metal-organic compounds
{2-[(3,5-Dichloro-2-oxidobenzylidene)amino-κ2N,O]-3-methylpentanoato-κO}(N,N′-dimethylformamide-κO)copper(II)
aCollege of Electronic Engineering, Guilin University of Electronic Technology, Ministry of Education, Guangxi, Guilin 541004, People's Republic of China, and bKey Laboratory of Non-ferrous Metal Materials and Processing Technology, Department of Materials and Chemical Engineering, Guilin University of Technology, Ministry of Education, Guilin 541004, People's Republic of China
*Correspondence e-mail: lisa4.6@163.com
In the title compound, [Cu(C13H13Cl2NO3)(C3H7NO)], the CuII atom is coordinated in a slightly distorted square-planar geometry by two O atoms and one N atom from the tridentate chiral ligand 2-[(3,5-dichloro-2-oxidobenzylidene)amino]-3-methylpentanoate and by one O atom from dimethylformamide. In the the Cu atom forms contacts with Cl and O atoms of two units (Cu⋯Cl and Cu⋯O = 3.401 and 2.947 Å, respectively), thereby forming an approximately octahedral arrangement. A three-dimensional network is constructed through Cl⋯Cu, O⋯Cu, Cl⋯Cl contacts and C—H⋯O hydrogen bonds.
Related literature
For Schiff base complexes containing amino acids, see: Garcia-Raso et al. (1996); Dawes et al. (1982); Laurent et al. (1982); Zhang et al. (2006). For related literature, see: Cohen et al. (1964); Garcia-Orozco et al. (2002); Hu & Englert (2006); Royles & Sherrington (2000); Subramanian et al. (2000); Zaman et al. (2004); Zordan et al. (2005).
Experimental
Crystal data
|
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S160053680800932X/gw2039sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680800932X/gw2039Isup2.hkl
The title compound was produced from aqueous solution of copper chloride and A ethanol solution of (E)-2-(3,5-dichloro-2-hydroxybenzylideneamino)-3 -methylpentanoic acid with vapour
of N,N-Dimethyl-formamide at room temperature.Data collection: SMART (Bruker, 2001); cell
SMART (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu(C13H13Cl2NO3)(C3H7NO)] | Dx = 1.544 Mg m−3 |
Mr = 438.78 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P21212 | Cell parameters from 1991 reflections |
a = 11.671 (2) Å | θ = 2.3–20.3° |
b = 27.465 (3) Å | µ = 1.46 mm−1 |
c = 5.8890 (18) Å | T = 298 K |
V = 1887.7 (7) Å3 | Block, blue |
Z = 4 | 0.43 × 0.15 × 0.13 mm |
F(000) = 900 |
Bruker SMART CCD area-detector diffractometer | 3260 independent reflections |
Radiation source: fine-focus sealed tube | 2288 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.087 |
ϕ and ω scans | θmax = 25.0°, θmin = 1.5° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −9→13 |
Tmin = 0.572, Tmax = 0.833 | k = −32→32 |
9274 measured reflections | l = −6→6 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.095 | H-atom parameters constrained |
wR(F2) = 0.242 | w = 1/[σ2(Fo2) + (0.1179P)2 + 7.0901P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
3260 reflections | Δρmax = 0.54 e Å−3 |
226 parameters | Δρmin = −1.08 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 1310 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.11 (6) |
[Cu(C13H13Cl2NO3)(C3H7NO)] | V = 1887.7 (7) Å3 |
Mr = 438.78 | Z = 4 |
Orthorhombic, P21212 | Mo Kα radiation |
a = 11.671 (2) Å | µ = 1.46 mm−1 |
b = 27.465 (3) Å | T = 298 K |
c = 5.8890 (18) Å | 0.43 × 0.15 × 0.13 mm |
Bruker SMART CCD area-detector diffractometer | 3260 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2288 reflections with I > 2σ(I) |
Tmin = 0.572, Tmax = 0.833 | Rint = 0.087 |
9274 measured reflections |
R[F2 > 2σ(F2)] = 0.095 | H-atom parameters constrained |
wR(F2) = 0.242 | Δρmax = 0.54 e Å−3 |
S = 1.05 | Δρmin = −1.08 e Å−3 |
3260 reflections | Absolute structure: Flack (1983), 1310 Friedel pairs |
226 parameters | Absolute structure parameter: 0.11 (6) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.13255 (12) | 0.88233 (5) | 0.7191 (3) | 0.0369 (4) | |
Cl1 | 0.0068 (3) | 0.79870 (13) | 0.0644 (6) | 0.0481 (9) | |
Cl2 | 0.2946 (3) | 0.65124 (12) | 0.2389 (8) | 0.0671 (12) | |
N1 | 0.2606 (8) | 0.8445 (3) | 0.8257 (17) | 0.033 (2) | |
N2 | −0.1115 (10) | 0.9551 (4) | 0.3728 (17) | 0.043 (3) | |
O1 | 0.1585 (7) | 0.9174 (3) | 0.9935 (17) | 0.046 (2) | |
O2 | 0.2565 (10) | 0.9193 (4) | 1.3185 (19) | 0.063 (3) | |
O3 | 0.0957 (7) | 0.8388 (3) | 0.4856 (18) | 0.044 (2) | |
O4 | 0.0063 (7) | 0.9243 (3) | 0.6463 (15) | 0.039 (2) | |
C1 | 0.2446 (12) | 0.9026 (5) | 1.125 (2) | 0.038 (3) | |
C2 | 0.3198 (12) | 0.8638 (4) | 1.029 (2) | 0.035 (3) | |
H2 | 0.3294 | 0.8377 | 1.1411 | 0.042* | |
C3 | 0.4373 (11) | 0.8833 (7) | 0.960 (3) | 0.059 (4) | |
H3 | 0.4762 | 0.8584 | 0.8687 | 0.071* | |
C4 | 0.5115 (15) | 0.8947 (7) | 1.168 (3) | 0.067 (5) | |
H4A | 0.5874 | 0.9039 | 1.1162 | 0.080* | |
H4B | 0.4789 | 0.9226 | 1.2457 | 0.080* | |
C5 | 0.5232 (16) | 0.8529 (7) | 1.338 (3) | 0.077 (5) | |
H5A | 0.4651 | 0.8559 | 1.4523 | 0.115* | |
H5B | 0.5974 | 0.8542 | 1.4076 | 0.115* | |
H5C | 0.5145 | 0.8224 | 1.2600 | 0.115* | |
C6 | 0.4285 (13) | 0.9300 (7) | 0.818 (3) | 0.077 (6) | |
H6A | 0.3701 | 0.9261 | 0.7044 | 0.116* | |
H6B | 0.5007 | 0.9363 | 0.7453 | 0.116* | |
H6C | 0.4092 | 0.9568 | 0.9150 | 0.116* | |
C7 | 0.2818 (10) | 0.7995 (4) | 0.755 (2) | 0.040 (3) | |
H7 | 0.3322 | 0.7813 | 0.8426 | 0.047* | |
C8 | 0.2357 (11) | 0.7757 (4) | 0.557 (2) | 0.034 (3) | |
C9 | 0.1437 (12) | 0.7977 (4) | 0.428 (2) | 0.041 (3) | |
C10 | 0.1061 (8) | 0.7732 (4) | 0.235 (2) | 0.031 (3) | |
C11 | 0.1625 (11) | 0.7281 (4) | 0.181 (2) | 0.043 (3) | |
H11 | 0.1418 | 0.7123 | 0.0474 | 0.051* | |
C12 | 0.2427 (10) | 0.7075 (5) | 0.310 (3) | 0.043 (3) | |
C13 | 0.2807 (11) | 0.7309 (5) | 0.495 (3) | 0.044 (3) | |
H13 | 0.3380 | 0.7170 | 0.5836 | 0.053* | |
C14 | −0.0233 (13) | 0.9290 (4) | 0.448 (3) | 0.048 (4) | |
H14 | 0.0203 | 0.9128 | 0.3393 | 0.058* | |
C15 | −0.1907 (13) | 0.9786 (5) | 0.540 (3) | 0.053 (4) | |
H15A | −0.2402 | 0.9544 | 0.6047 | 0.080* | |
H15B | −0.2361 | 1.0028 | 0.4636 | 0.080* | |
H15C | −0.1467 | 0.9938 | 0.6579 | 0.080* | |
C16 | −0.1495 (16) | 0.9579 (7) | 0.135 (3) | 0.063 (5) | |
H16A | −0.0882 | 0.9478 | 0.0366 | 0.094* | |
H16B | −0.1709 | 0.9908 | 0.0995 | 0.094* | |
H16C | −0.2143 | 0.9368 | 0.1129 | 0.094* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0356 (7) | 0.0313 (6) | 0.0437 (9) | 0.0098 (6) | −0.0076 (7) | −0.0074 (7) |
Cl1 | 0.0389 (18) | 0.061 (2) | 0.044 (2) | −0.0044 (16) | −0.0118 (16) | 0.0061 (17) |
Cl2 | 0.081 (3) | 0.0460 (18) | 0.074 (3) | −0.0011 (17) | 0.018 (3) | −0.019 (2) |
N1 | 0.039 (5) | 0.030 (5) | 0.028 (6) | 0.009 (4) | −0.013 (5) | −0.012 (4) |
N2 | 0.044 (7) | 0.055 (7) | 0.030 (6) | 0.032 (6) | 0.002 (5) | 0.011 (5) |
O1 | 0.024 (5) | 0.049 (5) | 0.066 (7) | 0.017 (4) | −0.021 (4) | −0.005 (5) |
O2 | 0.069 (7) | 0.066 (7) | 0.055 (7) | 0.012 (6) | −0.009 (6) | −0.021 (6) |
O3 | 0.040 (5) | 0.024 (4) | 0.069 (7) | 0.009 (4) | −0.012 (4) | −0.010 (4) |
O4 | 0.026 (4) | 0.060 (6) | 0.031 (5) | 0.004 (4) | 0.004 (4) | −0.002 (4) |
C1 | 0.032 (7) | 0.042 (7) | 0.041 (8) | −0.008 (6) | 0.012 (6) | −0.014 (6) |
C2 | 0.051 (8) | 0.034 (6) | 0.020 (6) | 0.007 (5) | 0.006 (6) | −0.004 (5) |
C3 | 0.022 (7) | 0.086 (11) | 0.068 (10) | 0.020 (8) | −0.006 (7) | −0.017 (11) |
C4 | 0.054 (9) | 0.091 (13) | 0.056 (10) | −0.008 (9) | −0.011 (8) | −0.011 (9) |
C5 | 0.063 (11) | 0.091 (13) | 0.076 (13) | 0.003 (10) | −0.028 (10) | −0.010 (10) |
C6 | 0.031 (8) | 0.111 (14) | 0.091 (14) | −0.005 (8) | 0.008 (9) | −0.028 (13) |
C7 | 0.040 (7) | 0.049 (7) | 0.031 (8) | 0.014 (5) | 0.001 (6) | −0.007 (7) |
C8 | 0.040 (7) | 0.032 (6) | 0.030 (7) | 0.002 (5) | −0.004 (6) | −0.002 (5) |
C9 | 0.048 (8) | 0.034 (6) | 0.041 (8) | 0.008 (6) | 0.006 (7) | 0.001 (6) |
C10 | 0.022 (6) | 0.043 (6) | 0.029 (7) | 0.001 (4) | 0.004 (5) | 0.012 (6) |
C11 | 0.051 (8) | 0.031 (6) | 0.046 (9) | −0.021 (6) | −0.002 (7) | −0.004 (6) |
C12 | 0.030 (6) | 0.042 (7) | 0.058 (9) | −0.006 (6) | 0.016 (7) | −0.025 (7) |
C13 | 0.026 (7) | 0.039 (7) | 0.067 (10) | 0.000 (5) | 0.005 (6) | −0.006 (7) |
C14 | 0.059 (9) | 0.029 (7) | 0.056 (10) | 0.015 (6) | 0.005 (8) | 0.013 (7) |
C15 | 0.052 (9) | 0.055 (8) | 0.053 (10) | 0.012 (7) | −0.008 (8) | −0.006 (7) |
C16 | 0.059 (11) | 0.081 (11) | 0.048 (10) | 0.004 (9) | 0.015 (8) | −0.010 (8) |
Cu1—O3 | 1.872 (9) | C5—H5A | 0.9600 |
Cu1—O1 | 1.905 (9) | C5—H5B | 0.9600 |
Cu1—O4 | 1.920 (9) | C5—H5C | 0.9600 |
Cu1—N1 | 1.925 (10) | C6—H6A | 0.9600 |
Cl1—C10 | 1.685 (11) | C6—H6B | 0.9600 |
Cl2—C12 | 1.712 (12) | C6—H6C | 0.9600 |
N1—C7 | 1.328 (14) | C7—C8 | 1.442 (17) |
N1—C2 | 1.482 (16) | C7—H7 | 0.9300 |
N2—C14 | 1.329 (17) | C8—C13 | 1.384 (16) |
N2—C16 | 1.473 (19) | C8—C9 | 1.444 (17) |
N2—C15 | 1.497 (18) | C9—C10 | 1.395 (17) |
O1—C1 | 1.333 (17) | C10—C11 | 1.438 (17) |
O2—C1 | 1.233 (16) | C11—C12 | 1.333 (19) |
O3—C9 | 1.306 (14) | C11—H11 | 0.9300 |
O4—C14 | 1.225 (17) | C12—C13 | 1.341 (19) |
C1—C2 | 1.493 (17) | C13—H13 | 0.9300 |
C2—C3 | 1.53 (2) | C14—H14 | 0.9300 |
C2—H2 | 0.9800 | C15—H15A | 0.9600 |
C3—C4 | 1.53 (2) | C15—H15B | 0.9600 |
C3—C6 | 1.53 (3) | C15—H15C | 0.9600 |
C3—H3 | 0.9800 | C16—H16A | 0.9600 |
C4—C5 | 1.53 (2) | C16—H16B | 0.9600 |
C4—H4A | 0.9700 | C16—H16C | 0.9600 |
C4—H4B | 0.9700 | ||
O3—Cu1—O1 | 169.2 (4) | C3—C6—H6A | 109.5 |
O3—Cu1—O4 | 92.5 (4) | C3—C6—H6B | 109.5 |
O1—Cu1—O4 | 90.5 (3) | H6A—C6—H6B | 109.5 |
O3—Cu1—N1 | 94.2 (4) | C3—C6—H6C | 109.5 |
O1—Cu1—N1 | 82.7 (4) | H6A—C6—H6C | 109.5 |
O4—Cu1—N1 | 173.1 (4) | H6B—C6—H6C | 109.5 |
C7—N1—C2 | 120.0 (10) | N1—C7—C8 | 127.5 (11) |
C7—N1—Cu1 | 122.9 (8) | N1—C7—H7 | 116.3 |
C2—N1—Cu1 | 115.7 (7) | C8—C7—H7 | 116.3 |
C14—N2—C16 | 125.3 (13) | C13—C8—C7 | 118.2 (11) |
C14—N2—C15 | 119.5 (12) | C13—C8—C9 | 121.1 (12) |
C16—N2—C15 | 114.6 (11) | C7—C8—C9 | 120.7 (10) |
C1—O1—Cu1 | 117.4 (7) | O3—C9—C10 | 119.5 (11) |
C9—O3—Cu1 | 130.0 (9) | O3—C9—C8 | 123.1 (11) |
C14—O4—Cu1 | 119.5 (8) | C10—C9—C8 | 117.4 (10) |
O2—C1—O1 | 120.6 (13) | C9—C10—C11 | 116.8 (10) |
O2—C1—C2 | 123.3 (14) | C9—C10—Cl1 | 120.2 (9) |
O1—C1—C2 | 116.1 (11) | C11—C10—Cl1 | 122.8 (10) |
N1—C2—C1 | 106.7 (11) | C12—C11—C10 | 124.2 (12) |
N1—C2—C3 | 109.0 (10) | C12—C11—H11 | 117.9 |
C1—C2—C3 | 112.3 (11) | C10—C11—H11 | 117.9 |
N1—C2—H2 | 109.6 | C11—C12—C13 | 119.5 (12) |
C1—C2—H2 | 109.6 | C11—C12—Cl2 | 119.4 (11) |
C3—C2—H2 | 109.6 | C13—C12—Cl2 | 121.1 (12) |
C2—C3—C4 | 111.3 (13) | C12—C13—C8 | 120.8 (13) |
C2—C3—C6 | 112.3 (11) | C12—C13—H13 | 119.6 |
C4—C3—C6 | 107.6 (15) | C8—C13—H13 | 119.6 |
C2—C3—H3 | 108.5 | O4—C14—N2 | 126.3 (14) |
C4—C3—H3 | 108.5 | O4—C14—H14 | 116.9 |
C6—C3—H3 | 108.5 | N2—C14—H14 | 116.9 |
C5—C4—C3 | 114.9 (15) | N2—C15—H15A | 109.5 |
C5—C4—H4A | 108.5 | N2—C15—H15B | 109.5 |
C3—C4—H4A | 108.5 | H15A—C15—H15B | 109.5 |
C5—C4—H4B | 108.5 | N2—C15—H15C | 109.5 |
C3—C4—H4B | 108.5 | H15A—C15—H15C | 109.5 |
H4A—C4—H4B | 107.5 | H15B—C15—H15C | 109.5 |
C4—C5—H5A | 109.5 | N2—C16—H16A | 109.5 |
C4—C5—H5B | 109.5 | N2—C16—H16B | 109.5 |
H5A—C5—H5B | 109.5 | H16A—C16—H16B | 109.5 |
C4—C5—H5C | 109.5 | N2—C16—H16C | 109.5 |
H5A—C5—H5C | 109.5 | H16A—C16—H16C | 109.5 |
H5B—C5—H5C | 109.5 | H16B—C16—H16C | 109.5 |
O3—Cu1—N1—C7 | −10.6 (11) | C6—C3—C4—C5 | 176.2 (14) |
O1—Cu1—N1—C7 | 159.0 (11) | C2—N1—C7—C8 | −177.5 (12) |
O3—Cu1—N1—C2 | −177.3 (8) | Cu1—N1—C7—C8 | 16.4 (19) |
O1—Cu1—N1—C2 | −7.7 (8) | N1—C7—C8—C13 | 171.3 (12) |
O3—Cu1—O1—C1 | 74 (2) | N1—C7—C8—C9 | −10 (2) |
O4—Cu1—O1—C1 | 180.0 (9) | Cu1—O3—C9—C10 | −175.0 (8) |
N1—Cu1—O1—C1 | 0.4 (9) | Cu1—O3—C9—C8 | 4.8 (19) |
O1—Cu1—O3—C9 | −72 (2) | C13—C8—C9—O3 | 177.1 (12) |
O4—Cu1—O3—C9 | −177.7 (11) | C7—C8—C9—O3 | −2 (2) |
N1—Cu1—O3—C9 | 0.7 (12) | C13—C8—C9—C10 | −3.1 (18) |
O3—Cu1—O4—C14 | −34.2 (11) | C7—C8—C9—C10 | 178.0 (11) |
O1—Cu1—O4—C14 | 156.2 (11) | O3—C9—C10—C11 | 180.0 (11) |
Cu1—O1—C1—O2 | −170.2 (10) | C8—C9—C10—C11 | 0.1 (16) |
Cu1—O1—C1—C2 | 7.0 (14) | O3—C9—C10—Cl1 | 4.9 (16) |
C7—N1—C2—C1 | −154.7 (12) | C8—C9—C10—Cl1 | −175.0 (9) |
Cu1—N1—C2—C1 | 12.4 (12) | C9—C10—C11—C12 | 3.9 (18) |
C7—N1—C2—C3 | 83.7 (14) | Cl1—C10—C11—C12 | 178.8 (10) |
Cu1—N1—C2—C3 | −109.1 (11) | C10—C11—C12—C13 | −5 (2) |
O2—C1—C2—N1 | 164.9 (13) | C10—C11—C12—Cl2 | 174.6 (9) |
O1—C1—C2—N1 | −12.2 (15) | C11—C12—C13—C8 | 2 (2) |
O2—C1—C2—C3 | −75.7 (17) | Cl2—C12—C13—C8 | −177.8 (10) |
O1—C1—C2—C3 | 107.2 (13) | C7—C8—C13—C12 | −178.7 (12) |
N1—C2—C3—C4 | −169.2 (13) | C9—C8—C13—C12 | 2 (2) |
C1—C2—C3—C4 | 72.8 (17) | Cu1—O4—C14—N2 | 177.0 (11) |
N1—C2—C3—C6 | 70.2 (15) | C16—N2—C14—O4 | −176.1 (15) |
C1—C2—C3—C6 | −47.9 (17) | C15—N2—C14—O4 | −5 (2) |
C2—C3—C4—C5 | 52.8 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
C15—H15B···O2i | 0.96 | 2.31 | 3.19 (2) | 150 |
Symmetry code: (i) −x, −y+2, z−1. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C13H13Cl2NO3)(C3H7NO)] |
Mr | 438.78 |
Crystal system, space group | Orthorhombic, P21212 |
Temperature (K) | 298 |
a, b, c (Å) | 11.671 (2), 27.465 (3), 5.8890 (18) |
V (Å3) | 1887.7 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.46 |
Crystal size (mm) | 0.43 × 0.15 × 0.13 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.572, 0.833 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9274, 3260, 2288 |
Rint | 0.087 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.095, 0.242, 1.05 |
No. of reflections | 3260 |
No. of parameters | 226 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.54, −1.08 |
Absolute structure | Flack (1983), 1310 Friedel pairs |
Absolute structure parameter | 0.11 (6) |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Cu1—O3 | 1.872 (9) | Cu1—O4 | 1.920 (9) |
Cu1—O1 | 1.905 (9) | Cu1—N1 | 1.925 (10) |
O3—Cu1—O1 | 169.2 (4) | O3—Cu1—N1 | 94.2 (4) |
O3—Cu1—O4 | 92.5 (4) | O1—Cu1—N1 | 82.7 (4) |
O1—Cu1—O4 | 90.5 (3) | O4—Cu1—N1 | 173.1 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C15—H15B···O2i | 0.96 | 2.31 | 3.19 (2) | 150.2 |
Symmetry code: (i) −x, −y+2, z−1. |
Acknowledgements
We acknowledge financial support by the Key Laboratory of Non-ferrous Metal Materials and New Processing Technology, Ministry of Education, China.
References
Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cohen, M. D., Schmidt, G. M. J. & Sonntag, F. I. (1964). J. Chem. Soc. pp. 2000–2013. CrossRef Web of Science Google Scholar
Dawes, H. M., Waters, J. M. & Waters, T. N. (1982). Inorg. Chim. Acta, 66, 29-36. CSD CrossRef CAS Web of Science Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Garcia-Orozco, I., Tapia-Benavides, A. R., Alvarez-Toledano, C., Toscano, R. A., Ramírez-Rosales, D., Zamorano-Ulloa, R. & Reyes-Ortega, Y. (2002). J. Mol. Struct. 604, 57–64. Web of Science CSD CrossRef CAS Google Scholar
Garcia-Raso, A., Foil, J. J. & Badenas, F. (1996). Polyhedron, 15, 4407–4413. CSD CrossRef CAS Web of Science Google Scholar
Hu, C. & Englert, U. (2006). Angew. Chem. Int. Ed. 45, 3457–3459. Web of Science CSD CrossRef CAS Google Scholar
Laurent, J. P., Bonnet, J.-J., Nepveu, F., Astheimer, H., Walz , L. & Haase, W. (1982). J. Chem. Soc. Dalton Trans. pp. 2433–2438. CSD CrossRef Web of Science Google Scholar
Royles, B. J. L. & Sherrington, D. C. (2000). J. Mater. Chem. 10, 2035–2041. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Subramanian, P. S., Suresh, E. & Srinivas, D. (2000). Inorg. Chem. 39, 2053–2060. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zaman, B., Udachin, K. A. & Ripmeester, J. A. (2004). Cryst. Growth Des. 4, 585–589. Web of Science CSD CrossRef CAS Google Scholar
Zhang, S.-H., Li, G.-Z., Feng, X.-Z. & Liu, Z. (2007). Acta Cryst. E63, m1319–m1320. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zordan, F., Brammer, L. & Sherwood, P. (2005). J. Am. Chem. Soc. 127, 5979–5989. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Schiff bases is a kind of very important compounds in coordination chemistry. And Schiff base complexes have been increasing interest because of their antivial,anticancer and antibacterial activities.Just as the title compound, it's amino acid salicylicaldehyde of halogen substituent Schiff base. Meanwhile,we find some unusual bonds which look like hydrogen bond in this halogenated compound.
In (I),the CuII atom is coordinated by two O atoms, one N atom, which come from one tridentate ligand 2-[(3,5-dichloro-2-oxidobenzylidene)amino]-3-methylpentanoate and one O atom from N,N-Dimethyl-formamide, forming a slightly distorted planar square geometry (Fig. 1). In the unit one-dimensional chains, the distorted planar square with Cl and O which above or below of it form an approximately "octahedral". The weak interaction length of Cl–Cu and O–Cu is 3.401 Å. and 2.947 Å. These can be seen the reasults of Jahn-Teller effect. (Garcia-Orozco et al., 2002) People have interest in packing arrangements of halogenated compounds date back to what Schmidt called the 'chloro effect', where the presence of chloro substituents on aromatic compounds frequently arise from stacking arrangements with a short (ca 4 Å) crystallographic axis (Cohen et al., 1964; Zaman et al., 2004; Zordan et al., 2005). The title compound contains the dichloride ligand 2-[(3,5-dichloro-2-oxidobenzylidene)amino]-3-methylpentanoate, with two Cl atoms accessible at the periphery of the ligand. The three-dimensional network of (I) through short Cl–Cu, Cl–Cl, O–Cu contacts and C–H···O hydrogen bonds.(Fig.3). The weak interaction length of Cl–Cl is 3.349 Å. The final position parameters of the nonhydrogen atoms are given in Table 1. The selected bond lengths and bond angles are listed in Table 2.