metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m635-m636

(Carbonyl-1κC)bis­­[2,3(η5)-cyclo­penta­dien­yl][μ3-(S-methyl tri­thio­carbonato)methyl­idyne-1:2:3κ4C,S′′:C:C](tri­phenyl­phosphine-1κP)(μ3-sulfido-1:2:3κ3S)dicobalt(II)iron(II) tri­fluoro­methane­sulfonate

aDepartment of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland, and bDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: jsimpson@alkali.otago.ac.nz

(Received 31 March 2008; accepted 2 April 2008; online 10 April 2008)

The asymmetric unit of the title compound, [FeCo2(C5H5)2(C3H3S3)S(C18H15P)(CO)]CF3SO3, consists of a triangular irondicobalt cluster cation and a trifluoro­methane­sulfonate anion. In the cation, the FeCo2 triangle is symmetrically capped on one face by an S atom and on the other by a C atom linked to a methyl trithio­carbonate residue that bridges the Fe—C bond. Each Co atom carries a cyclo­penta­dienyl ligand while the Fe atom coordinates to one carbonyl and one triphenyl­phosphine ligand. In the crystal structure, the cation is linked to the anion by a number of weak non-classical C—H⋯O and C—H⋯F hydrogen bonds and weak S⋯O (3.317 Å) and S⋯F (3.198 Å) inter­actions. The structure is further stabilized by additional inter­molecular C—H⋯O, C—H⋯F and O⋯O (2.942 Å) contacts, together with an unusual S⋯π(Cp) inter­action (S⋯centroid distance = 3.385 Å), generating an extended network.

Related literature

For the preparation of the title compound, see: Manning et al. (2003[Manning, A. R., McAdam, C. J., Palmer, A. J., Robinson, B. H. & Simpson, J. (2003). Dalton Trans. pp. 4472-4481.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.], 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For related sulfur- and carbon-capped triangular FeCo2 structures, see: Manning, O'Dwyer et al, (1995[Manning, A. R., O'Dwyer, L., McArdle, P. A. & Cunningham, D. (1995). J. Organomet. Chem. 503, C46-C47.], 1998[Manning, A. R., O'Dwyer, L., McArdle, P. A. & Cunningham, D. (1998). J. Organomet. Chem. 551, 139-149.], 1999[Manning, A. R., O'Dwyer, L., McArdle, P. A. & Cunningham, D. (1999). J. Organomet. Chem. 573, 109-120.]); Manning, Palmer et al. (1998[Manning, A. R., Palmer, A. J., McAdam, C. J., Robinson, B. H. & Simpson, J. (1998). Chem. Commun. pp. 1577-1578.]). For related literature, see: Ringer et al. (2007[Ringer, A. L., Senenko, A. & Sherrill, C. D. (2007). Protein Sci. 16, 1-8.]).

[Scheme 1]

Experimental

Crystal data
  • [FeCo2(C5H5)2(C3H3S3)S(C18H15P)(CO)]CF3SO3

  • Mr = 910.53

  • Monoclinic, P 21 /c

  • a = 11.0403 (6) Å

  • b = 29.2183 (14) Å

  • c = 10.9040 (5) Å

  • β = 100.664 (3)°

  • V = 3456.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.77 mm−1

  • T = 91 (2) K

  • 0.18 × 0.06 × 0.06 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.717, Tmax = 0.899

  • 36119 measured reflections

  • 5502 independent reflections

  • 4297 reflections with I > 2σ(I)

  • Rint = 0.081

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.067

  • S = 1.03

  • 5502 reflections

  • 443 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co2—S1 2.1275 (9)
Co1—S1 2.1564 (9)
Fe1—S1 2.1836 (9)
Fe1—C1 1.891 (3)
Fe1—Co1 2.5035 (6)
Fe1—Co2 2.6149 (6)
Co1—C1 1.867 (3)
Co1—Co2 2.4153 (6)
Co2—C1 1.880 (3)
Co2—S1—Co1 68.64 (3)
Co2—S1—Fe1 74.67 (3)
Co1—S1—Fe1 70.45 (3)
Co1—C1—Co2 80.27 (13)
Co1—C1—Fe1 83.54 (13)
Co2—C1—Fe1 87.81 (13)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O2 0.98 2.56 3.477 (4) 156
C3—H3C⋯F3 0.98 2.62 3.297 (4) 127
C11—H11⋯O3 0.95 2.41 3.293 (4) 154
C21—H21⋯O2 0.95 2.64 3.588 (4) 174
C21—H21⋯O3 0.95 2.64 3.235 (4) 121
C13—H13⋯O1i 0.95 2.42 3.288 (4) 152
C14—H14⋯F1i 0.95 2.56 3.248 (4) 129
C35—H35⋯O1ii 0.95 2.53 3.283 (4) 136
C24—H24⋯O2iii 0.95 2.49 3.298 (4) 143
Symmetry codes: (i) x, y, z+1; (ii) [x-1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and TITAN2000 (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and TITAN2000; molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The title compound (I) was first reported and characterized by us (Manning et al., 2003), as part of a study into the reaction of carbon disulfide with the µ3-CS cluster [{Co(η5-C5H5)}2{Fe(CO)(PPh3)}(µ3-S)(µ3-CS)]. The product from this reaction, [{Co(η5-C5H5)}2{Fe(CO)(PPh3)}(µ3-S)(µ3-C2S3)], reacted with alkylating agents MeX to give [{Co(η5-C5H5)}2{Fe(CO)(PPh3)}(µ3-S)(µ3-C2S3Me)]+[X]- salts. The compound with [X]- = I- was characterized crystallographically in the initial report. Since then crystals of the compound (I) where [X]- is trifluoromethanesulfonate have come to hand allowing us to determine the effect of the counter-anion on the unusual structure of the cation.

The asymmetric unit of (I), C32H28OPS4FeCo2+, CO3F3S-, consists of a bicapped iron-dicobalt cluster cation and a trifluoromethanesulfonate anion (Fig. 1). The structure of the cation in (I) is very similar to that of the cation in the previously reported iodide salt [{Co(η5-C5H5)}2{Fe(CO)(PPh3)}(µ3-S)(µ3-C2S3Me)][I], Manning et al. (2003). The bond lengths and angles in the cations, (Table 1) are comparable in both structures. They also confirm our suggestion that the bonding within the Fe—S—C(SMe)-S—C metallocycle is delocalized. Bond distances and angles in the anion are also normal (Allen et al., 1987).

In the crystal structure the cation is linked to the anion in the asymmetric unit by a number of weak non-classical C—H···O and C—H···F hydrogen bonds and weak S···O and F···O interactions. A feature of the packing is an intermolecular S···π(Cp) interaction involving the capping S1 atom and the C21···C25 cyclopentadiene ring of an adjacent molecule (Fig. 2), with an S···Cgi distance of 3.385Å and a mean S1···Cg···Cn angle of 89.9° (Cg is the centroid of the C21···C25 cyclopentadiene ring and n = 21···25; symmetry code i = x, 3/2 - y, 1/2 + z). Such interactions between S atoms and benzene rings are common, 1781 examples with S···Cg distances in the range 3.0 ··· 3.7 Å (mean 3.54 Å) and S1···Cg···Cn angles in the range 60···120° (mean 90.0°) in the Cambridge database Ver 5.29 to January 2008 (Allen et al., 2004). They are also important in determining protein folding interactions in biochemistry (Ringer et al., 2007). In contrast however, the database reveals only 194 similar interactions involving five-membered aromatic rings with the same distance and angle limitations (mean S···Cg distance 3.62 Å, S1···Cg···Cn angle 89.9), many of which involve cyclopentadiene rings in transition metal organometallic complexes.

The structure is further stabilized by additional intermolecular C—H···O, C—H···F and O···O contacts which generate an extended network (Table 2). Pairs of cluster cations, interleave with trifluoromethylsulphonate cations to form interlinked columns down the c axis (Fig. 3).

For related sulfur and carbon capped triangular FeCo2 structures see Manning, O'Dwyer et al., (1995, 1998, 1999); Manning, Palmer et al., (1998).

Related literature top

For the preparation of the title compound, see: Manning et al. (2003). For reference structural data, see: Allen et al. (1987,2002). For related sulfur- and carbon-capped triangular FeCo2 structures, see: Manning, O'Dwyer et al., (1995, 1998, 1999); Manning, Palmer et al. (1998). For related literature, see: Ringer et al. (2007).

Experimental top

The title compound was prepared from the room temperature reaction of methyl trifluoromethanesulfonate with [{Co(η5-C5H5)}2{Fe(CO)(PPh3)}(µ3-S)(µ3-C2S3)], Manning et al. (2003), with X-ray quality crystals grown from dichloromethane layered with methanol.

Refinement top

The crystals were small and weakly diffracting and little useable data were obtained beyond θ = 24°. All H-atoms bound to carbon were refined using a riding model with d(C—H) = 0.95 Å, Uiso=1.2Ueq (C) for aromatic and 0.98 Å, Uiso = 1.5Ueq (C) for CH3 H atoms.

Computing details top

Data collection: APEX2 (Bruker 2006); cell refinement: APEX2 and SAINT (Bruker 2006); data reduction: SAINT (Bruker 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), with 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The unusual S···π(Cp) interaction (dotted line) in (I). The red circle represents the centroid of the C21···C25 cyclopentadiene ring.
[Figure 3] Fig. 3. Crystal packing of (I) viewed down the c axis.
(Carbonyl-1κC)bis[2,3(η5)-cyclopentadienyl][µ3-(S-methyl trithiocarbonato)methylidyne-1:2:3κ4C,S'':C:C](triphenylphosphine- 1κP)(µ3-sulfido-1:2:3κ3S)dicobalt(II)iron(II) trifluoromethanesulfonate top
Crystal data top
[FeCo2(C5H5)2(C3H3S3)S(C18H15P)(CO)]CF3SO3F(000) = 1840
Mr = 910.53Dx = 1.750 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5433 reflections
a = 11.0403 (6) Åθ = 2.3–23.6°
b = 29.2183 (14) ŵ = 1.77 mm1
c = 10.9040 (5) ÅT = 91 K
β = 100.664 (3)°Irregular fragment, black
V = 3456.7 (3) Å30.18 × 0.06 × 0.06 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5502 independent reflections
Radiation source: fine-focus sealed tube4297 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.081
ω scansθmax = 24.2°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 1212
Tmin = 0.717, Tmax = 0.899k = 3333
36119 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0227P)2 + 1.9058P]
where P = (Fo2 + 2Fc2)/3
5502 reflections(Δ/σ)max = 0.002
443 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[FeCo2(C5H5)2(C3H3S3)S(C18H15P)(CO)]CF3SO3V = 3456.7 (3) Å3
Mr = 910.53Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.0403 (6) ŵ = 1.77 mm1
b = 29.2183 (14) ÅT = 91 K
c = 10.9040 (5) Å0.18 × 0.06 × 0.06 mm
β = 100.664 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5502 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
4297 reflections with I > 2σ(I)
Tmin = 0.717, Tmax = 0.899Rint = 0.081
36119 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 1.03Δρmax = 0.38 e Å3
5502 reflectionsΔρmin = 0.35 e Å3
443 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.43507 (7)0.68025 (3)0.84869 (8)0.01321 (19)
Fe10.38034 (4)0.614761 (15)0.75881 (4)0.01093 (12)
Co10.59348 (4)0.647577 (15)0.79713 (4)0.01244 (12)
Co20.43989 (4)0.690431 (15)0.65645 (4)0.01123 (11)
C10.4900 (3)0.62912 (11)0.6502 (3)0.0119 (7)
S20.52197 (7)0.59798 (3)0.52361 (8)0.01445 (19)
C20.3965 (3)0.56308 (11)0.5050 (3)0.0126 (7)
S30.36348 (8)0.52579 (3)0.38030 (8)0.0195 (2)
C30.4831 (3)0.53630 (12)0.2912 (3)0.0219 (8)
H3A0.48770.56920.27470.033*
H3B0.46420.51970.21190.033*
H3C0.56240.52580.33860.033*
S40.29960 (7)0.56474 (3)0.60791 (8)0.0158 (2)
C40.4330 (3)0.57269 (12)0.8704 (3)0.0169 (8)
O40.4722 (2)0.54557 (8)0.9446 (2)0.0268 (6)
C110.7657 (3)0.65135 (13)0.7521 (3)0.0218 (9)
H110.78220.65730.67120.026*
C120.7543 (3)0.68458 (12)0.8438 (3)0.0232 (9)
H120.76080.71680.83500.028*
C130.7314 (3)0.66107 (13)0.9513 (3)0.0242 (9)
H130.72090.67481.02760.029*
C140.7270 (3)0.61407 (13)0.9253 (3)0.0249 (9)
H140.71240.59050.98070.030*
C150.7481 (3)0.60788 (13)0.8022 (3)0.0249 (9)
H150.75010.57940.76060.030*
C210.4574 (3)0.71066 (11)0.4791 (3)0.0171 (8)
H210.48800.69200.42020.021*
C220.3330 (3)0.71431 (11)0.4931 (3)0.0166 (8)
H220.26530.69880.44410.020*
C230.3258 (3)0.74476 (11)0.5918 (3)0.0173 (8)
H230.25340.75290.62240.021*
C240.4474 (3)0.76111 (11)0.6372 (3)0.0187 (8)
H240.47030.78270.70260.022*
C250.5283 (3)0.73976 (11)0.5685 (3)0.0192 (8)
H250.61490.74420.58020.023*
P10.19319 (7)0.62119 (3)0.81383 (8)0.01130 (19)
C310.1058 (3)0.66800 (11)0.7289 (3)0.0118 (7)
C320.0804 (3)0.66594 (11)0.5986 (3)0.0150 (8)
H320.10910.64070.55720.018*
C330.0139 (3)0.70032 (12)0.5291 (3)0.0185 (8)
H330.00510.69800.44080.022*
C340.0247 (3)0.73794 (12)0.5880 (3)0.0205 (8)
H340.07110.76140.54050.025*
C350.0044 (3)0.74128 (11)0.7162 (3)0.0192 (8)
H350.01990.76760.75670.023*
C360.0686 (3)0.70657 (11)0.7865 (3)0.0159 (8)
H360.08730.70920.87490.019*
C410.1856 (3)0.63076 (11)0.9778 (3)0.0130 (7)
C420.0678 (3)0.63315 (11)1.0099 (3)0.0138 (7)
H420.00360.63170.94630.017*
C430.0553 (3)0.63756 (11)1.1325 (3)0.0170 (8)
H430.02440.63991.15310.020*
C440.1591 (3)0.63864 (11)1.2259 (3)0.0157 (8)
H440.15020.64071.31070.019*
C450.2758 (3)0.63666 (11)1.1963 (3)0.0153 (8)
H450.34670.63781.26060.018*
C460.2888 (3)0.63291 (11)1.0721 (3)0.0131 (7)
H460.36880.63181.05180.016*
C510.0968 (3)0.56975 (11)0.7843 (3)0.0135 (7)
C520.0065 (3)0.56312 (12)0.6782 (3)0.0196 (8)
H520.01160.58690.61830.024*
C530.0570 (3)0.52218 (12)0.6594 (3)0.0241 (9)
H530.11730.51780.58600.029*
C540.0332 (3)0.48759 (12)0.7471 (4)0.0254 (9)
H540.07780.45970.73430.030*
C550.0555 (3)0.49360 (12)0.8532 (3)0.0239 (9)
H550.07130.47010.91420.029*
C560.1210 (3)0.53417 (11)0.8701 (3)0.0189 (8)
H560.18390.53780.94170.023*
S50.71566 (8)0.65888 (3)0.32134 (8)0.0176 (2)
O10.7829 (2)0.68745 (8)0.2496 (2)0.0249 (6)
O20.59310 (19)0.64632 (8)0.2590 (2)0.0201 (6)
O30.7252 (2)0.67193 (9)0.4504 (2)0.0260 (6)
C600.7989 (3)0.60449 (13)0.3295 (3)0.0221 (8)
F10.78346 (19)0.58458 (7)0.21758 (19)0.0351 (6)
F20.92021 (16)0.61032 (7)0.36923 (18)0.0264 (5)
F30.76096 (18)0.57506 (7)0.4081 (2)0.0321 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0146 (4)0.0129 (5)0.0127 (4)0.0008 (3)0.0039 (3)0.0018 (3)
Fe10.0111 (3)0.0106 (3)0.0116 (3)0.0004 (2)0.00340 (19)0.0001 (2)
Co10.0102 (2)0.0157 (3)0.0112 (2)0.00022 (19)0.00134 (18)0.00025 (19)
Co20.0121 (2)0.0103 (2)0.0113 (2)0.00045 (19)0.00221 (18)0.00090 (19)
C10.0094 (17)0.0112 (18)0.0156 (18)0.0009 (13)0.0038 (14)0.0007 (14)
S20.0156 (4)0.0144 (5)0.0144 (4)0.0022 (4)0.0057 (4)0.0032 (3)
C20.0123 (17)0.0109 (18)0.0148 (18)0.0048 (14)0.0035 (14)0.0019 (14)
S30.0193 (5)0.0198 (5)0.0198 (5)0.0038 (4)0.0044 (4)0.0074 (4)
C30.024 (2)0.025 (2)0.017 (2)0.0017 (16)0.0063 (16)0.0051 (16)
S40.0140 (4)0.0157 (5)0.0188 (5)0.0029 (4)0.0055 (4)0.0033 (4)
C40.0149 (19)0.019 (2)0.019 (2)0.0005 (15)0.0081 (15)0.0054 (17)
O40.0319 (15)0.0215 (15)0.0268 (15)0.0092 (12)0.0052 (12)0.0096 (12)
C110.0101 (18)0.043 (3)0.0125 (19)0.0021 (16)0.0019 (14)0.0019 (17)
C120.0089 (18)0.024 (2)0.034 (2)0.0051 (15)0.0029 (16)0.0023 (18)
C130.0138 (19)0.044 (3)0.0131 (19)0.0004 (17)0.0028 (15)0.0050 (17)
C140.0151 (19)0.033 (2)0.023 (2)0.0009 (17)0.0054 (16)0.0120 (17)
C150.0099 (18)0.033 (2)0.030 (2)0.0071 (16)0.0024 (16)0.0062 (18)
C210.024 (2)0.0151 (19)0.0141 (19)0.0052 (15)0.0093 (15)0.0054 (15)
C220.0197 (19)0.0156 (19)0.0129 (18)0.0019 (15)0.0014 (15)0.0047 (15)
C230.0200 (19)0.0093 (18)0.023 (2)0.0055 (15)0.0046 (15)0.0030 (15)
C240.026 (2)0.0075 (18)0.020 (2)0.0002 (15)0.0021 (16)0.0012 (14)
C250.0144 (18)0.018 (2)0.025 (2)0.0035 (15)0.0024 (15)0.0113 (16)
P10.0109 (4)0.0114 (5)0.0117 (5)0.0007 (4)0.0025 (3)0.0005 (4)
C310.0084 (17)0.0115 (18)0.0165 (19)0.0022 (14)0.0050 (14)0.0015 (14)
C320.0137 (18)0.0134 (18)0.0170 (19)0.0028 (14)0.0005 (15)0.0010 (15)
C330.0173 (19)0.023 (2)0.0133 (18)0.0009 (16)0.0017 (15)0.0038 (15)
C340.0126 (18)0.024 (2)0.024 (2)0.0012 (15)0.0001 (15)0.0086 (16)
C350.0207 (19)0.0122 (19)0.026 (2)0.0035 (15)0.0072 (16)0.0013 (16)
C360.0184 (19)0.0155 (19)0.0151 (18)0.0010 (15)0.0066 (15)0.0001 (15)
C410.0133 (18)0.0101 (18)0.0168 (18)0.0008 (14)0.0057 (14)0.0011 (14)
C420.0125 (18)0.0143 (19)0.0138 (18)0.0005 (14)0.0004 (14)0.0007 (14)
C430.0180 (19)0.0154 (19)0.021 (2)0.0017 (15)0.0115 (16)0.0017 (15)
C440.024 (2)0.0146 (19)0.0096 (17)0.0041 (15)0.0059 (15)0.0016 (14)
C450.0166 (19)0.0146 (19)0.0132 (18)0.0028 (15)0.0012 (15)0.0022 (14)
C460.0118 (17)0.0112 (18)0.0177 (19)0.0010 (14)0.0059 (14)0.0019 (14)
C510.0084 (17)0.0157 (19)0.0188 (19)0.0009 (14)0.0088 (14)0.0008 (15)
C520.0192 (19)0.018 (2)0.021 (2)0.0019 (16)0.0028 (15)0.0031 (16)
C530.0167 (19)0.024 (2)0.030 (2)0.0065 (16)0.0004 (16)0.0021 (18)
C540.022 (2)0.016 (2)0.040 (2)0.0047 (16)0.0102 (18)0.0036 (18)
C550.025 (2)0.017 (2)0.030 (2)0.0007 (16)0.0063 (17)0.0038 (17)
C560.0191 (19)0.017 (2)0.021 (2)0.0005 (16)0.0035 (15)0.0013 (16)
S50.0152 (5)0.0214 (5)0.0160 (5)0.0011 (4)0.0028 (4)0.0013 (4)
O10.0238 (14)0.0281 (15)0.0232 (14)0.0080 (11)0.0052 (11)0.0041 (11)
O20.0150 (13)0.0223 (14)0.0216 (14)0.0027 (10)0.0005 (10)0.0039 (11)
O30.0248 (14)0.0368 (16)0.0171 (14)0.0012 (12)0.0054 (11)0.0063 (12)
C600.015 (2)0.034 (2)0.018 (2)0.0016 (17)0.0050 (16)0.0002 (17)
F10.0359 (13)0.0377 (14)0.0288 (13)0.0105 (11)0.0013 (10)0.0149 (11)
F20.0148 (11)0.0381 (13)0.0267 (12)0.0016 (9)0.0046 (9)0.0003 (10)
F30.0258 (12)0.0291 (13)0.0442 (14)0.0049 (10)0.0136 (10)0.0168 (11)
Geometric parameters (Å, º) top
Co2—S12.1275 (9)C22—C231.410 (5)
Co1—S12.1564 (9)C22—H220.9500
Fe1—S12.1836 (9)C23—C241.425 (4)
Fe1—C41.751 (4)C23—H230.9500
Fe1—C11.891 (3)C24—C251.413 (5)
Fe1—S42.2572 (9)C24—H240.9500
Fe1—P12.2634 (10)C25—H250.9500
Fe1—Co12.5035 (6)P1—C311.824 (3)
Fe1—Co22.6149 (6)P1—C411.827 (3)
Co1—C11.867 (3)P1—C511.835 (3)
Co1—C112.052 (3)C31—C361.389 (4)
Co1—C152.056 (3)C31—C321.398 (4)
Co1—C122.060 (3)C32—C331.384 (4)
Co1—C142.079 (3)C32—H320.9500
Co1—C132.086 (3)C33—C341.380 (5)
Co1—Co22.4153 (6)C33—H330.9500
Co2—C11.880 (3)C34—C351.379 (5)
Co2—C212.065 (3)C34—H340.9500
Co2—C222.067 (3)C35—C361.385 (4)
Co2—C232.068 (3)C35—H350.9500
Co2—C252.073 (3)C36—H360.9500
Co2—C242.079 (3)C41—C461.388 (4)
C1—S21.743 (3)C41—C421.410 (4)
S2—C21.702 (3)C42—C431.375 (4)
S2—F33.198 (2)C42—H420.9500
S2—O33.317 (3)C43—C441.385 (4)
S2—S53.7879 (12)C43—H430.9500
S2—C604.032 (4)C44—C451.387 (4)
C2—S41.688 (3)C44—H440.9500
C2—S31.728 (3)C45—C461.392 (4)
S3—C31.805 (3)C45—H450.9500
C3—H3A0.9800C46—H460.9500
C3—H3B0.9800C51—C561.391 (4)
C3—H3C0.9800C51—C521.394 (4)
C4—O41.158 (4)C52—C531.382 (5)
C4—O4i4.040 (5)C52—H520.9500
O4—O4i2.941 (5)C53—C541.383 (5)
C11—C151.410 (5)C53—H530.9500
C11—C121.416 (5)C54—C551.382 (5)
C11—H110.9500C54—H540.9500
C12—C131.421 (5)C55—C561.383 (5)
C12—H120.9500C55—H550.9500
C13—C141.401 (5)C56—H560.9500
C13—H130.9500S5—O11.440 (2)
C14—C151.416 (5)S5—O31.443 (2)
C14—H140.9500S5—O21.445 (2)
C15—H150.9500S5—C601.829 (4)
C21—C221.414 (4)C60—F11.334 (4)
C21—C251.415 (5)C60—F31.335 (4)
C21—H210.9500C60—F21.340 (4)
Co2—S1—Co168.64 (3)C13—C12—Co170.94 (19)
Co2—S1—Fe174.67 (3)C11—C12—H12126.2
Co1—S1—Fe170.45 (3)C13—C12—H12126.2
C4—Fe1—C1114.96 (14)Co1—C12—H12124.9
C4—Fe1—S1105.94 (11)C14—C13—C12108.1 (3)
C1—Fe1—S186.02 (10)C14—C13—Co170.05 (19)
C4—Fe1—S495.02 (11)C12—C13—Co168.97 (19)
C1—Fe1—S484.22 (10)C14—C13—H13125.9
S1—Fe1—S4159.02 (4)C12—C13—H13125.9
C4—Fe1—P194.37 (11)Co1—C13—H13126.6
C1—Fe1—P1150.38 (10)C13—C14—C15108.2 (3)
S1—Fe1—P189.92 (3)C13—C14—Co170.6 (2)
S4—Fe1—P189.44 (3)C15—C14—Co169.12 (19)
C4—Fe1—Co188.38 (11)C13—C14—H14125.9
C1—Fe1—Co147.82 (9)C15—C14—H14125.9
S1—Fe1—Co154.27 (3)Co1—C14—H14125.9
S4—Fe1—Co1127.00 (3)C11—C15—C14108.1 (3)
P1—Fe1—Co1143.12 (3)C11—C15—Co169.8 (2)
C4—Fe1—Co2144.34 (11)C14—C15—Co170.84 (19)
C1—Fe1—Co245.92 (9)C11—C15—H15126.0
S1—Fe1—Co251.69 (3)C14—C15—H15126.0
S4—Fe1—Co2109.44 (3)Co1—C15—H15125.0
P1—Fe1—Co2110.91 (3)C22—C21—C25107.7 (3)
Co1—Fe1—Co256.263 (16)C22—C21—Co270.06 (18)
C1—Co1—C11104.89 (14)C25—C21—Co270.28 (19)
C1—Co1—C15103.48 (14)C22—C21—H21126.1
C11—Co1—C1540.14 (14)C25—C21—H21126.1
C1—Co1—C12136.54 (15)Co2—C21—H21125.1
C11—Co1—C1240.27 (14)C23—C22—C21108.9 (3)
C15—Co1—C1267.43 (14)C23—C22—Co270.08 (18)
C1—Co1—C14133.31 (14)C21—C22—Co269.91 (18)
C11—Co1—C1467.24 (14)C23—C22—H22125.6
C15—Co1—C1440.04 (14)C21—C22—H22125.6
C12—Co1—C1467.03 (14)Co2—C22—H22126.0
C1—Co1—C13170.24 (14)C22—C23—C24107.1 (3)
C11—Co1—C1367.19 (14)C22—C23—Co270.05 (18)
C15—Co1—C1366.83 (14)C24—C23—Co270.33 (18)
C12—Co1—C1340.08 (14)C22—C23—H23126.5
C14—Co1—C1339.32 (14)C24—C23—H23126.5
C1—Co1—S187.40 (10)Co2—C23—H23124.8
C11—Co1—S1150.50 (11)C25—C24—C23108.4 (3)
C15—Co1—S1162.20 (11)C25—C24—Co269.87 (19)
C12—Co1—S1114.00 (11)C23—C24—Co269.47 (18)
C14—Co1—S1122.79 (11)C25—C24—H24125.8
C13—Co1—S1102.27 (10)C23—C24—H24125.8
C1—Co1—Co250.10 (10)Co2—C24—H24126.4
C11—Co1—Co2113.13 (10)C24—C25—C21107.9 (3)
C15—Co1—Co2142.31 (11)C24—C25—Co270.35 (19)
C12—Co1—Co2110.88 (10)C21—C25—Co269.72 (19)
C14—Co1—Co2176.57 (11)C24—C25—H25126.0
C13—Co1—Co2137.37 (11)C21—C25—H25126.0
S1—Co1—Co255.12 (3)Co2—C25—H25125.5
C1—Co1—Fe148.64 (10)C31—P1—C41105.44 (15)
C11—Co1—Fe1149.80 (10)C31—P1—C51106.86 (14)
C15—Co1—Fe1122.58 (11)C41—P1—C5199.61 (15)
C12—Co1—Fe1169.27 (10)C31—P1—Fe1110.52 (11)
C14—Co1—Fe1117.35 (10)C41—P1—Fe1118.79 (11)
C13—Co1—Fe1136.90 (10)C51—P1—Fe1114.43 (11)
S1—Co1—Fe155.28 (3)C36—C31—C32118.3 (3)
Co2—Co1—Fe164.199 (18)C36—C31—P1123.5 (2)
C1—Co2—C2199.18 (14)C32—C31—P1118.1 (2)
C1—Co2—C22114.54 (13)C33—C32—C31120.8 (3)
C21—Co2—C2240.03 (12)C33—C32—H32119.6
C1—Co2—C23152.15 (13)C31—C32—H32119.6
C21—Co2—C2367.54 (13)C34—C33—C32120.1 (3)
C22—Co2—C2339.88 (13)C34—C33—H33119.9
C1—Co2—C25118.61 (14)C32—C33—H33119.9
C21—Co2—C2540.00 (13)C35—C34—C33119.6 (3)
C22—Co2—C2567.01 (13)C35—C34—H34120.2
C23—Co2—C2567.53 (13)C33—C34—H34120.2
C1—Co2—C24157.72 (14)C34—C35—C36120.6 (3)
C21—Co2—C2466.98 (14)C34—C35—H35119.7
C22—Co2—C2466.74 (13)C36—C35—H35119.7
C23—Co2—C2440.20 (12)C35—C36—C31120.5 (3)
C25—Co2—C2439.79 (13)C35—C36—H36119.7
C1—Co2—S187.93 (10)C31—C36—H36119.7
C21—Co2—S1170.52 (10)C46—C41—C42118.8 (3)
C22—Co2—S1141.40 (10)C46—C41—P1123.5 (2)
C23—Co2—S1108.56 (10)C42—C41—P1117.5 (2)
C25—Co2—S1130.76 (10)C43—C42—C41120.6 (3)
C24—Co2—S1104.29 (10)C43—C42—H42119.7
C1—Co2—Co149.63 (9)C41—C42—H42119.7
C21—Co2—Co1124.51 (9)C42—C43—C44119.9 (3)
C22—Co2—Co1160.72 (10)C42—C43—H43120.0
C23—Co2—Co1157.87 (9)C44—C43—H43120.0
C25—Co2—Co1108.60 (9)C43—C44—C45120.4 (3)
C24—Co2—Co1122.85 (9)C43—C44—H44119.8
S1—Co2—Co156.25 (3)C45—C44—H44119.8
C1—Co2—Fe146.27 (10)C44—C45—C46119.8 (3)
C21—Co2—Fe1135.74 (10)C44—C45—H45120.1
C22—Co2—Fe1120.30 (10)C46—C45—H45120.1
C23—Co2—Fe1127.53 (10)C41—C46—C45120.4 (3)
C25—Co2—Fe1164.27 (10)C41—C46—H46119.8
C24—Co2—Fe1154.27 (10)C45—C46—H46119.8
S1—Co2—Fe153.64 (3)C56—C51—C52118.2 (3)
Co1—Co2—Fe159.538 (17)C56—C51—P1117.4 (2)
S2—C1—Co1130.47 (17)C52—C51—P1124.2 (3)
S2—C1—Co2129.07 (18)C53—C52—C51120.6 (3)
Co1—C1—Co280.27 (13)C53—C52—H52119.7
S2—C1—Fe1128.84 (18)C51—C52—H52119.7
Co1—C1—Fe183.54 (13)C52—C53—C54120.2 (3)
Co2—C1—Fe187.81 (13)C52—C53—H53119.9
C2—S2—C197.32 (15)C54—C53—H53119.9
C2—S2—F3122.72 (12)C55—C54—C53120.1 (3)
C1—S2—F3136.38 (11)C55—C54—H54120.0
C2—S2—O3159.01 (12)C53—C54—H54120.0
C1—S2—O395.49 (11)C54—C55—C56119.5 (3)
F3—S2—O352.94 (6)C54—C55—H55120.3
C2—S2—S5138.33 (11)C56—C55—H55120.3
C1—S2—S5115.77 (11)C55—C56—C51121.4 (3)
C2—S2—C60130.20 (12)C55—C56—H56119.3
C1—S2—C60132.48 (12)C51—C56—H56119.3
S4—C2—S2120.38 (19)O1—S5—O3115.12 (15)
S4—C2—S3118.30 (18)O1—S5—O2115.05 (14)
S2—C2—S3121.31 (19)O3—S5—O2114.79 (14)
C2—S3—C3104.35 (16)O1—S5—C60103.03 (16)
S3—C3—H3A109.5O3—S5—C60103.68 (15)
S3—C3—H3B109.5O2—S5—C60102.73 (15)
H3A—C3—H3B109.5O1—S5—S2172.58 (11)
S3—C3—H3C109.5O3—S5—S260.23 (10)
H3A—C3—H3C109.5O2—S5—S264.80 (10)
H3B—C3—H3C109.5C60—S5—S284.03 (12)
C2—S4—Fe1106.84 (11)S5—O3—S297.59 (12)
O4—C4—Fe1177.4 (3)F1—C60—F3107.7 (3)
Fe1—C4—O4i165.73 (15)F1—C60—F2107.5 (3)
C4—O4—O4i158.3 (3)F3—C60—F2106.7 (3)
C15—C11—C12107.9 (3)F1—C60—S5110.9 (2)
C15—C11—Co170.08 (19)F3—C60—S5112.1 (2)
C12—C11—Co170.18 (19)F2—C60—S5111.6 (2)
C15—C11—H11126.0F1—C60—S2118.6 (2)
C12—C11—H11126.0F2—C60—S2130.3 (2)
Co1—C11—H11125.3S5—C60—S269.14 (10)
C11—C12—C13107.7 (3)C60—F3—S2119.84 (19)
C11—C12—Co169.55 (19)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O20.982.563.477 (4)156
C3—H3C···F30.982.623.297 (4)127
C11—H11···O30.952.413.293 (4)154
C21—H21···O20.952.643.588 (4)174
C21—H21···O30.952.643.235 (4)121
C13—H13···O1ii0.952.423.288 (4)152
C14—H14···F1ii0.952.563.248 (4)129
C35—H35···O1iii0.952.533.283 (4)136
C24—H24···O2iv0.952.493.298 (4)143
Symmetry codes: (ii) x, y, z+1; (iii) x1, y+3/2, z+1/2; (iv) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[FeCo2(C5H5)2(C3H3S3)S(C18H15P)(CO)]CF3SO3
Mr910.53
Crystal system, space groupMonoclinic, P21/c
Temperature (K)91
a, b, c (Å)11.0403 (6), 29.2183 (14), 10.9040 (5)
β (°) 100.664 (3)
V3)3456.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.77
Crystal size (mm)0.18 × 0.06 × 0.06
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.717, 0.899
No. of measured, independent and
observed [I > 2σ(I)] reflections
36119, 5502, 4297
Rint0.081
(sin θ/λ)max1)0.576
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.067, 1.03
No. of reflections5502
No. of parameters443
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.35

Computer programs: APEX2 (Bruker 2006), APEX2 and SAINT (Bruker 2006), SAINT (Bruker 2006), SHELXS97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999), SHELXL97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004) and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
Co2—S12.1275 (9)Fe1—Co22.6149 (6)
Co1—S12.1564 (9)Co1—C11.867 (3)
Fe1—S12.1836 (9)Co1—Co22.4153 (6)
Fe1—C11.891 (3)Co2—C11.880 (3)
Fe1—Co12.5035 (6)
Co2—S1—Co168.64 (3)Co1—C1—Co280.27 (13)
Co2—S1—Fe174.67 (3)Co1—C1—Fe183.54 (13)
Co1—S1—Fe170.45 (3)Co2—C1—Fe187.81 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O20.982.563.477 (4)156
C3—H3C···F30.982.623.297 (4)127
C11—H11···O30.952.413.293 (4)154
C21—H21···O20.952.643.588 (4)174
C21—H21···O30.952.643.235 (4)121
C13—H13···O1i0.952.423.288 (4)152
C14—H14···F1i0.952.563.248 (4)129
C35—H35···O1ii0.952.533.283 (4)136
C24—H24···O2iii0.952.493.298 (4)143
Symmetry codes: (i) x, y, z+1; (ii) x1, y+3/2, z+1/2; (iii) x, y+3/2, z+1/2.
 

Acknowledgements

We thank the New Zealand Foundation for Research Science and Technology for a Postdoctoral Fellowship to CJM, and the University of Otago for the purchase of the diffractometer.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationManning, A. R., McAdam, C. J., Palmer, A. J., Robinson, B. H. & Simpson, J. (2003). Dalton Trans. pp. 4472–4481.  Web of Science CSD CrossRef Google Scholar
First citationManning, A. R., O'Dwyer, L., McArdle, P. A. & Cunningham, D. (1995). J. Organomet. Chem. 503, C46–C47.  CrossRef CAS Web of Science Google Scholar
First citationManning, A. R., O'Dwyer, L., McArdle, P. A. & Cunningham, D. (1998). J. Organomet. Chem. 551, 139–149.  Web of Science CSD CrossRef CAS Google Scholar
First citationManning, A. R., O'Dwyer, L., McArdle, P. A. & Cunningham, D. (1999). J. Organomet. Chem. 573, 109–120.  Web of Science CrossRef CAS Google Scholar
First citationManning, A. R., Palmer, A. J., McAdam, C. J., Robinson, B. H. & Simpson, J. (1998). Chem. Commun. pp. 1577–1578.  Web of Science CSD CrossRef Google Scholar
First citationRinger, A. L., Senenko, A. & Sherrill, C. D. (2007). Protein Sci. 16, 1–8.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m635-m636
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds