metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m660-m661

{2-[(3,5-Di­chloro-2-oxido­benzyl­­idene)amino-κ2N,O]-3-methyl­penta­noato-κO}(N,N′-di­methyl­formamide-κO)copper(II)

aCollege of Electronic Engineering, Guilin University of Electronic Technology, Ministry of Education, Guangxi, Guilin 541004, People's Republic of China, and bKey Laboratory of Non-ferrous Metal Materials and Processing Technology, Department of Materials and Chemical Engineering, Guilin University of Technology, Ministry of Education, Guilin 541004, People's Republic of China
*Correspondence e-mail: lisa4.6@163.com

(Received 8 January 2008; accepted 6 April 2008; online 16 April 2008)

In the title compound, [Cu(C13H13Cl2NO3)(C3H7NO)], the CuII atom is coordinated in a slightly distorted square-planar geometry by two O atoms and one N atom from the tridentate chiral ligand 2-[(3,5-dichloro-2-oxidobenzyl­idene)amino]-3-methyl­penta­noate and by one O atom from dimethyl­formamide. In the crystal structure, the Cu atom forms contacts with Cl and O atoms of two units (Cu⋯Cl and Cu⋯O = 3.401 and 2.947 Å, respectively), thereby forming an approximately octa­hedral arrangement. A three-dimensional network is constructed through Cl⋯Cu, O⋯Cu, Cl⋯Cl contacts and C—H⋯O hydrogen bonds.

Related literature

For Schiff base complexes containing amino acids, see: Garcia-Raso et al. (1996[Garcia-Raso, A., Foil, J. J. & Badenas, F. (1996). Polyhedron, 15, 4407-4413.]); Dawes et al. (1982[Dawes, H. M., Waters, J. M. & Waters, T. N. (1982). Inorg. Chim. Acta, 66, 29-36.]); Laurent et al. (1982[Laurent, J. P., Bonnet, J.-J., Nepveu, F., Astheimer, H., Walz , L. & Haase, W. (1982). J. Chem. Soc. Dalton Trans. pp. 2433-2438.]); Zhang et al. (2006[Zhang, S.-H., Li, G.-Z., Feng, X.-Z. & Liu, Z. (2007). Acta Cryst. E63, m1319-m1320.]). For related literature, see: Cohen et al. (1964[Cohen, M. D., Schmidt, G. M. J. & Sonntag, F. I. (1964). J. Chem. Soc. pp. 2000-2013.]); Garcia-Orozco et al. (2002[Garcia-Orozco, I., Tapia-Benavides, A. R., Alvarez-Toledano, C., Toscano, R. A., Ramírez-Rosales, D., Zamorano-Ulloa, R. & Reyes-Ortega, Y. (2002). J. Mol. Struct. 604, 57-64.]); Hu & Englert (2006[Hu, C. & Englert, U. (2006). Angew. Chem. Int. Ed. 45, 3457-3459.]); Royles & Sherrington (2000[Royles, B. J. L. & Sherrington, D. C. (2000). J. Mater. Chem. 10, 2035-2041.]); Subramanian et al. (2000[Subramanian, P. S., Suresh, E. & Srinivas, D. (2000). Inorg. Chem. 39, 2053-2060.]); Zaman et al. (2004[Zaman, B., Udachin, K. A. & Ripmeester, J. A. (2004). Cryst. Growth Des. 4, 585-589.]); Zordan et al. (2005[Zordan, F., Brammer, L. & Sherwood, P. (2005). J. Am. Chem. Soc. 127, 5979-5989.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C13H13Cl2NO3)(C3H7NO)]

  • Mr = 438.78

  • Orthorhombic, P 21 21 2

  • a = 11.671 (2) Å

  • b = 27.465 (3) Å

  • c = 5.8890 (18) Å

  • V = 1887.7 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.46 mm−1

  • T = 298 (2) K

  • 0.43 × 0.15 × 0.13 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.572, Tmax = 0.833

  • 9274 measured reflections

  • 3260 independent reflections

  • 2288 reflections with I > 2σ(I)

  • Rint = 0.086

Refinement
  • R[F2 > 2σ(F2)] = 0.095

  • wR(F2) = 0.242

  • S = 1.05

  • 3260 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −1.08 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 1915 Friedel pairs

  • Flack parameter: 0.11 (6)

Table 1
Selected geometric parameters (Å, °)

Cu1—O3 1.872 (9)
Cu1—O1 1.905 (9)
Cu1—O4 1.920 (9)
Cu1—N1 1.925 (10)
O3—Cu1—O1 169.2 (4)
O3—Cu1—O4 92.5 (4)
O1—Cu1—O4 90.5 (3)
O3—Cu1—N1 94.2 (4)
O1—Cu1—N1 82.7 (4)
O4—Cu1—N1 173.1 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15B⋯O2i 0.96 2.31 3.19 (2) 150
Symmetry code: (i) -x, -y+2, z-1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases is a kind of very important compounds in coordination chemistry. And Schiff base complexes have been increasing interest because of their antivial,anticancer and antibacterial activities.Just as the title compound, it's amino acid salicylicaldehyde of halogen substituent Schiff base. Meanwhile,we find some unusual bonds which look like hydrogen bond in this halogenated compound.

In (I),the CuII atom is coordinated by two O atoms, one N atom, which come from one tridentate ligand 2-[(3,5-dichloro-2-oxidobenzylidene)amino]-3-methylpentanoate and one O atom from N,N-Dimethyl-formamide, forming a slightly distorted planar square geometry (Fig. 1). In the unit one-dimensional chains, the distorted planar square with Cl and O which above or below of it form an approximately "octahedral". The weak interaction length of Cl–Cu and O–Cu is 3.401 Å. and 2.947 Å. These can be seen the reasults of Jahn-Teller effect. (Garcia-Orozco et al., 2002) People have interest in packing arrangements of halogenated compounds date back to what Schmidt called the 'chloro effect', where the presence of chloro substituents on aromatic compounds frequently arise from stacking arrangements with a short (ca 4 Å) crystallographic axis (Cohen et al., 1964; Zaman et al., 2004; Zordan et al., 2005). The title compound contains the dichloride ligand 2-[(3,5-dichloro-2-oxidobenzylidene)amino]-3-methylpentanoate, with two Cl atoms accessible at the periphery of the ligand. The three-dimensional network of (I) through short Cl–Cu, Cl–Cl, O–Cu contacts and C–H···O hydrogen bonds.(Fig.3). The weak interaction length of Cl–Cl is 3.349 Å. The final position parameters of the nonhydrogen atoms are given in Table 1. The selected bond lengths and bond angles are listed in Table 2.

Related literature top

For Schiff base complexes containing amino acids, see: Garcia-Raso et al. (1996); Dawes et al. (1982); Laurent et al. (1982); Zhang et al. (2006). For related literature, see: Cohen et al. (1964); Garcia-Orozco, Tapia-Benavides & Alvarez-Toledano (2002); Hu & Ulli Englert (2006); Royles & Sherrington (2000); Subramanian et al. (2000); Zaman et al. (2004); Zordan et al. (2005).

Experimental top

The title compound was produced from aqueous solution of copper chloride and A ethanol solution of (E)-2-(3,5-dichloro-2-hydroxybenzylideneamino)-3 -methylpentanoic acid with vapour volatilization of N,N-Dimethyl-formamide at room temperature.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing 30% probability displacement ellipsoids. Carbon-bound H atoms have been omitted.
[Figure 2] Fig. 2. The interactions of Cl···Cu and O···Cu in the asymmetric unit one-dimensional chains.
[Figure 3] Fig. 3. Three-dimensional network of (I), broken line showing Short Cl–Cl, Cl···Cu and O···Cu contacts, C–H···O hydrogen bonds.
{2-[(3,5-Dichloro-2-oxidobenzylidene)amino-κ2N,O]-3-methylpentanoato- κO}(N,N'-dimethylformamide-κO)copper(II) top
Crystal data top
[Cu(C13H13Cl2NO3)(C3H7NO)]Dx = 1.544 Mg m3
Mr = 438.78Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P21212Cell parameters from 1991 reflections
a = 11.671 (2) Åθ = 2.3–20.3°
b = 27.465 (3) ŵ = 1.46 mm1
c = 5.8890 (18) ÅT = 298 K
V = 1887.7 (7) Å3Block, blue
Z = 40.43 × 0.15 × 0.13 mm
F(000) = 900
Data collection top
Bruker SMART CCD area-detector
diffractometer
3260 independent reflections
Radiation source: fine-focus sealed tube2288 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.087
ϕ and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 913
Tmin = 0.572, Tmax = 0.833k = 3232
9274 measured reflectionsl = 66
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.095H-atom parameters constrained
wR(F2) = 0.242 w = 1/[σ2(Fo2) + (0.1179P)2 + 7.0901P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3260 reflectionsΔρmax = 0.54 e Å3
226 parametersΔρmin = 1.08 e Å3
0 restraintsAbsolute structure: Flack (1983), 1310 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.11 (6)
Crystal data top
[Cu(C13H13Cl2NO3)(C3H7NO)]V = 1887.7 (7) Å3
Mr = 438.78Z = 4
Orthorhombic, P21212Mo Kα radiation
a = 11.671 (2) ŵ = 1.46 mm1
b = 27.465 (3) ÅT = 298 K
c = 5.8890 (18) Å0.43 × 0.15 × 0.13 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3260 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2288 reflections with I > 2σ(I)
Tmin = 0.572, Tmax = 0.833Rint = 0.087
9274 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.095H-atom parameters constrained
wR(F2) = 0.242Δρmax = 0.54 e Å3
S = 1.05Δρmin = 1.08 e Å3
3260 reflectionsAbsolute structure: Flack (1983), 1310 Friedel pairs
226 parametersAbsolute structure parameter: 0.11 (6)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.13255 (12)0.88233 (5)0.7191 (3)0.0369 (4)
Cl10.0068 (3)0.79870 (13)0.0644 (6)0.0481 (9)
Cl20.2946 (3)0.65124 (12)0.2389 (8)0.0671 (12)
N10.2606 (8)0.8445 (3)0.8257 (17)0.033 (2)
N20.1115 (10)0.9551 (4)0.3728 (17)0.043 (3)
O10.1585 (7)0.9174 (3)0.9935 (17)0.046 (2)
O20.2565 (10)0.9193 (4)1.3185 (19)0.063 (3)
O30.0957 (7)0.8388 (3)0.4856 (18)0.044 (2)
O40.0063 (7)0.9243 (3)0.6463 (15)0.039 (2)
C10.2446 (12)0.9026 (5)1.125 (2)0.038 (3)
C20.3198 (12)0.8638 (4)1.029 (2)0.035 (3)
H20.32940.83771.14110.042*
C30.4373 (11)0.8833 (7)0.960 (3)0.059 (4)
H30.47620.85840.86870.071*
C40.5115 (15)0.8947 (7)1.168 (3)0.067 (5)
H4A0.58740.90391.11620.080*
H4B0.47890.92261.24570.080*
C50.5232 (16)0.8529 (7)1.338 (3)0.077 (5)
H5A0.46510.85591.45230.115*
H5B0.59740.85421.40760.115*
H5C0.51450.82241.26000.115*
C60.4285 (13)0.9300 (7)0.818 (3)0.077 (6)
H6A0.37010.92610.70440.116*
H6B0.50070.93630.74530.116*
H6C0.40920.95680.91500.116*
C70.2818 (10)0.7995 (4)0.755 (2)0.040 (3)
H70.33220.78130.84260.047*
C80.2357 (11)0.7757 (4)0.557 (2)0.034 (3)
C90.1437 (12)0.7977 (4)0.428 (2)0.041 (3)
C100.1061 (8)0.7732 (4)0.235 (2)0.031 (3)
C110.1625 (11)0.7281 (4)0.181 (2)0.043 (3)
H110.14180.71230.04740.051*
C120.2427 (10)0.7075 (5)0.310 (3)0.043 (3)
C130.2807 (11)0.7309 (5)0.495 (3)0.044 (3)
H130.33800.71700.58360.053*
C140.0233 (13)0.9290 (4)0.448 (3)0.048 (4)
H140.02030.91280.33930.058*
C150.1907 (13)0.9786 (5)0.540 (3)0.053 (4)
H15A0.24020.95440.60470.080*
H15B0.23611.00280.46360.080*
H15C0.14670.99380.65790.080*
C160.1495 (16)0.9579 (7)0.135 (3)0.063 (5)
H16A0.08820.94780.03660.094*
H16B0.17090.99080.09950.094*
H16C0.21430.93680.11290.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0356 (7)0.0313 (6)0.0437 (9)0.0098 (6)0.0076 (7)0.0074 (7)
Cl10.0389 (18)0.061 (2)0.044 (2)0.0044 (16)0.0118 (16)0.0061 (17)
Cl20.081 (3)0.0460 (18)0.074 (3)0.0011 (17)0.018 (3)0.019 (2)
N10.039 (5)0.030 (5)0.028 (6)0.009 (4)0.013 (5)0.012 (4)
N20.044 (7)0.055 (7)0.030 (6)0.032 (6)0.002 (5)0.011 (5)
O10.024 (5)0.049 (5)0.066 (7)0.017 (4)0.021 (4)0.005 (5)
O20.069 (7)0.066 (7)0.055 (7)0.012 (6)0.009 (6)0.021 (6)
O30.040 (5)0.024 (4)0.069 (7)0.009 (4)0.012 (4)0.010 (4)
O40.026 (4)0.060 (6)0.031 (5)0.004 (4)0.004 (4)0.002 (4)
C10.032 (7)0.042 (7)0.041 (8)0.008 (6)0.012 (6)0.014 (6)
C20.051 (8)0.034 (6)0.020 (6)0.007 (5)0.006 (6)0.004 (5)
C30.022 (7)0.086 (11)0.068 (10)0.020 (8)0.006 (7)0.017 (11)
C40.054 (9)0.091 (13)0.056 (10)0.008 (9)0.011 (8)0.011 (9)
C50.063 (11)0.091 (13)0.076 (13)0.003 (10)0.028 (10)0.010 (10)
C60.031 (8)0.111 (14)0.091 (14)0.005 (8)0.008 (9)0.028 (13)
C70.040 (7)0.049 (7)0.031 (8)0.014 (5)0.001 (6)0.007 (7)
C80.040 (7)0.032 (6)0.030 (7)0.002 (5)0.004 (6)0.002 (5)
C90.048 (8)0.034 (6)0.041 (8)0.008 (6)0.006 (7)0.001 (6)
C100.022 (6)0.043 (6)0.029 (7)0.001 (4)0.004 (5)0.012 (6)
C110.051 (8)0.031 (6)0.046 (9)0.021 (6)0.002 (7)0.004 (6)
C120.030 (6)0.042 (7)0.058 (9)0.006 (6)0.016 (7)0.025 (7)
C130.026 (7)0.039 (7)0.067 (10)0.000 (5)0.005 (6)0.006 (7)
C140.059 (9)0.029 (7)0.056 (10)0.015 (6)0.005 (8)0.013 (7)
C150.052 (9)0.055 (8)0.053 (10)0.012 (7)0.008 (8)0.006 (7)
C160.059 (11)0.081 (11)0.048 (10)0.004 (9)0.015 (8)0.010 (8)
Geometric parameters (Å, º) top
Cu1—O31.872 (9)C5—H5A0.9600
Cu1—O11.905 (9)C5—H5B0.9600
Cu1—O41.920 (9)C5—H5C0.9600
Cu1—N11.925 (10)C6—H6A0.9600
Cl1—C101.685 (11)C6—H6B0.9600
Cl2—C121.712 (12)C6—H6C0.9600
N1—C71.328 (14)C7—C81.442 (17)
N1—C21.482 (16)C7—H70.9300
N2—C141.329 (17)C8—C131.384 (16)
N2—C161.473 (19)C8—C91.444 (17)
N2—C151.497 (18)C9—C101.395 (17)
O1—C11.333 (17)C10—C111.438 (17)
O2—C11.233 (16)C11—C121.333 (19)
O3—C91.306 (14)C11—H110.9300
O4—C141.225 (17)C12—C131.341 (19)
C1—C21.493 (17)C13—H130.9300
C2—C31.53 (2)C14—H140.9300
C2—H20.9800C15—H15A0.9600
C3—C41.53 (2)C15—H15B0.9600
C3—C61.53 (3)C15—H15C0.9600
C3—H30.9800C16—H16A0.9600
C4—C51.53 (2)C16—H16B0.9600
C4—H4A0.9700C16—H16C0.9600
C4—H4B0.9700
O3—Cu1—O1169.2 (4)C3—C6—H6A109.5
O3—Cu1—O492.5 (4)C3—C6—H6B109.5
O1—Cu1—O490.5 (3)H6A—C6—H6B109.5
O3—Cu1—N194.2 (4)C3—C6—H6C109.5
O1—Cu1—N182.7 (4)H6A—C6—H6C109.5
O4—Cu1—N1173.1 (4)H6B—C6—H6C109.5
C7—N1—C2120.0 (10)N1—C7—C8127.5 (11)
C7—N1—Cu1122.9 (8)N1—C7—H7116.3
C2—N1—Cu1115.7 (7)C8—C7—H7116.3
C14—N2—C16125.3 (13)C13—C8—C7118.2 (11)
C14—N2—C15119.5 (12)C13—C8—C9121.1 (12)
C16—N2—C15114.6 (11)C7—C8—C9120.7 (10)
C1—O1—Cu1117.4 (7)O3—C9—C10119.5 (11)
C9—O3—Cu1130.0 (9)O3—C9—C8123.1 (11)
C14—O4—Cu1119.5 (8)C10—C9—C8117.4 (10)
O2—C1—O1120.6 (13)C9—C10—C11116.8 (10)
O2—C1—C2123.3 (14)C9—C10—Cl1120.2 (9)
O1—C1—C2116.1 (11)C11—C10—Cl1122.8 (10)
N1—C2—C1106.7 (11)C12—C11—C10124.2 (12)
N1—C2—C3109.0 (10)C12—C11—H11117.9
C1—C2—C3112.3 (11)C10—C11—H11117.9
N1—C2—H2109.6C11—C12—C13119.5 (12)
C1—C2—H2109.6C11—C12—Cl2119.4 (11)
C3—C2—H2109.6C13—C12—Cl2121.1 (12)
C2—C3—C4111.3 (13)C12—C13—C8120.8 (13)
C2—C3—C6112.3 (11)C12—C13—H13119.6
C4—C3—C6107.6 (15)C8—C13—H13119.6
C2—C3—H3108.5O4—C14—N2126.3 (14)
C4—C3—H3108.5O4—C14—H14116.9
C6—C3—H3108.5N2—C14—H14116.9
C5—C4—C3114.9 (15)N2—C15—H15A109.5
C5—C4—H4A108.5N2—C15—H15B109.5
C3—C4—H4A108.5H15A—C15—H15B109.5
C5—C4—H4B108.5N2—C15—H15C109.5
C3—C4—H4B108.5H15A—C15—H15C109.5
H4A—C4—H4B107.5H15B—C15—H15C109.5
C4—C5—H5A109.5N2—C16—H16A109.5
C4—C5—H5B109.5N2—C16—H16B109.5
H5A—C5—H5B109.5H16A—C16—H16B109.5
C4—C5—H5C109.5N2—C16—H16C109.5
H5A—C5—H5C109.5H16A—C16—H16C109.5
H5B—C5—H5C109.5H16B—C16—H16C109.5
O3—Cu1—N1—C710.6 (11)C6—C3—C4—C5176.2 (14)
O1—Cu1—N1—C7159.0 (11)C2—N1—C7—C8177.5 (12)
O3—Cu1—N1—C2177.3 (8)Cu1—N1—C7—C816.4 (19)
O1—Cu1—N1—C27.7 (8)N1—C7—C8—C13171.3 (12)
O3—Cu1—O1—C174 (2)N1—C7—C8—C910 (2)
O4—Cu1—O1—C1180.0 (9)Cu1—O3—C9—C10175.0 (8)
N1—Cu1—O1—C10.4 (9)Cu1—O3—C9—C84.8 (19)
O1—Cu1—O3—C972 (2)C13—C8—C9—O3177.1 (12)
O4—Cu1—O3—C9177.7 (11)C7—C8—C9—O32 (2)
N1—Cu1—O3—C90.7 (12)C13—C8—C9—C103.1 (18)
O3—Cu1—O4—C1434.2 (11)C7—C8—C9—C10178.0 (11)
O1—Cu1—O4—C14156.2 (11)O3—C9—C10—C11180.0 (11)
Cu1—O1—C1—O2170.2 (10)C8—C9—C10—C110.1 (16)
Cu1—O1—C1—C27.0 (14)O3—C9—C10—Cl14.9 (16)
C7—N1—C2—C1154.7 (12)C8—C9—C10—Cl1175.0 (9)
Cu1—N1—C2—C112.4 (12)C9—C10—C11—C123.9 (18)
C7—N1—C2—C383.7 (14)Cl1—C10—C11—C12178.8 (10)
Cu1—N1—C2—C3109.1 (11)C10—C11—C12—C135 (2)
O2—C1—C2—N1164.9 (13)C10—C11—C12—Cl2174.6 (9)
O1—C1—C2—N112.2 (15)C11—C12—C13—C82 (2)
O2—C1—C2—C375.7 (17)Cl2—C12—C13—C8177.8 (10)
O1—C1—C2—C3107.2 (13)C7—C8—C13—C12178.7 (12)
N1—C2—C3—C4169.2 (13)C9—C8—C13—C122 (2)
C1—C2—C3—C472.8 (17)Cu1—O4—C14—N2177.0 (11)
N1—C2—C3—C670.2 (15)C16—N2—C14—O4176.1 (15)
C1—C2—C3—C647.9 (17)C15—N2—C14—O45 (2)
C2—C3—C4—C552.8 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15B···O2i0.962.313.19 (2)150
Symmetry code: (i) x, y+2, z1.

Experimental details

Crystal data
Chemical formula[Cu(C13H13Cl2NO3)(C3H7NO)]
Mr438.78
Crystal system, space groupOrthorhombic, P21212
Temperature (K)298
a, b, c (Å)11.671 (2), 27.465 (3), 5.8890 (18)
V3)1887.7 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.46
Crystal size (mm)0.43 × 0.15 × 0.13
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.572, 0.833
No. of measured, independent and
observed [I > 2σ(I)] reflections
9274, 3260, 2288
Rint0.087
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.095, 0.242, 1.05
No. of reflections3260
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 1.08
Absolute structureFlack (1983), 1310 Friedel pairs
Absolute structure parameter0.11 (6)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—O31.872 (9)Cu1—O41.920 (9)
Cu1—O11.905 (9)Cu1—N11.925 (10)
O3—Cu1—O1169.2 (4)O3—Cu1—N194.2 (4)
O3—Cu1—O492.5 (4)O1—Cu1—N182.7 (4)
O1—Cu1—O490.5 (3)O4—Cu1—N1173.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15B···O2i0.962.313.19 (2)150.2
Symmetry code: (i) x, y+2, z1.
 

Acknowledgements

We acknowledge financial support by the Key Laboratory of Non-ferrous Metal Materials and New Processing Technology, Ministry of Education, China.

References

First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCohen, M. D., Schmidt, G. M. J. & Sonntag, F. I. (1964). J. Chem. Soc. pp. 2000–2013.  CrossRef Web of Science Google Scholar
First citationDawes, H. M., Waters, J. M. & Waters, T. N. (1982). Inorg. Chim. Acta, 66, 29-36.  CSD CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGarcia-Orozco, I., Tapia-Benavides, A. R., Alvarez-Toledano, C., Toscano, R. A., Ramírez-Rosales, D., Zamorano-Ulloa, R. & Reyes-Ortega, Y. (2002). J. Mol. Struct. 604, 57–64.  Web of Science CSD CrossRef CAS Google Scholar
First citationGarcia-Raso, A., Foil, J. J. & Badenas, F. (1996). Polyhedron, 15, 4407–4413.  CSD CrossRef CAS Web of Science Google Scholar
First citationHu, C. & Englert, U. (2006). Angew. Chem. Int. Ed. 45, 3457–3459.  Web of Science CSD CrossRef CAS Google Scholar
First citationLaurent, J. P., Bonnet, J.-J., Nepveu, F., Astheimer, H., Walz , L. & Haase, W. (1982). J. Chem. Soc. Dalton Trans. pp. 2433–2438.  CSD CrossRef Web of Science Google Scholar
First citationRoyles, B. J. L. & Sherrington, D. C. (2000). J. Mater. Chem. 10, 2035–2041.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSubramanian, P. S., Suresh, E. & Srinivas, D. (2000). Inorg. Chem. 39, 2053–2060.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZaman, B., Udachin, K. A. & Ripmeester, J. A. (2004). Cryst. Growth Des. 4, 585–589.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, S.-H., Li, G.-Z., Feng, X.-Z. & Liu, Z. (2007). Acta Cryst. E63, m1319–m1320.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZordan, F., Brammer, L. & Sherwood, P. (2005). J. Am. Chem. Soc. 127, 5979–5989.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m660-m661
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds