organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,6-Di­nitro­benzene-1,3-di­amine

aSchool of Chemistry and Life Science, Maoming University, Maoming 525000, People's Republic of China, and bSchool of Life Science, Changchun Normal University, Changchun 130032, People's Republic of China
*Correspondence e-mail: zhout016@nenu.edu.cn

(Received 27 March 2008; accepted 6 April 2008; online 16 April 2008)

The mol­ecule of the title compound, C6H6N4O4, is almost planar, being stabilized by two intra­molecular N—H⋯O hydrogen bonds. Further N—H⋯O links lead to a sheet in the crystal structure.

Related literature

For related literature, see: Siri & Braunstein (2005[Siri, O. & Braunstein, P. (2005). New J. Chem. 29, 75-78.]).

[Scheme 1]

Experimental

Crystal data
  • C6H6N4O4

  • Mr = 198.15

  • Triclinic, [P \overline 1]

  • a = 7.1294 (6) Å

  • b = 7.1770 (9) Å

  • c = 9.1289 (8) Å

  • α = 67.710 (6)°

  • β = 86.692 (6)°

  • γ = 62.214 (5)°

  • V = 378.30 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 295 (2) K

  • 0.23 × 0.21 × 0.19 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.967, Tmax = 0.972

  • 2447 measured reflections

  • 1322 independent reflections

  • 1098 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.187

  • S = 1.00

  • 1322 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3i 0.86 2.24 3.074 (2) 162
N1—H1A⋯O1ii 0.86 2.47 2.917 (2) 113
N1—H1B⋯O4 0.86 2.05 2.667 (3) 128
N2—H2A⋯O2i 0.86 2.31 3.098 (2) 152
N2—H2B⋯O1 0.86 2.03 2.642 (2) 128
N2—H2B⋯O4iii 0.86 2.33 2.964 (3) 131
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1; (iii) x, y+1, z-1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of the ongoing investigations of biological structure-property relationships in amino-containing molecules (Siri & Braunstein, 2005), we now report the synthesis and structure of the title compound, (I), (Fig. 1).

The molecule of (I) is almost planar, being stabilised by two intramolecular N-H···O interactions (Table 1). The aromatic ring makes dihedral angles of 3.7 (2)° and 4.6 (3)° with the N3/O1/O2 and N4/O3/O4 nitro groups, respectively. Further intermolecular N-H···O hydrogen bonds result in (100) sheets in the crystal (Fig. 2).

Related literature top

For related literature, see: Siri & Braunstein (2005).

Experimental top

80 ml concentrated HN03 was added dropwise to 29.2 g 1,3-dichlorobenzene in 150 ml oleum (25% sulfur trioxide) and the mixture was stirred for 30 minutes. The resulting solution was poured over 2000 g crushed ice. After the ice has melted, sufficient 30% sodium hydroxide solution was added to achieve a pH of 7 and 24.2 g of 1,3-dinitro-4,6-dichlorobenzene (II) was obtained after filtration and drying. Then, 7.2 g of (II) and 50 ml 30% aqueous ammonia were sealed in a 100-ml autoclave and heated to 443 K for 24 h. After cooling to room temperature, 5.6 g (23% yield) of colourless blocks of (I) were recovered. Anal. Calc. for C6H6N4O4: C 36.34, H 3.03, N 28.28%; Found: C 36.32, H 3.01, N 28.29%.

Refinement top

The H atoms were placed in calculated positions with C—H = 0.93Å and N—H = 0.86Å and refined as riding with Uiso(H) = 1.2Ueq(carrier).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), drawn with 50% displacement ellipsoids for the non-hydrogen atoms. The hydrogen bonds are shown as double-dashed lines.
4,6-Dinitrobenzene-1,3-diamine top
Crystal data top
C6H6N4O4Z = 2
Mr = 198.15F(000) = 204
Triclinic, P1Dx = 1.740 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1294 (6) ÅCell parameters from 1322 reflections
b = 7.1770 (9) Åθ = 3.4–25.1°
c = 9.1289 (8) ŵ = 0.15 mm1
α = 67.710 (6)°T = 295 K
β = 86.692 (6)°Block, colourless
γ = 62.214 (5)°0.23 × 0.21 × 0.19 mm
V = 378.30 (7) Å3
Data collection top
Bruker APEXII CCD
diffractometer
1322 independent reflections
Radiation source: fine-focus sealed tube1098 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 25.1°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 88
Tmin = 0.967, Tmax = 0.972k = 38
2447 measured reflectionsl = 910
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.187H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.15P)2 + 0.0584P]
where P = (Fo2 + 2Fc2)/3
1322 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C6H6N4O4γ = 62.214 (5)°
Mr = 198.15V = 378.30 (7) Å3
Triclinic, P1Z = 2
a = 7.1294 (6) ÅMo Kα radiation
b = 7.1770 (9) ŵ = 0.15 mm1
c = 9.1289 (8) ÅT = 295 K
α = 67.710 (6)°0.23 × 0.21 × 0.19 mm
β = 86.692 (6)°
Data collection top
Bruker APEXII CCD
diffractometer
1322 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1098 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.972Rint = 0.024
2447 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.187H-atom parameters constrained
S = 1.00Δρmax = 0.50 e Å3
1322 reflectionsΔρmin = 0.24 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2508 (3)0.6981 (4)0.8212 (2)0.0307 (5)
C20.2639 (3)0.8653 (4)0.6845 (2)0.0325 (6)
H20.27230.98440.69650.039*
C30.2654 (3)0.8654 (3)0.5319 (2)0.0291 (5)
C40.2464 (3)0.6832 (3)0.5162 (2)0.0284 (5)
C50.2400 (3)0.5121 (3)0.6491 (2)0.0308 (5)
H50.23170.39320.63690.037*
C60.2457 (3)0.5127 (3)0.7994 (2)0.0312 (5)
N10.2441 (3)0.7171 (3)0.9615 (2)0.0399 (6)
H1A0.24780.83190.96780.048*
H1B0.23600.61461.04550.048*
N20.2856 (3)1.0298 (3)0.4091 (2)0.0397 (5)
H2A0.29771.13470.42480.048*
H2B0.28651.03000.31480.048*
N30.2326 (3)0.6701 (3)0.3643 (2)0.0332 (5)
N40.2487 (3)0.3197 (3)0.9290 (2)0.0390 (5)
O10.2415 (3)0.8172 (3)0.24312 (17)0.0490 (5)
O20.2106 (3)0.5129 (3)0.35769 (19)0.0501 (5)
O30.2537 (4)0.1638 (3)0.9013 (2)0.0635 (7)
O40.2458 (3)0.3152 (3)1.06588 (18)0.0539 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0380 (11)0.0317 (11)0.0225 (10)0.0169 (9)0.0053 (8)0.0108 (8)
C20.0471 (12)0.0284 (11)0.0280 (12)0.0218 (9)0.0058 (9)0.0126 (9)
C30.0360 (11)0.0269 (11)0.0236 (10)0.0160 (8)0.0051 (8)0.0082 (8)
C40.0354 (11)0.0300 (11)0.0207 (10)0.0149 (9)0.0052 (7)0.0122 (9)
C50.0401 (11)0.0256 (10)0.0287 (11)0.0172 (9)0.0043 (8)0.0112 (9)
C60.0415 (11)0.0288 (11)0.0220 (11)0.0186 (9)0.0041 (8)0.0065 (9)
N10.0684 (13)0.0374 (11)0.0218 (10)0.0307 (10)0.0093 (8)0.0132 (8)
N20.0674 (13)0.0363 (10)0.0241 (9)0.0343 (10)0.0092 (8)0.0091 (8)
N30.0443 (10)0.0319 (10)0.0253 (9)0.0185 (8)0.0041 (7)0.0129 (8)
N40.0593 (12)0.0337 (11)0.0265 (9)0.0268 (9)0.0078 (8)0.0090 (8)
O10.0861 (13)0.0490 (11)0.0202 (8)0.0406 (9)0.0121 (7)0.0121 (8)
O20.0847 (12)0.0457 (10)0.0358 (10)0.0388 (9)0.0054 (8)0.0217 (8)
O30.1255 (18)0.0439 (11)0.0397 (10)0.0569 (12)0.0171 (10)0.0147 (9)
O40.0979 (14)0.0498 (11)0.0214 (9)0.0460 (10)0.0134 (8)0.0087 (8)
Geometric parameters (Å, º) top
C1—N11.334 (3)C5—H50.9300
C1—C21.401 (3)C6—N41.432 (3)
C1—C61.435 (3)N1—H1A0.8600
C2—C31.392 (3)N1—H1B0.8600
C2—H20.9300N2—H2A0.8600
C3—N21.344 (3)N2—H2B0.8600
C3—C41.434 (3)N3—O11.229 (2)
C4—C51.377 (3)N3—O21.233 (2)
C4—N31.437 (3)N4—O31.222 (3)
C5—C61.377 (3)N4—O41.236 (3)
N1—C1—C2119.87 (19)C5—C6—N4116.47 (18)
N1—C1—C6123.84 (19)C5—C6—C1120.45 (19)
C2—C1—C6116.29 (19)N4—C6—C1123.07 (19)
C3—C2—C1124.43 (19)C1—N1—H1A120.0
C3—C2—H2117.8C1—N1—H1B120.0
C1—C2—H2117.8H1A—N1—H1B120.0
N2—C3—C2119.92 (18)C3—N2—H2A120.0
N2—C3—C4123.51 (19)C3—N2—H2B120.0
C2—C3—C4116.57 (18)H2A—N2—H2B120.0
C5—C4—C3120.39 (19)O1—N3—O2121.21 (18)
C5—C4—N3117.18 (18)O1—N3—C4119.26 (17)
C3—C4—N3122.43 (19)O2—N3—C4119.52 (17)
C4—C5—C6121.69 (19)O3—N4—O4121.72 (17)
C4—C5—H5119.2O3—N4—C6119.01 (18)
C6—C5—H5119.2O4—N4—C6119.27 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.862.243.074 (2)162
N1—H1A···O1ii0.862.472.917 (2)113
N1—H1B···O40.862.052.667 (3)128
N2—H2A···O2i0.862.313.098 (2)152
N2—H2B···O10.862.032.642 (2)128
N2—H2B···O4iii0.862.332.964 (3)131
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1; (iii) x, y+1, z1.

Experimental details

Crystal data
Chemical formulaC6H6N4O4
Mr198.15
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)7.1294 (6), 7.1770 (9), 9.1289 (8)
α, β, γ (°)67.710 (6), 86.692 (6), 62.214 (5)
V3)378.30 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.23 × 0.21 × 0.19
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.967, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
2447, 1322, 1098
Rint0.024
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.187, 1.00
No. of reflections1322
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.24

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.862.243.074 (2)162
N1—H1A···O1ii0.862.472.917 (2)113
N1—H1B···O40.862.052.667 (3)128
N2—H2A···O2i0.862.313.098 (2)152
N2—H2B···O10.862.032.642 (2)128
N2—H2B···O4iii0.862.332.964 (3)131
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1; (iii) x, y+1, z1.
 

Acknowledgements

The authors acknowledge financial support from the Science Foundation of Maoming University (grant No. 208033).

References

First citationBruker (2001). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiri, O. & Braunstein, P. (2005). New J. Chem. 29, 75–78.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds