inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hafnium germanium telluride

aDivision of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 443-749, Republic of Korea
*Correspondence e-mail: hsyun@ajou.ac.kr

(Received 14 January 2008; accepted 21 April 2008; online 30 April 2008)

The title hafnium germanium telluride, HfGeTe4, has been synthesized by the use of a halide flux and structurally characterized by X-ray diffraction. HfGeTe4 is isostructural with stoichiometric ZrGeTe4 and the Hf site in this compound is also fully occupied. The crystal structure of HfGeTe4 adopts a two-dimensional layered structure, each layer being composed of two unique one-dimensional chains of face-sharing Hf-centered bicapped trigonal prisms and corner-sharing Ge-centered tetra­hedra. These layers stack on top of each other to complete the three-dimensional structure with undulating van der Waals gaps.

Related literature

For the synthesis, crystal structure, and electronic structure of Hf0.85GeTe4, see: Mar & Ibers (1993[Mar, A. & Ibers, J. (1993). J. Am. Chem. Soc. 115, 3227-3238.]). For the synthesis and structure of ZrGeTe4, see: Lee et al. (2007[Lee, C.-H., Jang, G.-J. & Yun, H. (2007). Acta Cryst. E63, i183.]). The title compound, HfGeTe4, is isostructural with Hf0.85GeTe4 and ZrGeTe4. However the Hf site in HfGeTe4 is fully occupied. For related literature, see: Furuseth et al. (1973[Furuseth, S., Brattås, L. & Kjekshus, A. (1973). Acta Chem. Scand. 27, 2367-2374.]); Gelato & Parthé (1987[Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.]); Smith & Bailey (1957[Smith, J. F. & Bailey, D. M. (1957). Acta Cryst. 10, 341-342.]); Zhao & Parthé (1990[Zhao, J.-T. & Parthé, E. (1990). J. Less-Common Met. 162, 27-29.]).

Experimental

Crystal data
  • HfGeTe4

  • Mr = 761.48

  • Orthorhombic, C m c 21

  • a = 3.97951 (17) Å

  • b = 15.9530 (7) Å

  • c = 10.9731 (7) Å

  • V = 696.63 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 35.50 mm−1

  • T = 290 (1) K

  • 0.30 × 0.02 × 0.02 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 2000[Higashi, T. (2000). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.425, Tmax = 0.510

  • 3348 measured reflections

  • 910 independent reflections

  • 878 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.054

  • S = 0.97

  • 910 reflections

  • 38 parameters

  • 1 restraint

  • Δρmax = 1.55 e Å−3

  • Δρmin = −2.00 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 431 Friedel pairs

  • Flack parameter: 0.008 (14)

Table 1
Selected geometric parameters (Å, °)

Hf—Gei 2.8286 (15)
Hf—Te3ii 2.9454 (8)
Hf—Te3iii 2.9454 (8)
Hf—Te1iii 2.9524 (7)
Hf—Te1ii 2.9524 (7)
Hf—Te2iii 2.9825 (8)
Hf—Te2ii 2.9825 (8)
Hf—Te4iv 3.0312 (11)
Ge—Te4v 2.6761 (10)
Ge—Te4vi 2.6761 (10)
Ge—Te3 2.6955 (17)
Te1—Te2 2.7387 (13)
Te4v—Ge—Te4vi 96.07 (5)
Te4v—Ge—Te3 92.35 (4)
Te4v—Ge—Hfiv 123.85 (4)
Te3—Ge—Hfiv 120.07 (5)
Symmetry codes: (i) [-x, -y+1, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iv) [-x, -y+1, z+{\script{1\over 2}}]; (v) [-x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 2006[Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: locally modified version of ORTEP (Johnson, 1965[Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

A view of the structure of HfGeTe4 down the a axis in Fig. 1 shows the layered nature of the compound. Fig 2. shows that an individual layer is composed of two unique one-dimensional chains of face-sharing Hf-centered bicapped trigonal prisms and corner-sharing Ge-centered tetrahedra. The title compound is isostructural with Hf0.85GeTe4 (Mar & Ibers, 1993) and ZrGeTe4 (Lee et al., 2007) and the detailed descriptions of this structural type have been given previously.

The Hf atom is surrounded by six Te atoms in a trigonal prismatic manner. The vertices of two base sides of the prism are composed of six Te atoms. Atoms Te1, Te2, and Te3 form a triangle that is isosceles and the short Te1—Te2 distance (2.739 (1) Å) is typical of (Te—Te)2- pair (Furuseth et al., 1973). An additional Te4 and Ge atoms cap two of the rectangular faces of the trigonal prism to complete the bicapped trigonal prismatic coordination. These trigonal prisms share their triangular faces to form an infinite chain, 1[HfGeTe4] along the a axis. The Ge atom is surrounded by three Te and one Hf atoms in distorted tetrahedral fashion. These tetrahedra share their corners through the Te4 atom to form an infinite chain.

These bicapped trigonal prismatic and the tetrahedral chains are fused through Hf—Ge bonds to form a double chain and finally these chains are linked along the c axis to complete the two-dimensional layer. These layers then stack on top of each other to form the three-dimensional structure with undulating van der Waals gaps shown in Fig. 1.

The Hf—Ge bond distance is 2.829 (2) Å, which is comparable with those found in other hafnium germanides (HfGe2, 2.78–2.87 Å (Smith & Bailey, 1957); Hf5Ge4, 2.82 Å (Zhao & Parthé, 1990)).

Related literature top

For the synthesis, crystal structure, and electronic structure of Hf0.85GeTe4, see: Mar & Ibers (1993). For the synthesis and structure of ZrGeTe4, see: Lee et al. (2007). The title compound, HfGeTe4, is isostructural with Hf0.85GeTe4 and ZrGeTe4. However the Hf site in HfGeTe4 is fully occupied. For related literature, see: Furuseth et al. (1973); Gelato & Parthé (1987); Smith & Bailey (1957); Zhao & Parthé (1990).

Experimental top

HfGeTe4 was prepared from a reaction of Hf(CERAC 99.8%), Ge(CERAC 99.999%), and Te(CERAC 99.95%) in an elemental ratio of 1:1:4 in the presence of KCl(Aldrich 99.99%) as flux. The mass ratio of reactants and flux was 1:3. The starting materials were placed in a fused-silica tube. The tube was evacuated to 10 -3 Torr, sealed, and heated to 973 K at a rate of 15 K/hr, where it was kept for 72 hrs. The tube was cooled at a rate of 10 K/hr to 373 K and the furnace was shut off. Air- and water-stable metallic shiny needle-shaped crystals were isolated after the flux was removed with water. Qualitative analysis of the crystals with an EDAX-equipped scanning electron microscope indicated the presence of Hf, Ge, and Te. No other element was detected.

Refinement top

Refinement with the positional parameters taken from the ZrGeTe4 structure (Lee et al., 2007) gave the value of the Flack parameter (Flack, 1983) of x=0.96 (4) (wR2=0.128), which suggests that the absolute structure should be incorrect. Refinement of the inverse structure which is in agreement with the selected setting of this work leads to x=-0.02 (6) and significantly better reliability factor (wR2=0.054). The structure was standardized by means of the program STRUCTURE TIDY (Gelato & Parthé, 1987). The nonstoichiometry of the Hf site in the title compound was checked by refining the occupancy and anisotropic displacement parameters of Hf while those of the other atoms were fixed. With the nonstoichiometric model, both parameter were not changed significantly and the residuals (wR2, R1 indices) remained the same. The highest peak(1.55 e/Å-3) and the deepest hole (-2.00 e/ Å-3) are 0.98 Å and 0.78 Å from the atom Hf, respectively.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2006); cell refinement: RAPID-AUTO (Rigaku, 2006); data reduction: RAPID-AUTO (Rigaku, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: locally modified version of ORTEP (Johnson, 1965); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of HfGeTe4 down the a axis, showing the layered nature of the compound. Filled, grey, and open circles represent Hf, Ge, and Te atoms, respectively. Displacement ellipsoids are drawn at the 90% probability level.
[Figure 2] Fig. 2. View of HfGeTe4 down the b axis, showing a two-dimensional layer. Atoms are as marked in Fig. 1. [Symmetry code: (i) -1/2 + x, -1/2 + y, z]
hafnium germanium telluride, HfGeTe4 top
Crystal data top
HfGeTe4F(000) = 1248
Mr = 761.48Dx = 7.26 Mg m3
Orthorhombic, Cmc21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2c -2Cell parameters from 3229 reflections
a = 3.97951 (17) Åθ = 3.2–27.5°
b = 15.9530 (7) ŵ = 35.50 mm1
c = 10.9731 (7) ÅT = 290 K
V = 696.63 (6) Å3Needle, metallic silver
Z = 40.30 × 0.02 × 0.02 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
878 reflections with I > 2σ(I)
ω scansRint = 0.060
Absorption correction: numerical
(NUMABS; Higashi, 2000)
θmax = 27.5°, θmin = 3.2°
Tmin = 0.425, Tmax = 0.510h = 45
3348 measured reflectionsk = 2019
910 independent reflectionsl = 1414
Refinement top
Refinement on F2 w = 1/[σ2(Fo2) + (0.0001P)2]
where P = (Fo2 + 2Fc2)/3
Least-squares matrix: full(Δ/σ)max = 0.001
R[F2 > 2σ(F2)] = 0.023Δρmax = 1.55 e Å3
wR(F2) = 0.054Δρmin = 2.00 e Å3
S = 0.97Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
910 reflectionsExtinction coefficient: 0.00231 (14)
38 parametersAbsolute structure: Flack (1983), 431 Friedel pairs
1 restraintAbsolute structure parameter: 0.008 (14)
Crystal data top
HfGeTe4V = 696.63 (6) Å3
Mr = 761.48Z = 4
Orthorhombic, Cmc21Mo Kα radiation
a = 3.97951 (17) ŵ = 35.50 mm1
b = 15.9530 (7) ÅT = 290 K
c = 10.9731 (7) Å0.30 × 0.02 × 0.02 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
910 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 2000)
878 reflections with I > 2σ(I)
Tmin = 0.425, Tmax = 0.510Rint = 0.060
3348 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0231 restraint
wR(F2) = 0.054Δρmax = 1.55 e Å3
S = 0.97Δρmin = 2.00 e Å3
910 reflectionsAbsolute structure: Flack (1983), 431 Friedel pairs
38 parametersAbsolute structure parameter: 0.008 (14)
Special details top

Geometry. All e.s.d.'s are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hf0.00000.65202 (3)0.22820 (5)0.01067 (17)
Ge0.00000.22772 (8)0.53878 (13)0.0113 (3)
Te10.00000.01673 (5)0.25689 (9)0.0129 (2)
Te20.00000.10126 (5)0.03966 (9)0.0126 (2)
Te30.00000.27773 (5)0.30414 (8)0.0102 (2)
Te40.00000.38127 (5)0.00017 (8)0.0106 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hf0.0113 (3)0.0107 (3)0.0100 (3)000.0000 (2)
Ge0.0118 (6)0.0112 (7)0.0108 (8)000.0012 (6)
Te10.0140 (4)0.0100 (4)0.0147 (5)000.0008 (4)
Te20.0142 (4)0.0130 (4)0.0106 (5)000.0012 (4)
Te30.0116 (3)0.0093 (4)0.0097 (4)000.0010 (3)
Te40.0118 (4)0.0087 (4)0.0111 (5)000.0002 (3)
Geometric parameters (Å, º) top
Hf—Gei2.8286 (15)Ge—Hfiv2.8286 (15)
Hf—Te3ii2.9454 (8)Te1—Te22.7387 (13)
Hf—Te3iii2.9454 (8)Te1—Hfvii2.9524 (7)
Hf—Te1iii2.9524 (7)Te1—Hfviii2.9524 (7)
Hf—Te1ii2.9524 (7)Te2—Hfvii2.9825 (8)
Hf—Te2iii2.9825 (8)Te2—Hfviii2.9825 (8)
Hf—Te2ii2.9825 (8)Te3—Hfviii2.9454 (8)
Hf—Te4iv3.0312 (11)Te3—Hfvii2.9454 (8)
Ge—Te4v2.6761 (10)Te4—Geix2.6761 (10)
Ge—Te4vi2.6761 (10)Te4—Gex2.6761 (10)
Ge—Te32.6955 (17)Te4—Hfi3.0312 (11)
Gei—Hf—Te3ii75.29 (3)Te3iii—Hf—Te4iv80.84 (2)
Gei—Hf—Te3iii75.29 (3)Te1iii—Hf—Te4iv76.52 (3)
Te3ii—Hf—Te3iii84.99 (3)Te1ii—Hf—Te4iv76.52 (3)
Gei—Hf—Te1iii125.04 (3)Te2iii—Hf—Te4iv129.45 (2)
Te3ii—Hf—Te1iii157.35 (3)Te2ii—Hf—Te4iv129.45 (2)
Te3iii—Hf—Te1iii90.704 (18)Te4v—Ge—Te4vi96.07 (5)
Gei—Hf—Te1ii125.04 (3)Te4v—Ge—Te392.35 (4)
Te3ii—Hf—Te1ii90.704 (18)Te4vi—Ge—Te392.35 (4)
Te3iii—Hf—Te1ii157.35 (3)Te4v—Ge—Hfiv123.85 (4)
Te1iii—Hf—Te1ii84.75 (3)Te4vi—Ge—Hfiv123.85 (4)
Gei—Hf—Te2iii71.00 (3)Te3—Ge—Hfiv120.07 (5)
Te3ii—Hf—Te2iii146.29 (3)Te2—Te1—Hfvii63.08 (2)
Te3iii—Hf—Te2iii86.01 (2)Te2—Te1—Hfviii63.08 (2)
Te1iii—Hf—Te2iii54.96 (3)Hfvii—Te1—Hfviii84.75 (3)
Te1ii—Hf—Te2iii108.97 (3)Te1—Te2—Hfvii61.96 (2)
Gei—Hf—Te2ii71.00 (3)Te1—Te2—Hfviii61.96 (2)
Te3ii—Hf—Te2ii86.01 (2)Hfvii—Te2—Hfviii83.69 (3)
Te3iii—Hf—Te2ii146.29 (3)Ge—Te3—Hfviii93.94 (3)
Te1iii—Hf—Te2ii108.97 (3)Ge—Te3—Hfvii93.94 (3)
Te1ii—Hf—Te2ii54.96 (3)Hfviii—Te3—Hfvii84.99 (3)
Te2iii—Hf—Te2ii83.69 (3)Geix—Te4—Gex96.07 (5)
Gei—Hf—Te4iv147.38 (4)Geix—Te4—Hfi92.41 (4)
Te3ii—Hf—Te4iv80.84 (2)Gex—Te4—Hfi92.41 (4)
Symmetry codes: (i) x, y+1, z1/2; (ii) x+1/2, y+1/2, z; (iii) x1/2, y+1/2, z; (iv) x, y+1, z+1/2; (v) x1/2, y+1/2, z+1/2; (vi) x+1/2, y+1/2, z+1/2; (vii) x+1/2, y1/2, z; (viii) x1/2, y1/2, z; (ix) x1/2, y+1/2, z1/2; (x) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaHfGeTe4
Mr761.48
Crystal system, space groupOrthorhombic, Cmc21
Temperature (K)290
a, b, c (Å)3.97951 (17), 15.9530 (7), 10.9731 (7)
V3)696.63 (6)
Z4
Radiation typeMo Kα
µ (mm1)35.50
Crystal size (mm)0.30 × 0.02 × 0.02
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 2000)
Tmin, Tmax0.425, 0.510
No. of measured, independent and
observed [I > 2σ(I)] reflections
3348, 910, 878
Rint0.060
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.054, 0.97
No. of reflections910
No. of parameters38
No. of restraints1
Δρmax, Δρmin (e Å3)1.55, 2.00
Absolute structureFlack (1983), 431 Friedel pairs
Absolute structure parameter0.008 (14)

Computer programs: RAPID-AUTO (Rigaku, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), locally modified version of ORTEP (Johnson, 1965), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Hf—Gei2.8286 (15)Hf—Te2ii2.9825 (8)
Hf—Te3ii2.9454 (8)Hf—Te4iv3.0312 (11)
Hf—Te3iii2.9454 (8)Ge—Te4v2.6761 (10)
Hf—Te1iii2.9524 (7)Ge—Te4vi2.6761 (10)
Hf—Te1ii2.9524 (7)Ge—Te32.6955 (17)
Hf—Te2iii2.9825 (8)Te1—Te22.7387 (13)
Te4v—Ge—Te4vi96.07 (5)Te4v—Ge—Hfiv123.85 (4)
Te4v—Ge—Te392.35 (4)Te3—Ge—Hfiv120.07 (5)
Symmetry codes: (i) x, y+1, z1/2; (ii) x+1/2, y+1/2, z; (iii) x1/2, y+1/2, z; (iv) x, y+1, z+1/2; (v) x1/2, y+1/2, z+1/2; (vi) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

This research was supported by the Korean Research Foundation (KRF-2006–521-C00088). Use was made of the X-ray facilities supported by Ajou University.

References

First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFuruseth, S., Brattås, L. & Kjekshus, A. (1973). Acta Chem. Scand. 27, 2367–2374.  CrossRef CAS Web of Science Google Scholar
First citationGelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139–143.  CrossRef Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (2000). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLee, C.-H., Jang, G.-J. & Yun, H. (2007). Acta Cryst. E63, i183.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMar, A. & Ibers, J. (1993). J. Am. Chem. Soc. 115, 3227–3238.  CrossRef CAS Web of Science Google Scholar
First citationRigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, J. F. & Bailey, D. M. (1957). Acta Cryst. 10, 341–342.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationZhao, J.-T. & Parthé, E. (1990). J. Less-Common Met. 162, 27–29.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds