)0.0017 (6)0.0031 (6)0.0162 (7)
C70.0423 (8)0.0506 (9)0.0411 (8)0.0023 (7)0.0078 (6)0.0131 (7)
C170.0481 (9)0.0637 (11)0.0656 (11)0.0115 (8)0.0018 (8)0.0309 (9)
C100.0422 (8)0.0472 (9)0.0537 (9)0.0060 (7)0.0078 (7)0.0155 (7)
C10.0623 (11)0.0537 (10)0.0595 (11)0.0005 (8)0.0128 (9)0.0157 (8)
C50.0530 (10)0.0568 (10)0.0482 (9)0.0022 (8)0.0064 (8)0.0158 (8)
C30.0483 (10)0.0852 (14)0.0811 (14)0.0089 (9)0.0138 (9)0.0509 (12)
C150.0738 (12)0.0422 (9)0.0581 (10)0.0012 (8)0.0002 (9)0.0138 (8)
C20.0668 (12)0.0601 (11)0.0882 (15)0.0127 (9)0.0238 (11)0.0348 (11)
C40.0590 (11)0.0837 (14)0.0536 (10)0.0014 (10)0.0020 (9)0.0289 (10)
C90.0491 (9)0.0510 (9)0.0525 (10)0.0069 (7)0.0026 (7)0.0063 (8)
C160.0715 (12)0.0493 (10)0.0735 (12)0.0191 (9)0.0083 (10)0.0267 (9)
C80.0659 (12)0.0851 (13)0.0473 (10)0.0056 (10)0.0148 (9)0.0236 (9)
C110.0802 (13)0.0639 (11)0.0758 (13)0.0119 (9)0.0212 (10)0.0317 (10)
C120.0464 (10)0.0720 (12)0.0943 (15)0.0103 (9)0.0070 (10)0.0219 (11)
Geometric parameters (Å, º) top
C18—C131.382 (2)C5—H50.9300
C18—C171.388 (2)C3—C41.368 (3)
C18—C71.520 (2)C3—C21.375 (3)
C6—C51.384 (3)C3—H30.9300
C6—C11.388 (2)C15—C161.376 (3)
C6—C71.536 (2)C15—H150.9300
C14—C151.379 (2)C2—H20.9300
C14—C131.382 (2)C4—H40.9300
C14—H140.9300C9—H9A0.9700
C13—C101.519 (2)C9—H9B0.9700
C7—C81.538 (2)C16—H160.9300
C7—C91.558 (2)C8—H8A0.9600
C17—C161.377 (3)C8—H8B0.9600
C17—H170.9300C8—H8C0.9600
C10—C121.530 (2)C11—H11A0.9600
C10—C111.535 (3)C11—H11B0.9600
C10—C91.539 (2)C11—H11C0.9600
C1—C21.378 (3)C12—H12A0.9600
C1—H10.9300C12—H12B0.9600
C5—C41.385 (2)C12—H12C0.9600
C13—C18—C17119.85 (15)C16—C15—C14120.29 (16)
C13—C18—C7111.75 (13)C16—C15—H15119.9
C17—C18—C7128.40 (14)C14—C15—H15119.9
C5—C6—C1116.91 (16)C3—C2—C1120.35 (18)
C5—C6—C7122.83 (14)C3—C2—H2119.8
C1—C6—C7120.26 (15)C1—C2—H2119.8
C15—C14—C13119.63 (16)C3—C4—C5120.67 (18)
C15—C14—H14120.2C3—C4—H4119.7
C13—C14—H14120.2C5—C4—H4119.7
C14—C13—C18120.23 (15)C10—C9—C7108.20 (13)
C14—C13—C10128.01 (14)C10—C9—H9A110.1
C18—C13—C10111.76 (14)C7—C9—H9A110.1
C18—C7—C6112.36 (13)C10—C9—H9B110.1
C18—C7—C8111.23 (14)C7—C9—H9B110.1
C6—C7—C8109.72 (13)H9A—C9—H9B108.4
C18—C7—C9100.82 (13)C15—C16—C17120.42 (16)
C6—C7—C9111.63 (13)C15—C16—H16119.8
C8—C7—C9110.83 (14)C17—C16—H16119.8
C16—C17—C18119.56 (16)C7—C8—H8A109.5
C16—C17—H17120.2C7—C8—H8B109.5
C18—C17—H17120.2H8A—C8—H8B109.5
C13—C10—C12112.22 (14)C7—C8—H8C109.5
C13—C10—C11110.21 (14)H8A—C8—H8C109.5
C12—C10—C11109.67 (15)H8B—C8—H8C109.5
C13—C10—C9101.46 (13)C10—C11—H11A109.5
C12—C10—C9111.39 (15)C10—C11—H11B109.5
C11—C10—C9111.70 (15)H11A—C11—H11B109.5
C2—C1—C6121.72 (18)C10—C11—H11C109.5
C2—C1—H1119.1H11A—C11—H11C109.5
C6—C1—H1119.1H11B—C11—H11C109.5
C6—C5—C4121.37 (17)C10—C12—H12A109.5
C6—C5—H5119.3C10—C12—H12B109.5
C4—C5—H5119.3H12A—C12—H12B109.5
C4—C3—C2118.96 (18)C10—C12—H12C109.5
C4—C3—H3120.5H12A—C12—H12C109.5
C2—C3—H3120.5H12B—C12—H12C109.5

Experimental details

Crystal data
Chemical formulaC18H20
Mr236.34
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)8.192 (2), 8.426 (3), 11.113 (4)
α, β, γ (°)69.30 (3), 79.44 (5), 80.37 (2)
V3)701.0 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.06
Crystal size (mm)0.46 × 0.44 × 0.42
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3682, 2582, 1770
Rint0.007
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.117, 1.06
No. of reflections2582
No. of parameters170
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.14

Computer programs: DIFRAC (Gabe & White, 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

 

Acknowledgements

The authors are grateful to the National Undergraduates' Innovative Experiment Project of China for financial support, and thank Mr Zhi-Hua Mao of Sichuan University for the X-ray data collection.

References

First citationBateman, J. & Gordon, D. A. (1974). US Patent 3856752.  Google Scholar
First citationBateman, J. & Gordon, D. A. (1976). US Patent 3983092.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFeger, C., Khohasteh, M. M. & McGrath, J. E. (1989). Editors. Polyimides: Chemistry, Materials and Characterization. Amsterdam: Elsevier.  Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGabe, E. J. & White, P. S. (1993). Am. Crystallogr. Assoc. Pittsburgh Meet. Abstract PA104.  Google Scholar
First citationGhosh, M. K. & Mittal, K. L. (1996). Polyimides: Fundamentals and Applications. New York: Dekker.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds