organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Allyl-3,3-di-p-tolyl­indolin-2-one

aDepartment of Physics, Easwari Engineering College, Ramapuram, Chennai 600 089, India, bDepartment of Physics, SRM University, Ramapuram Campus, Chennai 600 089, India, and cPost Graduate Research, Department of Chemistry, The New College, Chennai 600 014, India
*Correspondence e-mail: sudharose18@gmail.com

(Received 6 December 2007; accepted 13 April 2008; online 23 April 2008)

In the title compound, C25H23NO, the indoline system is essentially planar. The mol­ecular structure is stabilized by weak intra­molecular C—H⋯N inter­actions and the crystal packing is determined by inter­molecular C—H⋯π inter­actions.

Related literature

For related literature, see: Harris & Uhle (1960[Harris, L. S. & Uhle, F. C. (1960). J. Pharmacol. Exp. Ther. 128, 353-363.]); Ho et al. (1986[Ho, C. Y., Haegman, W. E. & Perisco, F. (1986). J. Med. Chem. 29, 118-121.]); Rajeswaran et al. (1999[Rajeswaran, W. G., Labroo, R. B., Cohen, L. A. & King, M. M. (1999). J. Org. Chem. 64, 1369-1371.]); Stevenson et al. (2000[Stevenson, G. I., Smith, A. L., Lewis, S., Michie, S. G., Neduvelil, J. G., Patel, S., Marwood, R., Patel, S. & Castro, J. L. (2000). Bioorg. Med. Chem. Lett. 10, 2697-2704.]); Sethusankar et al. (2002[Sethu Sankar, K., Kannadasan, S., Velmurugan, D., Srinivasan, P. C., Shanmuga Sundara Raj, S. & Fun, H.-K. (2002). Acta Cryst. C58, o277-o279.]).

[Scheme 1]

Experimental

Crystal data
  • C25H23NO

  • Mr = 353.44

  • Triclinic, [P \overline 1]

  • a = 9.3311 (2) Å

  • b = 9.5793 (2) Å

  • c = 11.5736 (2) Å

  • α = 92.163 (1)°

  • β = 103.192 (1)°

  • γ = 101.520 (1)°

  • V = 983.15 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 (2) K

  • 0.26 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.982, Tmax = 0.986

  • 25969 measured reflections

  • 6260 independent reflections

  • 4310 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.156

  • S = 0.99

  • 6260 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯Cgi 0.93 2.94 3.740 (2) 145
C12—H12A⋯N1 0.93 2.54 2.858 (2) 100
Symmetry code: (i) -x+1, -y, -z+1. Cg denotes the centroid of the C20–C25 ring.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Indole compounds can be used as bioactive drugs (Stevenson et al., 2000). Indole derivatives exhibit anti-allergic, central nervous system depressant and muscle relaxant properties (Harris & Uhle, 1960; Ho et al., 1986). Indoles have also been proved to display high aldose reductase inhibitory activity (Rajeswaran et al., 1999). In view of this biological importance, an X-ray study of the title compound, (I), was carried out.

An ORTEP (Farrugia,1997) plot of the molecular is shown in Fig.1. The indole moiety is planar [maximum deviation of 0.038 (1) from the least square plane defined by all non hydrogen atoms in the molecule] and is nearly orthogonal to methylphenyl rings A and B, and makes a dihedral angle of 72.3 (4)° with the ring A, 76.7 (3)° with the ring B. Both the p-tolyl rings A and B are oriented at an angle of 72.6 (4)° with respect to each other. The sum of angles around N1 [360.0]° is in accordance with sp2 hybridization. The endocyclic angles around C4 is narrowed while those at C9 is widened from 120°. This may be caused by fusion of the smaller pyrrole ring to the six membered benzene ring of oxindole. A similar effect has also been observed by Sethu Sankar et al. (2002). The bond lengths in the oxindole ring systems indicate electron delocalization. The torsion angles C19—C16—C15—C14 [–179.5 (2)°], C19—C16—C17—C18 [179.7 (2)°] and C26—C23—C24—C25 [–179.6 (2)°], C26—C23—C22—C21 [179.8 (2)°] indicates that the methyl groups are coplanar with the plane of the attached benzene rings A and B. The allyl group deviates significantly from the plane of the indole moiety [C12—C11—C10—N1 = – 4.5 (3)°].

Weak intramolecular C—H···N and intermolecular C—H··· Cg interactions, with C5···Cg = 3.740 (2) Å, [Cg denotes centroid of C20—C25 ring] are observed in the molecular structure. In addition the packing is stabilized by van der Waals forces.

Related literature top

For related literature, see: Harris & Uhle (1960); Ho et al. (1986); Rajeswaran et al. (1999); Stevenson et al. (2000); Sethu Sankar et al. (2002).

Experimental top

To a solution of p-methyl phenyl magnesium bromide in dry THF, at 0°C under N2 atm.,1-N-allyl isatin (0.0125 mol, 2.34 g), in dry THF, was added dropwise. After the complete addition, the mixture was stirred at 0°C for 1 hr and then it was stirred at room temperature for 5 hrs. On completion of the reaction, a saturated solution of NH4Cl was added slowly at 0°C. The aqueous layer was extracted with ether, and the combined organic layer was extracted with ether. The crude mass was obtained., which was purified over a column of silica gel using hexane/ethyl acetate as eluent. Compound was recrystallized from methanol.

Refinement top

H atoms were positioned geometrically and were treated as riding on their parent C atoms, with aromatic C—H distances of 0.93 Å, methyl C—H distances of 0.96 Å and methylene C—H distances of 0.97 Å, and with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids
[Figure 2] Fig. 2. The packing of the molecules viewed down b axis.
1-Allyl-3,3-di-p-tolylindolin-2-one top
Crystal data top
C25H23NOZ = 2
Mr = 353.44F(000) = 376
Triclinic, P1Dx = 1.194 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3311 (2) ÅCell parameters from 9112 reflections
b = 9.5793 (2) Åθ = 2.3–30.1°
c = 11.5736 (2) ŵ = 0.07 mm1
α = 92.163 (1)°T = 293 K
β = 103.192 (1)°Prism, colourless
γ = 101.520 (1)°0.26 × 0.20 × 0.20 mm
V = 983.15 (3) Å3
Data collection top
Bruker Kappa APEXII
diffractometer
6260 independent reflections
Radiation source: fine-focus sealed tube4310 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω and ϕ scanθmax = 31.0°, θmin = 2.2°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1313
Tmin = 0.982, Tmax = 0.986k = 1313
25969 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0731P)2 + 0.1889P]
where P = (Fo2 + 2Fc2)/3
6260 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C25H23NOγ = 101.520 (1)°
Mr = 353.44V = 983.15 (3) Å3
Triclinic, P1Z = 2
a = 9.3311 (2) ÅMo Kα radiation
b = 9.5793 (2) ŵ = 0.07 mm1
c = 11.5736 (2) ÅT = 293 K
α = 92.163 (1)°0.26 × 0.20 × 0.20 mm
β = 103.192 (1)°
Data collection top
Bruker Kappa APEXII
diffractometer
6260 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
4310 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.986Rint = 0.023
25969 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.00Δρmax = 0.25 e Å3
6260 reflectionsΔρmin = 0.21 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.21981 (13)0.10769 (13)0.14416 (10)0.0403 (2)
C30.29661 (11)0.03653 (12)0.25302 (9)0.0361 (2)
C40.45434 (12)0.05217 (12)0.23447 (10)0.0391 (2)
C50.57669 (13)0.00390 (15)0.29710 (12)0.0497 (3)
H50.56990.04780.36280.060*
C60.71037 (15)0.03411 (17)0.26019 (15)0.0602 (4)
H60.79380.00240.30180.072*
C70.72086 (16)0.10999 (18)0.16332 (16)0.0629 (4)
H70.81160.12950.14050.075*
C80.59809 (17)0.15830 (17)0.09859 (14)0.0587 (4)
H80.60490.20960.03270.070*
C90.46580 (14)0.12724 (13)0.13582 (11)0.0443 (3)
C100.29599 (19)0.24323 (18)0.01709 (12)0.0614 (4)
H10A0.19170.21020.06040.074*
H10B0.35890.22670.07010.074*
C110.32409 (19)0.39967 (19)0.01642 (16)0.0658 (4)
H110.31330.45830.04580.079*
C120.3620 (2)0.4623 (2)0.12318 (19)0.0749 (5)
H12A0.37420.40840.18850.090*
H12B0.37700.56120.13470.090*
C130.22090 (12)0.12027 (12)0.25034 (10)0.0391 (2)
C140.24490 (16)0.19198 (15)0.35239 (13)0.0541 (3)
H140.30290.14230.42370.065*
C150.18392 (18)0.33608 (16)0.34970 (16)0.0626 (4)
H150.20200.38180.41940.075*
C160.09700 (17)0.41371 (15)0.24620 (16)0.0592 (4)
C170.07309 (17)0.34194 (16)0.14492 (15)0.0603 (4)
H170.01450.39200.07390.072*
C180.13362 (15)0.19778 (14)0.14583 (12)0.0490 (3)
H180.11560.15260.07590.059*
C190.0294 (3)0.57073 (17)0.2435 (2)0.0907 (6)
H19A0.02620.60640.16390.136*
H19B0.03720.58420.29630.136*
H19C0.10830.62160.26860.136*
C200.28928 (12)0.12652 (12)0.36267 (10)0.0372 (2)
C210.40937 (13)0.23204 (14)0.42458 (11)0.0445 (3)
H210.50030.24670.40200.053*
C220.39541 (16)0.31600 (15)0.51984 (12)0.0530 (3)
H220.47780.38580.56050.064*
C230.26275 (17)0.29871 (17)0.55575 (12)0.0553 (3)
C240.14184 (16)0.19372 (17)0.49283 (13)0.0561 (3)
H240.05060.18010.51500.067*
C250.15471 (14)0.10923 (15)0.39803 (12)0.0483 (3)
H250.07210.03980.35730.058*
C260.2485 (3)0.3901 (3)0.65992 (18)0.0932 (7)
H26A0.14850.36260.67180.140*
H26B0.26750.48890.64390.140*
H26C0.32040.37710.73040.140*
N10.32609 (13)0.15965 (12)0.08421 (9)0.0484 (3)
O10.08971 (10)0.11949 (10)0.11825 (8)0.0515 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0417 (5)0.0399 (6)0.0385 (5)0.0124 (4)0.0053 (4)0.0024 (4)
C30.0306 (5)0.0386 (6)0.0381 (5)0.0075 (4)0.0059 (4)0.0061 (4)
C40.0342 (5)0.0399 (6)0.0429 (6)0.0077 (4)0.0094 (4)0.0027 (4)
C50.0372 (6)0.0554 (8)0.0569 (7)0.0132 (5)0.0086 (5)0.0103 (6)
C60.0364 (6)0.0650 (9)0.0805 (10)0.0145 (6)0.0135 (6)0.0057 (8)
C70.0444 (7)0.0637 (9)0.0859 (11)0.0079 (6)0.0305 (7)0.0025 (8)
C80.0586 (8)0.0602 (9)0.0656 (9)0.0114 (7)0.0317 (7)0.0128 (7)
C90.0444 (6)0.0442 (6)0.0468 (6)0.0109 (5)0.0148 (5)0.0051 (5)
C100.0757 (10)0.0732 (10)0.0455 (7)0.0298 (8)0.0202 (7)0.0229 (7)
C110.0697 (9)0.0666 (10)0.0719 (10)0.0222 (8)0.0280 (8)0.0323 (8)
C120.0729 (11)0.0612 (10)0.0954 (13)0.0132 (8)0.0299 (10)0.0153 (9)
C130.0318 (5)0.0389 (6)0.0461 (6)0.0085 (4)0.0074 (4)0.0048 (5)
C140.0522 (7)0.0470 (7)0.0556 (7)0.0060 (6)0.0005 (6)0.0122 (6)
C150.0626 (9)0.0476 (8)0.0785 (10)0.0132 (6)0.0152 (7)0.0224 (7)
C160.0542 (7)0.0368 (7)0.0920 (11)0.0108 (6)0.0280 (7)0.0023 (7)
C170.0582 (8)0.0462 (8)0.0716 (9)0.0058 (6)0.0133 (7)0.0137 (7)
C180.0499 (7)0.0470 (7)0.0480 (6)0.0096 (5)0.0092 (5)0.0022 (5)
C190.0989 (14)0.0380 (8)0.1420 (19)0.0073 (8)0.0500 (14)0.0009 (10)
C200.0339 (5)0.0404 (6)0.0373 (5)0.0077 (4)0.0078 (4)0.0079 (4)
C210.0372 (5)0.0475 (7)0.0461 (6)0.0038 (5)0.0097 (5)0.0032 (5)
C220.0521 (7)0.0519 (8)0.0491 (7)0.0055 (6)0.0063 (6)0.0046 (6)
C230.0607 (8)0.0625 (9)0.0456 (7)0.0186 (7)0.0145 (6)0.0007 (6)
C240.0486 (7)0.0701 (9)0.0558 (7)0.0148 (6)0.0229 (6)0.0056 (7)
C250.0361 (5)0.0550 (7)0.0522 (7)0.0046 (5)0.0121 (5)0.0027 (6)
C260.0965 (14)0.1150 (17)0.0707 (11)0.0262 (12)0.0279 (10)0.0268 (11)
N10.0520 (6)0.0551 (6)0.0434 (5)0.0188 (5)0.0140 (5)0.0154 (5)
O10.0433 (4)0.0595 (6)0.0515 (5)0.0207 (4)0.0023 (4)0.0074 (4)
Geometric parameters (Å, º) top
C2—O11.2114 (14)C14—C151.380 (2)
C2—N11.3621 (16)C14—H140.9300
C2—C31.5535 (15)C15—C161.376 (2)
C3—C41.5143 (15)C15—H150.9300
C3—C131.5228 (16)C16—C171.378 (2)
C3—C201.5294 (16)C16—C191.507 (2)
C4—C51.3788 (16)C17—C181.382 (2)
C4—C91.3853 (17)C17—H170.9300
C5—C61.3895 (19)C18—H180.9300
C5—H50.9300C19—H19A0.9600
C6—C71.371 (2)C19—H19B0.9600
C6—H60.9300C19—H19C0.9600
C7—C81.391 (2)C20—C211.3847 (16)
C7—H70.9300C20—C251.3885 (16)
C8—C91.3798 (19)C21—C221.3857 (19)
C8—H80.9300C21—H210.9300
C9—N11.4046 (16)C22—C231.375 (2)
C10—N11.4508 (16)C22—H220.9300
C10—C111.489 (2)C23—C241.390 (2)
C10—H10A0.9700C23—C261.509 (2)
C10—H10B0.9700C24—C251.380 (2)
C11—C121.293 (3)C24—H240.9300
C11—H110.9300C25—H250.9300
C12—H12A0.9300C26—H26A0.9600
C12—H12B0.9300C26—H26B0.9600
C13—C181.3852 (17)C26—H26C0.9600
C13—C141.3853 (17)
O1—C2—N1125.45 (11)C16—C15—C14121.51 (14)
O1—C2—C3126.57 (11)C16—C15—H15119.2
N1—C2—C3107.95 (9)C14—C15—H15119.2
C4—C3—C13111.14 (9)C15—C16—C17117.38 (13)
C4—C3—C20113.55 (9)C15—C16—C19121.49 (17)
C13—C3—C20112.94 (9)C17—C16—C19121.13 (17)
C4—C3—C2101.28 (9)C16—C17—C18121.93 (14)
C13—C3—C2111.74 (9)C16—C17—H17119.0
C20—C3—C2105.46 (9)C18—C17—H17119.0
C5—C4—C9119.89 (11)C17—C18—C13120.39 (13)
C5—C4—C3130.70 (11)C17—C18—H18119.8
C9—C4—C3109.40 (9)C13—C18—H18119.8
C4—C5—C6118.68 (13)C16—C19—H19A109.5
C4—C5—H5120.7C16—C19—H19B109.5
C6—C5—H5120.7H19A—C19—H19B109.5
C7—C6—C5120.88 (13)C16—C19—H19C109.5
C7—C6—H6119.6H19A—C19—H19C109.5
C5—C6—H6119.6H19B—C19—H19C109.5
C6—C7—C8121.13 (13)C21—C20—C25117.95 (11)
C6—C7—H7119.4C21—C20—C3122.56 (10)
C8—C7—H7119.4C25—C20—C3119.36 (10)
C9—C8—C7117.48 (14)C20—C21—C22120.67 (12)
C9—C8—H8121.3C20—C21—H21119.7
C7—C8—H8121.3C22—C21—H21119.7
C8—C9—C4121.93 (12)C23—C22—C21121.62 (13)
C8—C9—N1128.51 (12)C23—C22—H22119.2
C4—C9—N1109.54 (10)C21—C22—H22119.2
N1—C10—C11113.55 (13)C22—C23—C24117.66 (13)
N1—C10—H10A108.9C22—C23—C26121.35 (15)
C11—C10—H10A108.9C24—C23—C26120.99 (15)
N1—C10—H10B108.9C25—C24—C23121.17 (13)
C11—C10—H10B108.9C25—C24—H24119.4
H10A—C10—H10B107.7C23—C24—H24119.4
C12—C11—C10126.66 (15)C24—C25—C20120.91 (12)
C12—C11—H11116.7C24—C25—H25119.5
C10—C11—H11116.7C20—C25—H25119.5
C11—C12—H12A120.0C23—C26—H26A109.5
C11—C12—H12B120.0C23—C26—H26B109.5
H12A—C12—H12B120.0H26A—C26—H26B109.5
C18—C13—C14117.85 (12)C23—C26—H26C109.5
C18—C13—C3121.72 (11)H26A—C26—H26C109.5
C14—C13—C3120.33 (10)H26B—C26—H26C109.5
C15—C14—C13120.95 (13)C2—N1—C9111.71 (10)
C15—C14—H14119.5C2—N1—C10122.67 (11)
C13—C14—H14119.5C9—N1—C10125.57 (12)
O1—C2—C3—C4178.68 (12)C14—C15—C16—C170.0 (2)
N1—C2—C3—C43.41 (12)C14—C15—C16—C19179.48 (16)
O1—C2—C3—C1360.29 (16)C15—C16—C17—C180.2 (2)
N1—C2—C3—C13121.80 (11)C19—C16—C17—C18179.68 (15)
O1—C2—C3—C2062.78 (15)C16—C17—C18—C130.2 (2)
N1—C2—C3—C20115.14 (10)C14—C13—C18—C170.1 (2)
C13—C3—C4—C557.30 (16)C3—C13—C18—C17176.45 (12)
C20—C3—C4—C571.33 (16)C4—C3—C20—C2111.87 (15)
C2—C3—C4—C5176.12 (13)C13—C3—C20—C21139.58 (11)
C13—C3—C4—C9121.92 (11)C2—C3—C20—C2198.13 (12)
C20—C3—C4—C9109.45 (11)C4—C3—C20—C25172.36 (10)
C2—C3—C4—C93.10 (12)C13—C3—C20—C2544.66 (14)
C9—C4—C5—C61.0 (2)C2—C3—C20—C2577.64 (13)
C3—C4—C5—C6179.88 (12)C25—C20—C21—C220.88 (18)
C4—C5—C6—C70.2 (2)C3—C20—C21—C22176.71 (11)
C5—C6—C7—C80.4 (2)C20—C21—C22—C230.5 (2)
C6—C7—C8—C90.2 (2)C21—C22—C23—C240.2 (2)
C7—C8—C9—C40.7 (2)C21—C22—C23—C26179.75 (16)
C7—C8—C9—N1177.86 (14)C22—C23—C24—C250.4 (2)
C5—C4—C9—C81.2 (2)C26—C23—C24—C25179.55 (16)
C3—C4—C9—C8179.45 (12)C23—C24—C25—C200.1 (2)
C5—C4—C9—N1177.52 (12)C21—C20—C25—C240.69 (19)
C3—C4—C9—N11.79 (14)C3—C20—C25—C24176.65 (12)
N1—C10—C11—C124.5 (3)O1—C2—N1—C9179.43 (12)
C4—C3—C13—C1891.47 (13)C3—C2—N1—C92.63 (14)
C20—C3—C13—C18139.57 (11)O1—C2—N1—C103.1 (2)
C2—C3—C13—C1820.86 (15)C3—C2—N1—C10174.88 (12)
C4—C3—C13—C1484.82 (14)C8—C9—N1—C2178.07 (13)
C20—C3—C13—C1444.14 (14)C4—C9—N1—C20.58 (15)
C2—C3—C13—C14162.84 (11)C8—C9—N1—C104.5 (2)
C18—C13—C14—C150.1 (2)C4—C9—N1—C10176.83 (13)
C3—C13—C14—C15176.30 (13)C11—C10—N1—C288.62 (17)
C13—C14—C15—C160.2 (2)C11—C10—N1—C988.53 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···Cgi0.932.943.740 (2)145
C12—H12A···N10.932.542.858 (2)100
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC25H23NO
Mr353.44
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.3311 (2), 9.5793 (2), 11.5736 (2)
α, β, γ (°)92.163 (1), 103.192 (1), 101.520 (1)
V3)983.15 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.26 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.982, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
25969, 6260, 4310
Rint0.023
(sin θ/λ)max1)0.725
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.156, 1.00
No. of reflections6260
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.21

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
C2—O11.2114 (14)C9—N11.4046 (16)
C2—N11.3621 (16)C10—N11.4508 (16)
O1—C2—N1125.45 (11)C4—C9—N1109.54 (10)
O1—C2—C3126.57 (11)N1—C10—C11113.55 (13)
N1—C2—C3107.95 (9)C2—N1—C9111.71 (10)
C5—C4—C9119.89 (11)C2—N1—C10122.67 (11)
C8—C9—C4121.93 (12)C9—N1—C10125.57 (12)
C8—C9—N1128.51 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···Cgi0.932.943.740 (2)145
C12—H12A···N10.932.542.858 (2)100
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

SN thanks Professor M. N. Ponnuswamy, Department of Crystallography and Biophysics, University of Madras, India, for his guidance and valuable suggestions. SN thanks SRM management for their support.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarris, L. S. & Uhle, F. C. (1960). J. Pharmacol. Exp. Ther. 128, 353–363.  Google Scholar
First citationHo, C. Y., Haegman, W. E. & Perisco, F. (1986). J. Med. Chem. 29, 118–121.  Google Scholar
First citationRajeswaran, W. G., Labroo, R. B., Cohen, L. A. & King, M. M. (1999). J. Org. Chem. 64, 1369–1371.  Web of Science CrossRef CAS Google Scholar
First citationSethu Sankar, K., Kannadasan, S., Velmurugan, D., Srinivasan, P. C., Shanmuga Sundara Raj, S. & Fun, H.-K. (2002). Acta Cryst. C58, o277–o279.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStevenson, G. I., Smith, A. L., Lewis, S., Michie, S. G., Neduvelil, J. G., Patel, S., Marwood, R., Patel, S. & Castro, J. L. (2000). Bioorg. Med. Chem. Lett. 10, 2697–2704.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds