metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m741-m742

Bis[3-ethyl-4-(4-meth­oxy­phen­yl)-5-(2-pyrid­yl)-4H-1,2,4-triazole-κ2N1,N5]bis­­(perchlorato-κO)copper(II) aceto­nitrile disolvate

aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: wangzx0908@yahoo.com.cn

(Received 25 March 2008; accepted 25 April 2008; online 30 April 2008)

In the title compound, [Cu(ClO4)2(C16H16N4O)2]·2CH3CN, the CuII atom, located on an inversion center, is in a tetra­gonally distorted octa­hedral environment, coordinated by four N atoms of two bidentate 3-ethyl-4-(4-methoxy­phen­yl)-5-(2-pyrid­yl)-4H-1,2,4-triazole ligands in equatorial positions and by the O atoms of two perchlorate groups in axial positions. The long axial Cu—O bond of 2.4743 (17) Å is the result of the Jahn–Teller effect.

Related literature

For related literature, see: Bencini et al. (1987[Bencini, A., Gatteschi, D., Zanchini, C., Haasnoot, J. G., Prins, R. & Reedijk, J. (1987). J. Am. Chem. Soc. 109, 2926-2931.]); Garcia et al. (1997[Garcia, Y., Koningsbruggen, P. J., Codjovi, E., Lapouyade, R., Kahn, O. & Rabardel, L. (1997). J. Mater. Chem. 7, 857-858.]); Kahn & Martinez (1998[Kahn, O. & Martinez, C. J. (1998). Science, 279, 44-48.]); Klingele et al. (2005[Klingele, M. H., Boyd, P. D. W., Moubaraki, B., Murray, K. S. & Brooker, S. (2005). Eur. J. Inorg. Chem. pp. 910-918.], 2006[Klingele, M. H., Boyd, P. D. W., Moubaraki, B., Murray, K. S. & Brooker, S. (2006). Eur. J. Inorg. Chem. pp. 573-589.]); Koningsbruggen (2004[Koningsbruggen, P. J. (2004). Top. Curr. Chem. 233, 123-149.]); Koningsbruggen et al. (1995[Koningsbruggen, P. J., Gatteshi, D., Graaff, R. A. G., Hassnoot, J. G., Reedijk, J. & Zanchini, C. (1995). Inorg. Chem. 34, 5175-5182.]); Lavrenova & Larionov (1998[Lavrenova, L. G. & Larionov, S. V. (1998). Russ. J. Coord. Chem. 24, 379-395.]); Matouzenko et al. (2004[Matouzenko, G. S., Bousseksou, A., Borshch, S. A., Perrin, M., Zein, S., Salmon, L., Molnar, G. & Lecocq, S. (2004). Inorg. Chem. 43, 227-236.]); Moliner et al. (1998[Moliner, N., Munoz, M. C., Koningsbruggen, P. J. & Real, J. A. (1998). Inorg. Chim. Acta, 274, 1-6.], 2001[Moliner, N., Gaspar, A. B., Munoz, M. C., Niel, V., Cano, J. & Real, J. A. (2001). Inorg. Chem. 40, 3986-3991.]); Wang et al. (2005[Wang, Z.-X., Lan, Y., Yuan, L.-T. & Liu, C.-Y. (2005). Acta Cryst. E61, o2033-o2034.]); Zhou et al., (2006a[Zhou, A.-Y., Wang, Z.-X., Lan, Y., Yuan, L.-T. & Liu, C.-Y. (2006a). Acta Cryst. E62, m591-m592.],b[Zhou, B.-G., Wang, Z.-X., Qiu, X.-Y. & Liu, C.-Y. (2006b). Acta Cryst. E62, m3176-m3177.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(ClO4)2(C16H16N4O)2]·2C2H3N

  • Mr = 905.21

  • Triclinic, [P \overline 1]

  • a = 8.3286 (11) Å

  • b = 9.1266 (14) Å

  • c = 14.225 (2) Å

  • α = 100.516 (7)°

  • β = 101.067 (4)°

  • γ = 98.780 (4)°

  • V = 1023.4 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.73 mm−1

  • T = 293 (2) K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.864, Tmax = 0.867

  • 8302 measured reflections

  • 3565 independent reflections

  • 3170 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.120

  • S = 1.16

  • 3565 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—N2 1.9892 (16)
Cu1—N1 2.0261 (18)
Cu1—O2 2.4743 (17)
N2i—Cu1—N2 180
N2i—Cu1—N1 99.31 (7)
N2—Cu1—N1 80.69 (7)
N1—Cu1—N1i 180
N2i—Cu1—O2 92.07 (7)
N2—Cu1—O2 87.93 (7)
N1—Cu1—O2 92.61 (7)
N1i—Cu1—O2 87.39 (7)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

1,2,4-Triazole derivatives can be used as bridging ligands in transition metal coordination chemistry (Bencini et al., 1987; Koningsbruggen et al., 1995; Moliner et al., 1998, 2001; Klingele et al., 2005, 2006). Some spin-crossover complexes of 1,2,4-triazoles with iron(II) salts have been reported with potential applications as molecular-based memory devices, displays and optical switches (Garcia et al., 1997; Lavrenova & Larionov, 1998; Kahn & Martinez, 1998; Koningsbruggen 2004; Matouzenko et al., 2004). Recently we have reported synthesis of some new 3,4-disubstituted-5-(2-pyridyl)-1,2,4-triazole ligands and crystal structures of their transition-metal complexes (Wang et al., 2005; Zhou et al., 2006a,b). Here we report the crystal structure of the title compound (Fig. 1). The CuII atom is located on an inversion center. It shows a tetragonally distorted octahedral coordination geometry and is coordinated by two bis-chelating 3-ethyl-4-(4-methoxyphenyl)-5-(2-pyridyl)-1,2,4-triazole ligands with the CuN2N'2 chromophore in the equatorial plane and two O atoms of two perchlorate groups in axial positions.

Related literature top

For related literature, see: Bencini et al. (1987); Garcia et al. (1997); Kahn & Martinez (1998); Klingele et al. (2005, 2006); Koningsbruggen (2004); Koningsbruggen et al. (1995); Lavrenova & Larionov (1998); Matouzenko et al. (2004); Moliner et al. (1998, 2001); Wang et al. (2005); Zhou et al., (2006a,b).

Experimental top

The title compound was prepared by the reaction of 3-ethyl-4-(4-methoxyphenyl)-5-(2-pyridyl)-1,2,4-triazole with copper(II) perchlorate in acetonitrile. To a warm solution of 3-ethyl-4-(4-methoxyphenyl)-5-(2-pyridyl)-1,2,4-triazole (1.120 g, 4.0 mmol) in 20 ml acetonitrile, copper(II) perchlorate (0.525 g, 2.0 mmol) was added. After several days blue single crystals suitable for X-ray analysis were collected.

Refinement top

All H atoms were located in a difference Fourier map and allowed to ride on their parent atoms at distances of 0.93 Å(C—H aromatic), 0.97 Å(C—H methylene) and 0.96 Å(C—H methyl), and with Uiso(H) values of 1.2–1.5 times Ueq of the parent atoms.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids shown at the 30% probability level. Symmetry code (i):-x + 1,-y + 1,-z + 1
Bis[3-ethyl-4-(4-methoxyphenyl)-5-(2-pyridyl)-4H-1,2,4-triazole- κ2N1,N5]bis(perchlorato-κO)copper(II) acetonitrile disolvate top
Crystal data top
[Cu(ClO4)2(C16H16N4O)2]·2C2H3NZ = 1
Mr = 905.21F(000) = 467
Triclinic, P1Dx = 1.469 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3286 (11) ÅCell parameters from 2714 reflections
b = 9.1266 (14) Åθ = 3.1–27.5°
c = 14.225 (2) ŵ = 0.73 mm1
α = 100.516 (7)°T = 293 K
β = 101.067 (4)°Prism, blue
γ = 98.780 (4)°0.20 × 0.20 × 0.20 mm
V = 1023.4 (3) Å3
Data collection top
Rigaku Mercury2
diffractometer
3565 independent reflections
Radiation source: fine-focus sealed tube3170 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 13.6612 pixels mm-1θmax = 25.0°, θmin = 2.3°
ω scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1010
Tmin = 0.864, Tmax = 0.867l = 1616
8302 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0739P)2]
where P = (Fo2 + 2Fc2)/3
3565 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
[Cu(ClO4)2(C16H16N4O)2]·2C2H3Nγ = 98.780 (4)°
Mr = 905.21V = 1023.4 (3) Å3
Triclinic, P1Z = 1
a = 8.3286 (11) ÅMo Kα radiation
b = 9.1266 (14) ŵ = 0.73 mm1
c = 14.225 (2) ÅT = 293 K
α = 100.516 (7)°0.20 × 0.20 × 0.20 mm
β = 101.067 (4)°
Data collection top
Rigaku Mercury2
diffractometer
3565 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
3170 reflections with I > 2σ(I)
Tmin = 0.864, Tmax = 0.867Rint = 0.031
8302 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.16Δρmax = 0.46 e Å3
3565 reflectionsΔρmin = 0.54 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.50000.50000.03204 (16)
Cl10.54072 (7)0.50192 (6)0.25312 (4)0.04015 (18)
O10.0616 (2)0.3362 (2)0.02788 (13)0.0619 (5)
O20.6082 (2)0.5545 (2)0.35718 (12)0.0508 (4)
O30.4928 (4)0.3415 (2)0.23080 (16)0.0795 (7)
O40.6656 (3)0.5460 (3)0.20330 (15)0.0827 (8)
O50.4003 (3)0.5667 (3)0.2258 (2)0.0942 (8)
N10.2619 (2)0.43579 (19)0.42008 (13)0.0325 (4)
N20.4977 (2)0.28147 (18)0.44924 (13)0.0329 (4)
N30.6125 (2)0.1869 (2)0.45117 (13)0.0370 (4)
N40.3825 (2)0.07416 (18)0.34047 (12)0.0315 (4)
N50.7131 (5)0.9957 (4)0.1193 (3)0.1093 (12)
C10.5401 (3)0.0628 (2)0.38456 (15)0.0354 (5)
C20.3617 (3)0.2129 (2)0.38257 (14)0.0302 (5)
C30.2210 (3)0.2907 (2)0.36606 (15)0.0305 (4)
C40.0646 (3)0.2305 (3)0.30709 (16)0.0401 (5)
H10.03980.13140.27030.048*
C50.0554 (3)0.3207 (3)0.30364 (18)0.0455 (6)
H20.16220.28250.26470.055*
C60.0147 (3)0.4656 (3)0.35806 (19)0.0470 (6)
H30.09400.52720.35660.056*
C70.1451 (3)0.5213 (2)0.41562 (17)0.0410 (5)
H40.17160.62080.45210.049*
C80.2691 (3)0.0342 (2)0.25825 (15)0.0317 (5)
C90.2728 (3)0.0173 (3)0.16435 (16)0.0419 (6)
H50.34840.06130.15430.050*
C100.1638 (3)0.1176 (3)0.08535 (17)0.0467 (6)
H10A0.16650.10730.02180.056*
C110.0513 (3)0.2327 (3)0.10070 (17)0.0425 (6)
C120.0493 (3)0.2497 (3)0.19559 (19)0.0491 (6)
H12A0.02610.32810.20590.059*
C130.1592 (3)0.1503 (3)0.27446 (17)0.0433 (6)
H13A0.15890.16180.33810.052*
C140.0529 (5)0.3328 (4)0.0708 (2)0.0801 (11)
H14A0.13450.41460.11480.120*
H14B0.05640.34390.07950.120*
H14C0.07480.23770.08450.120*
C150.6135 (3)0.0739 (3)0.3591 (2)0.0476 (6)
H15A0.61220.09320.28960.057*
H15B0.54400.16090.37100.057*
C160.7893 (3)0.0596 (3)0.4159 (2)0.0558 (7)
H16A0.82710.15280.39780.084*
H16B0.79220.03920.48490.084*
H16C0.86060.02210.40130.084*
C170.6382 (5)0.8821 (5)0.0784 (3)0.0736 (9)
C180.5389 (5)0.7344 (4)0.0255 (3)0.0826 (10)
H18A0.46340.69870.06330.124*
H18B0.61130.66360.01500.124*
H18C0.47660.74340.03670.124*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0291 (2)0.0242 (2)0.0355 (2)0.00483 (15)0.00289 (16)0.00093 (16)
Cl10.0357 (3)0.0382 (3)0.0421 (3)0.0009 (2)0.0040 (2)0.0079 (3)
O10.0567 (12)0.0558 (11)0.0491 (11)0.0125 (9)0.0083 (9)0.0088 (9)
O20.0526 (11)0.0506 (10)0.0418 (9)0.0000 (8)0.0062 (8)0.0047 (8)
O30.135 (2)0.0369 (10)0.0564 (12)0.0054 (12)0.0259 (13)0.0023 (9)
O40.0610 (14)0.126 (2)0.0611 (12)0.0114 (13)0.0182 (11)0.0415 (14)
O50.0570 (14)0.0994 (18)0.1069 (19)0.0306 (13)0.0222 (13)0.0044 (16)
N10.0316 (9)0.0288 (9)0.0332 (9)0.0056 (7)0.0016 (7)0.0032 (7)
N20.0332 (10)0.0277 (9)0.0323 (9)0.0052 (7)0.0005 (8)0.0016 (7)
N30.0376 (10)0.0279 (9)0.0399 (10)0.0092 (8)0.0005 (8)0.0008 (8)
N40.0342 (10)0.0241 (8)0.0312 (9)0.0021 (7)0.0023 (7)0.0014 (7)
N50.121 (3)0.095 (3)0.104 (3)0.002 (2)0.036 (2)0.009 (2)
C10.0390 (12)0.0282 (11)0.0342 (11)0.0045 (9)0.0036 (9)0.0016 (9)
C20.0335 (11)0.0241 (9)0.0294 (10)0.0017 (8)0.0044 (9)0.0027 (8)
C30.0315 (11)0.0270 (10)0.0290 (10)0.0018 (8)0.0023 (8)0.0041 (8)
C40.0364 (12)0.0352 (12)0.0407 (12)0.0016 (10)0.0008 (10)0.0012 (10)
C50.0300 (12)0.0494 (14)0.0483 (14)0.0028 (10)0.0041 (10)0.0062 (12)
C60.0347 (12)0.0467 (13)0.0552 (14)0.0142 (11)0.0007 (11)0.0062 (12)
C70.0379 (13)0.0329 (11)0.0475 (13)0.0090 (10)0.0033 (11)0.0021 (10)
C80.0346 (11)0.0238 (10)0.0308 (10)0.0027 (9)0.0023 (9)0.0011 (8)
C90.0464 (13)0.0348 (12)0.0366 (12)0.0056 (10)0.0059 (10)0.0023 (10)
C100.0569 (16)0.0456 (13)0.0295 (11)0.0004 (12)0.0035 (11)0.0031 (10)
C110.0409 (13)0.0345 (11)0.0393 (12)0.0012 (10)0.0031 (10)0.0064 (10)
C120.0502 (15)0.0362 (12)0.0514 (14)0.0105 (11)0.0104 (12)0.0022 (11)
C130.0509 (14)0.0363 (12)0.0359 (12)0.0048 (11)0.0089 (11)0.0028 (10)
C140.093 (3)0.072 (2)0.0437 (16)0.0080 (19)0.0183 (16)0.0116 (15)
C150.0515 (15)0.0332 (12)0.0524 (14)0.0174 (11)0.0020 (12)0.0022 (11)
C160.0468 (15)0.0451 (14)0.0750 (19)0.0169 (12)0.0103 (14)0.0091 (13)
C170.078 (2)0.085 (2)0.0633 (19)0.016 (2)0.0250 (18)0.0214 (19)
C180.092 (3)0.087 (3)0.069 (2)0.019 (2)0.0183 (19)0.0167 (19)
Geometric parameters (Å, º) top
Cu1—N2i1.9892 (16)C6—C71.387 (3)
Cu1—N21.9892 (16)C6—H30.9300
Cu1—N12.0261 (18)C7—H40.9300
Cu1—N1i2.0261 (18)C8—C131.375 (3)
Cu1—O22.4743 (17)C8—C91.378 (3)
Cl1—O51.410 (2)C9—C101.380 (3)
Cl1—O41.416 (2)C9—H50.9300
Cl1—O31.416 (2)C10—C111.376 (3)
Cl1—O21.4409 (18)C10—H10A0.9300
O1—C111.359 (3)C11—C121.389 (4)
O1—C141.425 (4)C12—C131.378 (3)
N1—C71.336 (3)C12—H12A0.9300
N1—C31.360 (3)C13—H13A0.9300
N2—C21.315 (3)C14—H14A0.9600
N2—N31.382 (2)C14—H14B0.9600
N3—C11.313 (3)C14—H14C0.9600
N4—C21.349 (2)C15—C161.504 (4)
N4—C11.370 (3)C15—H15A0.9700
N4—C81.451 (2)C15—H15B0.9700
N5—C171.116 (5)C16—H16A0.9600
C1—C151.488 (3)C16—H16B0.9600
C2—C31.463 (3)C16—H16C0.9600
C3—C41.377 (3)C17—C181.455 (5)
C4—C51.387 (3)C18—H18A0.9600
C4—H10.9300C18—H18B0.9600
C5—C61.361 (3)C18—H18C0.9600
C5—H20.9300
N2i—Cu1—N2180.0N1—C7—C6121.7 (2)
N2i—Cu1—N199.31 (7)N1—C7—H4119.1
N2—Cu1—N180.69 (7)C6—C7—H4119.1
N2i—Cu1—N1i80.69 (7)C13—C8—C9120.95 (19)
N2—Cu1—N1i99.31 (7)C13—C8—N4120.21 (18)
N1—Cu1—N1i180.0C9—C8—N4118.83 (18)
N2i—Cu1—O292.07 (7)C8—C9—C10119.6 (2)
N2—Cu1—O287.93 (7)C8—C9—H5120.2
N1—Cu1—O292.61 (7)C10—C9—H5120.2
N1i—Cu1—O287.39 (7)C11—C10—C9119.9 (2)
O5—Cl1—O4110.60 (17)C11—C10—H10A120.0
O5—Cl1—O3109.64 (17)C9—C10—H10A120.0
O4—Cl1—O3109.77 (15)O1—C11—C10124.3 (2)
O5—Cl1—O2109.11 (14)O1—C11—C12115.6 (2)
O4—Cl1—O2108.51 (12)C10—C11—C12120.0 (2)
O3—Cl1—O2109.19 (12)C13—C12—C11120.0 (2)
C11—O1—C14117.6 (2)C13—C12—H12A120.0
Cl1—O2—Cu1131.53 (10)C11—C12—H12A120.0
C7—N1—C3118.35 (18)C8—C13—C12119.4 (2)
C7—N1—Cu1126.54 (14)C8—C13—H13A120.3
C3—N1—Cu1115.11 (14)C12—C13—H13A120.3
C2—N2—N3109.04 (16)O1—C14—H14A109.5
C2—N2—Cu1112.95 (14)O1—C14—H14B109.5
N3—N2—Cu1136.71 (14)H14A—C14—H14B109.5
C1—N3—N2105.81 (18)O1—C14—H14C109.5
C2—N4—C1105.79 (17)H14A—C14—H14C109.5
C2—N4—C8127.23 (18)H14B—C14—H14C109.5
C1—N4—C8126.67 (17)C1—C15—C16113.9 (2)
N3—C1—N4110.41 (18)C1—C15—H15A108.8
N3—C1—C15126.3 (2)C16—C15—H15A108.8
N4—C1—C15123.28 (19)C1—C15—H15B108.8
N2—C2—N4108.94 (18)C16—C15—H15B108.8
N2—C2—C3119.51 (17)H15A—C15—H15B107.7
N4—C2—C3131.54 (18)C15—C16—H16A109.5
N1—C3—C4122.13 (19)C15—C16—H16B109.5
N1—C3—C2110.79 (17)H16A—C16—H16B109.5
C4—C3—C2127.06 (18)C15—C16—H16C109.5
C3—C4—C5118.8 (2)H16A—C16—H16C109.5
C3—C4—H1120.6H16B—C16—H16C109.5
C5—C4—H1120.6N5—C17—C18179.4 (5)
C6—C5—C4119.1 (2)C17—C18—H18A109.5
C6—C5—H2120.4C17—C18—H18B109.5
C4—C5—H2120.4H18A—C18—H18B109.5
C5—C6—C7119.9 (2)C17—C18—H18C109.5
C5—C6—H3120.0H18A—C18—H18C109.5
C7—C6—H3120.0H18B—C18—H18C109.5
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(ClO4)2(C16H16N4O)2]·2C2H3N
Mr905.21
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.3286 (11), 9.1266 (14), 14.225 (2)
α, β, γ (°)100.516 (7), 101.067 (4), 98.780 (4)
V3)1023.4 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.73
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.864, 0.867
No. of measured, independent and
observed [I > 2σ(I)] reflections
8302, 3565, 3170
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.120, 1.16
No. of reflections3565
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.54

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—N21.9892 (16)Cu1—O22.4743 (17)
Cu1—N12.0261 (18)
N2i—Cu1—N2180.0N2i—Cu1—O292.07 (7)
N2i—Cu1—N199.31 (7)N2—Cu1—O287.93 (7)
N2—Cu1—N180.69 (7)N1—Cu1—O292.61 (7)
N1—Cu1—N1i180.0N1i—Cu1—O287.39 (7)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We are grateful to Jingye Pharmochemical Pilot Plant for financial assistance through project 8507041056.

References

First citationBencini, A., Gatteschi, D., Zanchini, C., Haasnoot, J. G., Prins, R. & Reedijk, J. (1987). J. Am. Chem. Soc. 109, 2926–2931.  CrossRef CAS Web of Science Google Scholar
First citationGarcia, Y., Koningsbruggen, P. J., Codjovi, E., Lapouyade, R., Kahn, O. & Rabardel, L. (1997). J. Mater. Chem. 7, 857–858.  CrossRef CAS Web of Science Google Scholar
First citationKahn, O. & Martinez, C. J. (1998). Science, 279, 44–48.  Web of Science CrossRef CAS Google Scholar
First citationKlingele, M. H., Boyd, P. D. W., Moubaraki, B., Murray, K. S. & Brooker, S. (2005). Eur. J. Inorg. Chem. pp. 910–918.  Web of Science CSD CrossRef Google Scholar
First citationKlingele, M. H., Boyd, P. D. W., Moubaraki, B., Murray, K. S. & Brooker, S. (2006). Eur. J. Inorg. Chem. pp. 573–589.  Web of Science CSD CrossRef Google Scholar
First citationKoningsbruggen, P. J. (2004). Top. Curr. Chem. 233, 123–149.  CrossRef Google Scholar
First citationKoningsbruggen, P. J., Gatteshi, D., Graaff, R. A. G., Hassnoot, J. G., Reedijk, J. & Zanchini, C. (1995). Inorg. Chem. 34, 5175–5182.  CrossRef Web of Science Google Scholar
First citationLavrenova, L. G. & Larionov, S. V. (1998). Russ. J. Coord. Chem. 24, 379–395.  CAS Google Scholar
First citationMatouzenko, G. S., Bousseksou, A., Borshch, S. A., Perrin, M., Zein, S., Salmon, L., Molnar, G. & Lecocq, S. (2004). Inorg. Chem. 43, 227–236.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMoliner, N., Gaspar, A. B., Munoz, M. C., Niel, V., Cano, J. & Real, J. A. (2001). Inorg. Chem. 40, 3986–3991.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMoliner, N., Munoz, M. C., Koningsbruggen, P. J. & Real, J. A. (1998). Inorg. Chim. Acta, 274, 1–6.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z.-X., Lan, Y., Yuan, L.-T. & Liu, C.-Y. (2005). Acta Cryst. E61, o2033–o2034.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, A.-Y., Wang, Z.-X., Lan, Y., Yuan, L.-T. & Liu, C.-Y. (2006a). Acta Cryst. E62, m591–m592.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, B.-G., Wang, Z.-X., Qiu, X.-Y. & Liu, C.-Y. (2006b). Acta Cryst. E62, m3176–m3177.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m741-m742
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds