metal-organic compounds
Bis[3-ethyl-4-(4-methoxyphenyl)-5-(2-pyridyl)-4H-1,2,4-triazole-κ2N1,N5]bis(perchlorato-κO)copper(II) acetonitrile disolvate
aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: wangzx0908@yahoo.com.cn
In the title compound, [Cu(ClO4)2(C16H16N4O)2]·2CH3CN, the CuII atom, located on an inversion center, is in a tetragonally distorted octahedral environment, coordinated by four N atoms of two bidentate 3-ethyl-4-(4-methoxyphenyl)-5-(2-pyridyl)-4H-1,2,4-triazole ligands in equatorial positions and by the O atoms of two perchlorate groups in axial positions. The long axial Cu—O bond of 2.4743 (17) Å is the result of the Jahn–Teller effect.
Related literature
For related literature, see: Bencini et al. (1987); Garcia et al. (1997); Kahn & Martinez (1998); Klingele et al. (2005, 2006); Koningsbruggen (2004); Koningsbruggen et al. (1995); Lavrenova & Larionov (1998); Matouzenko et al. (2004); Moliner et al. (1998, 2001); Wang et al. (2005); Zhou et al., (2006a,b).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku/MSC, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC.
Supporting information
10.1107/S1600536808012026/gk2140sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808012026/gk2140Isup2.hkl
The title compound was prepared by the reaction of 3-ethyl-4-(4-methoxyphenyl)-5-(2-pyridyl)-1,2,4-triazole with copper(II) perchlorate in acetonitrile. To a warm solution of 3-ethyl-4-(4-methoxyphenyl)-5-(2-pyridyl)-1,2,4-triazole (1.120 g, 4.0 mmol) in 20 ml acetonitrile, copper(II) perchlorate (0.525 g, 2.0 mmol) was added. After several days blue single crystals suitable for X-ray analysis were collected.
All H atoms were located in a difference Fourier map and allowed to ride on their parent atoms at distances of 0.93 Å(C—H aromatic), 0.97 Å(C—H methylene) and 0.96 Å(C—H methyl), and with Uiso(H) values of 1.2–1.5 times Ueq of the parent atoms.
Data collection: CrystalClear (Rigaku/MSC, 2005); cell
CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound with displacement ellipsoids shown at the 30% probability level. Symmetry code (i):-x + 1,-y + 1,-z + 1 |
[Cu(ClO4)2(C16H16N4O)2]·2C2H3N | Z = 1 |
Mr = 905.21 | F(000) = 467 |
Triclinic, P1 | Dx = 1.469 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.3286 (11) Å | Cell parameters from 2714 reflections |
b = 9.1266 (14) Å | θ = 3.1–27.5° |
c = 14.225 (2) Å | µ = 0.73 mm−1 |
α = 100.516 (7)° | T = 293 K |
β = 101.067 (4)° | Prism, blue |
γ = 98.780 (4)° | 0.20 × 0.20 × 0.20 mm |
V = 1023.4 (3) Å3 |
Rigaku Mercury2 diffractometer | 3565 independent reflections |
Radiation source: fine-focus sealed tube | 3170 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
Detector resolution: 13.6612 pixels mm-1 | θmax = 25.0°, θmin = 2.3° |
ω scans | h = −9→9 |
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) | k = −10→10 |
Tmin = 0.864, Tmax = 0.867 | l = −16→16 |
8302 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.120 | H-atom parameters constrained |
S = 1.16 | w = 1/[σ2(Fo2) + (0.0739P)2] where P = (Fo2 + 2Fc2)/3 |
3565 reflections | (Δ/σ)max < 0.001 |
271 parameters | Δρmax = 0.46 e Å−3 |
0 restraints | Δρmin = −0.54 e Å−3 |
[Cu(ClO4)2(C16H16N4O)2]·2C2H3N | γ = 98.780 (4)° |
Mr = 905.21 | V = 1023.4 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 8.3286 (11) Å | Mo Kα radiation |
b = 9.1266 (14) Å | µ = 0.73 mm−1 |
c = 14.225 (2) Å | T = 293 K |
α = 100.516 (7)° | 0.20 × 0.20 × 0.20 mm |
β = 101.067 (4)° |
Rigaku Mercury2 diffractometer | 3565 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) | 3170 reflections with I > 2σ(I) |
Tmin = 0.864, Tmax = 0.867 | Rint = 0.031 |
8302 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.120 | H-atom parameters constrained |
S = 1.16 | Δρmax = 0.46 e Å−3 |
3565 reflections | Δρmin = −0.54 e Å−3 |
271 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.5000 | 0.5000 | 0.5000 | 0.03204 (16) | |
Cl1 | 0.54072 (7) | 0.50192 (6) | 0.25312 (4) | 0.04015 (18) | |
O1 | −0.0616 (2) | −0.3362 (2) | 0.02788 (13) | 0.0619 (5) | |
O2 | 0.6082 (2) | 0.5545 (2) | 0.35718 (12) | 0.0508 (4) | |
O3 | 0.4928 (4) | 0.3415 (2) | 0.23080 (16) | 0.0795 (7) | |
O4 | 0.6656 (3) | 0.5460 (3) | 0.20330 (15) | 0.0827 (8) | |
O5 | 0.4003 (3) | 0.5667 (3) | 0.2258 (2) | 0.0942 (8) | |
N1 | 0.2619 (2) | 0.43579 (19) | 0.42008 (13) | 0.0325 (4) | |
N2 | 0.4977 (2) | 0.28147 (18) | 0.44924 (13) | 0.0329 (4) | |
N3 | 0.6125 (2) | 0.1869 (2) | 0.45117 (13) | 0.0370 (4) | |
N4 | 0.3825 (2) | 0.07416 (18) | 0.34047 (12) | 0.0315 (4) | |
N5 | 0.7131 (5) | 0.9957 (4) | 0.1193 (3) | 0.1093 (12) | |
C1 | 0.5401 (3) | 0.0628 (2) | 0.38456 (15) | 0.0354 (5) | |
C2 | 0.3617 (3) | 0.2129 (2) | 0.38257 (14) | 0.0302 (5) | |
C3 | 0.2210 (3) | 0.2907 (2) | 0.36606 (15) | 0.0305 (4) | |
C4 | 0.0646 (3) | 0.2305 (3) | 0.30709 (16) | 0.0401 (5) | |
H1 | 0.0398 | 0.1314 | 0.2703 | 0.048* | |
C5 | −0.0554 (3) | 0.3207 (3) | 0.30364 (18) | 0.0455 (6) | |
H2 | −0.1622 | 0.2825 | 0.2647 | 0.055* | |
C6 | −0.0147 (3) | 0.4656 (3) | 0.35806 (19) | 0.0470 (6) | |
H3 | −0.0940 | 0.5272 | 0.3566 | 0.056* | |
C7 | 0.1451 (3) | 0.5213 (2) | 0.41562 (17) | 0.0410 (5) | |
H4 | 0.1716 | 0.6208 | 0.4521 | 0.049* | |
C8 | 0.2691 (3) | −0.0342 (2) | 0.25825 (15) | 0.0317 (5) | |
C9 | 0.2728 (3) | −0.0173 (3) | 0.16435 (16) | 0.0419 (6) | |
H5 | 0.3484 | 0.0613 | 0.1543 | 0.050* | |
C10 | 0.1638 (3) | −0.1176 (3) | 0.08535 (17) | 0.0467 (6) | |
H10A | 0.1665 | −0.1073 | 0.0218 | 0.056* | |
C11 | 0.0513 (3) | −0.2327 (3) | 0.10070 (17) | 0.0425 (6) | |
C12 | 0.0493 (3) | −0.2497 (3) | 0.19559 (19) | 0.0491 (6) | |
H12A | −0.0261 | −0.3281 | 0.2059 | 0.059* | |
C13 | 0.1592 (3) | −0.1503 (3) | 0.27446 (17) | 0.0433 (6) | |
H13A | 0.1589 | −0.1618 | 0.3381 | 0.052* | |
C14 | −0.0529 (5) | −0.3328 (4) | −0.0708 (2) | 0.0801 (11) | |
H14A | −0.1345 | −0.4146 | −0.1148 | 0.120* | |
H14B | 0.0564 | −0.3439 | −0.0795 | 0.120* | |
H14C | −0.0748 | −0.2377 | −0.0845 | 0.120* | |
C15 | 0.6135 (3) | −0.0739 (3) | 0.3591 (2) | 0.0476 (6) | |
H15A | 0.6122 | −0.0932 | 0.2896 | 0.057* | |
H15B | 0.5440 | −0.1609 | 0.3710 | 0.057* | |
C16 | 0.7893 (3) | −0.0596 (3) | 0.4159 (2) | 0.0558 (7) | |
H16A | 0.8271 | −0.1528 | 0.3978 | 0.084* | |
H16B | 0.7922 | −0.0392 | 0.4849 | 0.084* | |
H16C | 0.8606 | 0.0221 | 0.4013 | 0.084* | |
C17 | 0.6382 (5) | 0.8821 (5) | 0.0784 (3) | 0.0736 (9) | |
C18 | 0.5389 (5) | 0.7344 (4) | 0.0255 (3) | 0.0826 (10) | |
H18A | 0.4634 | 0.6987 | 0.0633 | 0.124* | |
H18B | 0.6113 | 0.6636 | 0.0150 | 0.124* | |
H18C | 0.4766 | 0.7434 | −0.0367 | 0.124* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0291 (2) | 0.0242 (2) | 0.0355 (2) | 0.00483 (15) | −0.00289 (16) | −0.00093 (16) |
Cl1 | 0.0357 (3) | 0.0382 (3) | 0.0421 (3) | 0.0009 (2) | 0.0040 (2) | 0.0079 (3) |
O1 | 0.0567 (12) | 0.0558 (11) | 0.0491 (11) | −0.0125 (9) | −0.0083 (9) | −0.0088 (9) |
O2 | 0.0526 (11) | 0.0506 (10) | 0.0418 (9) | 0.0000 (8) | 0.0062 (8) | 0.0047 (8) |
O3 | 0.135 (2) | 0.0369 (10) | 0.0564 (12) | −0.0054 (12) | 0.0259 (13) | −0.0023 (9) |
O4 | 0.0610 (14) | 0.126 (2) | 0.0611 (12) | −0.0114 (13) | 0.0182 (11) | 0.0415 (14) |
O5 | 0.0570 (14) | 0.0994 (18) | 0.1069 (19) | 0.0306 (13) | −0.0222 (13) | 0.0044 (16) |
N1 | 0.0316 (9) | 0.0288 (9) | 0.0332 (9) | 0.0056 (7) | 0.0016 (7) | 0.0032 (7) |
N2 | 0.0332 (10) | 0.0277 (9) | 0.0323 (9) | 0.0052 (7) | −0.0005 (8) | 0.0016 (7) |
N3 | 0.0376 (10) | 0.0279 (9) | 0.0399 (10) | 0.0092 (8) | −0.0005 (8) | 0.0008 (8) |
N4 | 0.0342 (10) | 0.0241 (8) | 0.0312 (9) | 0.0021 (7) | 0.0023 (7) | 0.0014 (7) |
N5 | 0.121 (3) | 0.095 (3) | 0.104 (3) | −0.002 (2) | 0.036 (2) | 0.009 (2) |
C1 | 0.0390 (12) | 0.0282 (11) | 0.0342 (11) | 0.0045 (9) | 0.0036 (9) | 0.0016 (9) |
C2 | 0.0335 (11) | 0.0241 (9) | 0.0294 (10) | 0.0017 (8) | 0.0044 (9) | 0.0027 (8) |
C3 | 0.0315 (11) | 0.0270 (10) | 0.0290 (10) | 0.0018 (8) | 0.0023 (8) | 0.0041 (8) |
C4 | 0.0364 (12) | 0.0352 (12) | 0.0407 (12) | 0.0016 (10) | 0.0008 (10) | 0.0012 (10) |
C5 | 0.0300 (12) | 0.0494 (14) | 0.0483 (14) | 0.0028 (10) | −0.0041 (10) | 0.0062 (12) |
C6 | 0.0347 (12) | 0.0467 (13) | 0.0552 (14) | 0.0142 (11) | −0.0007 (11) | 0.0062 (12) |
C7 | 0.0379 (13) | 0.0329 (11) | 0.0475 (13) | 0.0090 (10) | 0.0033 (11) | 0.0021 (10) |
C8 | 0.0346 (11) | 0.0238 (10) | 0.0308 (10) | 0.0027 (9) | 0.0023 (9) | −0.0011 (8) |
C9 | 0.0464 (13) | 0.0348 (12) | 0.0366 (12) | −0.0056 (10) | 0.0059 (10) | 0.0023 (10) |
C10 | 0.0569 (16) | 0.0456 (13) | 0.0295 (11) | −0.0004 (12) | 0.0035 (11) | 0.0031 (10) |
C11 | 0.0409 (13) | 0.0345 (11) | 0.0393 (12) | 0.0012 (10) | −0.0031 (10) | −0.0064 (10) |
C12 | 0.0502 (15) | 0.0362 (12) | 0.0514 (14) | −0.0105 (11) | 0.0104 (12) | 0.0022 (11) |
C13 | 0.0509 (14) | 0.0363 (12) | 0.0359 (12) | −0.0048 (11) | 0.0089 (11) | 0.0028 (10) |
C14 | 0.093 (3) | 0.072 (2) | 0.0437 (16) | −0.0080 (19) | −0.0183 (16) | −0.0116 (15) |
C15 | 0.0515 (15) | 0.0332 (12) | 0.0524 (14) | 0.0174 (11) | 0.0020 (12) | −0.0022 (11) |
C16 | 0.0468 (15) | 0.0451 (14) | 0.0750 (19) | 0.0169 (12) | 0.0103 (14) | 0.0091 (13) |
C17 | 0.078 (2) | 0.085 (2) | 0.0633 (19) | 0.016 (2) | 0.0250 (18) | 0.0214 (19) |
C18 | 0.092 (3) | 0.087 (3) | 0.069 (2) | 0.019 (2) | 0.0183 (19) | 0.0167 (19) |
Cu1—N2i | 1.9892 (16) | C6—C7 | 1.387 (3) |
Cu1—N2 | 1.9892 (16) | C6—H3 | 0.9300 |
Cu1—N1 | 2.0261 (18) | C7—H4 | 0.9300 |
Cu1—N1i | 2.0261 (18) | C8—C13 | 1.375 (3) |
Cu1—O2 | 2.4743 (17) | C8—C9 | 1.378 (3) |
Cl1—O5 | 1.410 (2) | C9—C10 | 1.380 (3) |
Cl1—O4 | 1.416 (2) | C9—H5 | 0.9300 |
Cl1—O3 | 1.416 (2) | C10—C11 | 1.376 (3) |
Cl1—O2 | 1.4409 (18) | C10—H10A | 0.9300 |
O1—C11 | 1.359 (3) | C11—C12 | 1.389 (4) |
O1—C14 | 1.425 (4) | C12—C13 | 1.378 (3) |
N1—C7 | 1.336 (3) | C12—H12A | 0.9300 |
N1—C3 | 1.360 (3) | C13—H13A | 0.9300 |
N2—C2 | 1.315 (3) | C14—H14A | 0.9600 |
N2—N3 | 1.382 (2) | C14—H14B | 0.9600 |
N3—C1 | 1.313 (3) | C14—H14C | 0.9600 |
N4—C2 | 1.349 (2) | C15—C16 | 1.504 (4) |
N4—C1 | 1.370 (3) | C15—H15A | 0.9700 |
N4—C8 | 1.451 (2) | C15—H15B | 0.9700 |
N5—C17 | 1.116 (5) | C16—H16A | 0.9600 |
C1—C15 | 1.488 (3) | C16—H16B | 0.9600 |
C2—C3 | 1.463 (3) | C16—H16C | 0.9600 |
C3—C4 | 1.377 (3) | C17—C18 | 1.455 (5) |
C4—C5 | 1.387 (3) | C18—H18A | 0.9600 |
C4—H1 | 0.9300 | C18—H18B | 0.9600 |
C5—C6 | 1.361 (3) | C18—H18C | 0.9600 |
C5—H2 | 0.9300 | ||
N2i—Cu1—N2 | 180.0 | N1—C7—C6 | 121.7 (2) |
N2i—Cu1—N1 | 99.31 (7) | N1—C7—H4 | 119.1 |
N2—Cu1—N1 | 80.69 (7) | C6—C7—H4 | 119.1 |
N2i—Cu1—N1i | 80.69 (7) | C13—C8—C9 | 120.95 (19) |
N2—Cu1—N1i | 99.31 (7) | C13—C8—N4 | 120.21 (18) |
N1—Cu1—N1i | 180.0 | C9—C8—N4 | 118.83 (18) |
N2i—Cu1—O2 | 92.07 (7) | C8—C9—C10 | 119.6 (2) |
N2—Cu1—O2 | 87.93 (7) | C8—C9—H5 | 120.2 |
N1—Cu1—O2 | 92.61 (7) | C10—C9—H5 | 120.2 |
N1i—Cu1—O2 | 87.39 (7) | C11—C10—C9 | 119.9 (2) |
O5—Cl1—O4 | 110.60 (17) | C11—C10—H10A | 120.0 |
O5—Cl1—O3 | 109.64 (17) | C9—C10—H10A | 120.0 |
O4—Cl1—O3 | 109.77 (15) | O1—C11—C10 | 124.3 (2) |
O5—Cl1—O2 | 109.11 (14) | O1—C11—C12 | 115.6 (2) |
O4—Cl1—O2 | 108.51 (12) | C10—C11—C12 | 120.0 (2) |
O3—Cl1—O2 | 109.19 (12) | C13—C12—C11 | 120.0 (2) |
C11—O1—C14 | 117.6 (2) | C13—C12—H12A | 120.0 |
Cl1—O2—Cu1 | 131.53 (10) | C11—C12—H12A | 120.0 |
C7—N1—C3 | 118.35 (18) | C8—C13—C12 | 119.4 (2) |
C7—N1—Cu1 | 126.54 (14) | C8—C13—H13A | 120.3 |
C3—N1—Cu1 | 115.11 (14) | C12—C13—H13A | 120.3 |
C2—N2—N3 | 109.04 (16) | O1—C14—H14A | 109.5 |
C2—N2—Cu1 | 112.95 (14) | O1—C14—H14B | 109.5 |
N3—N2—Cu1 | 136.71 (14) | H14A—C14—H14B | 109.5 |
C1—N3—N2 | 105.81 (18) | O1—C14—H14C | 109.5 |
C2—N4—C1 | 105.79 (17) | H14A—C14—H14C | 109.5 |
C2—N4—C8 | 127.23 (18) | H14B—C14—H14C | 109.5 |
C1—N4—C8 | 126.67 (17) | C1—C15—C16 | 113.9 (2) |
N3—C1—N4 | 110.41 (18) | C1—C15—H15A | 108.8 |
N3—C1—C15 | 126.3 (2) | C16—C15—H15A | 108.8 |
N4—C1—C15 | 123.28 (19) | C1—C15—H15B | 108.8 |
N2—C2—N4 | 108.94 (18) | C16—C15—H15B | 108.8 |
N2—C2—C3 | 119.51 (17) | H15A—C15—H15B | 107.7 |
N4—C2—C3 | 131.54 (18) | C15—C16—H16A | 109.5 |
N1—C3—C4 | 122.13 (19) | C15—C16—H16B | 109.5 |
N1—C3—C2 | 110.79 (17) | H16A—C16—H16B | 109.5 |
C4—C3—C2 | 127.06 (18) | C15—C16—H16C | 109.5 |
C3—C4—C5 | 118.8 (2) | H16A—C16—H16C | 109.5 |
C3—C4—H1 | 120.6 | H16B—C16—H16C | 109.5 |
C5—C4—H1 | 120.6 | N5—C17—C18 | 179.4 (5) |
C6—C5—C4 | 119.1 (2) | C17—C18—H18A | 109.5 |
C6—C5—H2 | 120.4 | C17—C18—H18B | 109.5 |
C4—C5—H2 | 120.4 | H18A—C18—H18B | 109.5 |
C5—C6—C7 | 119.9 (2) | C17—C18—H18C | 109.5 |
C5—C6—H3 | 120.0 | H18A—C18—H18C | 109.5 |
C7—C6—H3 | 120.0 | H18B—C18—H18C | 109.5 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu(ClO4)2(C16H16N4O)2]·2C2H3N |
Mr | 905.21 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 8.3286 (11), 9.1266 (14), 14.225 (2) |
α, β, γ (°) | 100.516 (7), 101.067 (4), 98.780 (4) |
V (Å3) | 1023.4 (3) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.73 |
Crystal size (mm) | 0.20 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Rigaku Mercury2 diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku/MSC, 2005) |
Tmin, Tmax | 0.864, 0.867 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8302, 3565, 3170 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.120, 1.16 |
No. of reflections | 3565 |
No. of parameters | 271 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.46, −0.54 |
Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).
Cu1—N2 | 1.9892 (16) | Cu1—O2 | 2.4743 (17) |
Cu1—N1 | 2.0261 (18) | ||
N2i—Cu1—N2 | 180.0 | N2i—Cu1—O2 | 92.07 (7) |
N2i—Cu1—N1 | 99.31 (7) | N2—Cu1—O2 | 87.93 (7) |
N2—Cu1—N1 | 80.69 (7) | N1—Cu1—O2 | 92.61 (7) |
N1—Cu1—N1i | 180.0 | N1i—Cu1—O2 | 87.39 (7) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Acknowledgements
We are grateful to Jingye Pharmochemical Pilot Plant for financial assistance through project 8507041056.
References
Bencini, A., Gatteschi, D., Zanchini, C., Haasnoot, J. G., Prins, R. & Reedijk, J. (1987). J. Am. Chem. Soc. 109, 2926–2931. CrossRef CAS Web of Science Google Scholar
Garcia, Y., Koningsbruggen, P. J., Codjovi, E., Lapouyade, R., Kahn, O. & Rabardel, L. (1997). J. Mater. Chem. 7, 857–858. CrossRef CAS Web of Science Google Scholar
Kahn, O. & Martinez, C. J. (1998). Science, 279, 44–48. Web of Science CrossRef CAS Google Scholar
Klingele, M. H., Boyd, P. D. W., Moubaraki, B., Murray, K. S. & Brooker, S. (2005). Eur. J. Inorg. Chem. pp. 910–918. Web of Science CSD CrossRef Google Scholar
Klingele, M. H., Boyd, P. D. W., Moubaraki, B., Murray, K. S. & Brooker, S. (2006). Eur. J. Inorg. Chem. pp. 573–589. Web of Science CSD CrossRef Google Scholar
Koningsbruggen, P. J. (2004). Top. Curr. Chem. 233, 123–149. CrossRef Google Scholar
Koningsbruggen, P. J., Gatteshi, D., Graaff, R. A. G., Hassnoot, J. G., Reedijk, J. & Zanchini, C. (1995). Inorg. Chem. 34, 5175–5182. CrossRef Web of Science Google Scholar
Lavrenova, L. G. & Larionov, S. V. (1998). Russ. J. Coord. Chem. 24, 379–395. CAS Google Scholar
Matouzenko, G. S., Bousseksou, A., Borshch, S. A., Perrin, M., Zein, S., Salmon, L., Molnar, G. & Lecocq, S. (2004). Inorg. Chem. 43, 227–236. Web of Science CSD CrossRef PubMed CAS Google Scholar
Moliner, N., Gaspar, A. B., Munoz, M. C., Niel, V., Cano, J. & Real, J. A. (2001). Inorg. Chem. 40, 3986–3991. Web of Science CSD CrossRef PubMed CAS Google Scholar
Moliner, N., Munoz, M. C., Koningsbruggen, P. J. & Real, J. A. (1998). Inorg. Chim. Acta, 274, 1–6. Web of Science CSD CrossRef CAS Google Scholar
Rigaku/MSC (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, Z.-X., Lan, Y., Yuan, L.-T. & Liu, C.-Y. (2005). Acta Cryst. E61, o2033–o2034. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhou, A.-Y., Wang, Z.-X., Lan, Y., Yuan, L.-T. & Liu, C.-Y. (2006a). Acta Cryst. E62, m591–m592. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhou, B.-G., Wang, Z.-X., Qiu, X.-Y. & Liu, C.-Y. (2006b). Acta Cryst. E62, m3176–m3177. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
1,2,4-Triazole derivatives can be used as bridging ligands in transition metal coordination chemistry (Bencini et al., 1987; Koningsbruggen et al., 1995; Moliner et al., 1998, 2001; Klingele et al., 2005, 2006). Some spin-crossover complexes of 1,2,4-triazoles with iron(II) salts have been reported with potential applications as molecular-based memory devices, displays and optical switches (Garcia et al., 1997; Lavrenova & Larionov, 1998; Kahn & Martinez, 1998; Koningsbruggen 2004; Matouzenko et al., 2004). Recently we have reported synthesis of some new 3,4-disubstituted-5-(2-pyridyl)-1,2,4-triazole ligands and crystal structures of their transition-metal complexes (Wang et al., 2005; Zhou et al., 2006a,b). Here we report the crystal structure of the title compound (Fig. 1). The CuII atom is located on an inversion center. It shows a tetragonally distorted octahedral coordination geometry and is coordinated by two bis-chelating 3-ethyl-4-(4-methoxyphenyl)-5-(2-pyridyl)-1,2,4-triazole ligands with the CuN2N'2 chromophore in the equatorial plane and two O atoms of two perchlorate groups in axial positions.