metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­aqua­cadmium(II) bis­­[4-(2-hy­droxy­benzyl­­idene­amino)benzene­sulfonate] dihydrate

aDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and bWeifang Institute of Supervision and Inspection of Product Quality, Weifang 261031, People's Republic of China
*Correspondence e-mail: taixishi@lzu.edu.cn

(Received 18 April 2008; accepted 18 April 2008; online 23 April 2008)

In the title compound, [Cd(H2O)6](C13H10NO4S)2·2H2O, the Cd atom (site symmetry [\overline{1}]) adopts a regular octa­hedral coordination and the anion is stabilized by an intra­molecular O—H⋯N hydrogen bond. O—H⋯O hydrogen bonds involving the coordinated and uncoordinated water mol­ecules lead to a three-dimensional network.

Related literature

For related literature, see: Tai et al. (2008[Tai, X.-S., Feng, Y.-M. & Zhang, H.-X. (2008). Acta Cryst. E64, m502.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(H2O)6](C13H10NO4S)2·2H2O

  • Mr = 809.09

  • Monoclinic, P 21 /c

  • a = 18.464 (2) Å

  • b = 6.1488 (8) Å

  • c = 14.5701 (12) Å

  • β = 92.226 (2)°

  • V = 1652.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.86 mm−1

  • T = 298 (2) K

  • 0.48 × 0.45 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.682, Tmax = 0.860

  • 7936 measured reflections

  • 2904 independent reflections

  • 2447 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.075

  • S = 1.06

  • 2904 reflections

  • 214 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—O5 2.2684 (19)
Cd1—O7 2.2826 (18)
Cd1—O6 2.2862 (17)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯N1 0.82 1.89 2.611 (3) 147
O5—H5A⋯O1i 0.85 2.07 2.909 (3) 170
O5—H5B⋯O8ii 0.85 1.92 2.750 (3) 167
O6—H6A⋯O8iii 0.85 1.93 2.778 (3) 177
O6—H6B⋯O2iv 0.85 1.97 2.802 (3) 166
O7—H7A⋯O1 0.85 1.95 2.793 (3) 174
O7—H7B⋯O3i 0.85 1.91 2.757 (3) 172
O8—H8A⋯O2 0.85 1.90 2.750 (3) 176
O8—H8B⋯O3i 0.85 2.00 2.851 (3) 176
Symmetry codes: (i) x, y-1, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y+1, -z+1; (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of our ongoing studies of the synthesis and coordination chemistry of Schiff-base ligands (e.g. Tai et al., 2008), we now report the synthesis and structure of the title compound, (I), (Fig. 1), in which the organic species does not coordiate to the metal and a hydrated molecular salt arises.

The Cd atom (site symmetry 1) in (I) is bonded to six water molecules (Table 1). The anion is stablisied by an intramolecular O-H···N hydrogen bond (Table 2), which perhaps correlates with the fact that the aromatic rings are almost co-planar [dihedral angle = 4.09 (14)°].

The water molecules, both bound and unbound, participate in O-H···O hydrogen bonds to link the component speices into a three-dimensional network.

Related literature top

For related literature, see: Tai et al. (2008).

Experimental top

1 mmol of cadmium nitrate was added to a solution of salicylaldehyde-4-aminobenzene sulfonic acid (1 mmol) in 10 ml of 95% ethanol. The mixture was stirred for 2 h at refluxing temperature. Evaporating some ethanol, clear blocks of (I) were obtained after one weeks.

Refinement top

The H atoms were placed geometrically (C—H = 0.93–0.96 Å, O—H = 0.85Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% displacement ellipsoids (arbitrary spheres for the H atoms). The hydrogen bonds are indicated by double-dashed lines. Symmetry code: (i) 1-x, 1-y, 1-z.
Hexaaquacadmium(II) bis[4-(2-hydroxybenzylideneamino)benzenesulfonate] dihydrate top
Crystal data top
[Cd(H2O)6](C13H10NO4S)2·2H2OF(000) = 828
Mr = 809.09Dx = 1.626 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4564 reflections
a = 18.464 (2) Åθ = 2.6–27.9°
b = 6.1488 (8) ŵ = 0.86 mm1
c = 14.5701 (12) ÅT = 298 K
β = 92.226 (2)°Block, colourless
V = 1652.9 (3) Å30.48 × 0.45 × 0.18 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
2904 independent reflections
Radiation source: fine-focus sealed tube2447 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2121
Tmin = 0.682, Tmax = 0.860k = 75
7936 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0376P)2 + 0.6281P]
where P = (Fo2 + 2Fc2)/3
2904 reflections(Δ/σ)max < 0.001
214 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Cd(H2O)6](C13H10NO4S)2·2H2OV = 1652.9 (3) Å3
Mr = 809.09Z = 2
Monoclinic, P21/cMo Kα radiation
a = 18.464 (2) ŵ = 0.86 mm1
b = 6.1488 (8) ÅT = 298 K
c = 14.5701 (12) Å0.48 × 0.45 × 0.18 mm
β = 92.226 (2)°
Data collection top
Bruker SMART CCD
diffractometer
2904 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2447 reflections with I > 2σ(I)
Tmin = 0.682, Tmax = 0.860Rint = 0.035
7936 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.06Δρmax = 0.28 e Å3
2904 reflectionsΔρmin = 0.60 e Å3
214 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.50000.50000.50000.03115 (11)
N10.00853 (11)0.8935 (4)0.61988 (16)0.0392 (5)
O10.35962 (10)0.9727 (3)0.59697 (14)0.0419 (5)
O20.34686 (10)0.9949 (3)0.76142 (14)0.0424 (5)
O30.33264 (10)1.3176 (3)0.66883 (14)0.0425 (5)
O40.09042 (11)0.6152 (4)0.56383 (17)0.0655 (7)
H40.04930.66180.57420.098*
O50.50034 (11)0.1696 (3)0.56929 (14)0.0472 (5)
H5A0.45730.12740.57790.057*
H5B0.52350.17500.62080.057*
O60.46644 (10)0.3400 (3)0.36324 (12)0.0425 (5)
H6A0.49970.35700.32510.051*
H6B0.42790.39870.34120.051*
O70.38005 (10)0.5588 (3)0.52336 (13)0.0415 (5)
H7A0.37450.68860.54180.050*
H7B0.36630.47360.56520.050*
O80.42645 (10)0.6168 (3)0.76420 (13)0.0462 (5)
H8A0.40350.73660.76460.055*
H8B0.40000.52300.73620.055*
S10.32404 (3)1.08214 (11)0.67158 (5)0.03098 (16)
C10.23015 (14)1.0294 (4)0.65692 (18)0.0296 (6)
C20.18127 (14)1.1822 (5)0.6840 (2)0.0463 (8)
H20.19761.31250.70980.056*
C30.10786 (15)1.1428 (5)0.6730 (2)0.0523 (9)
H30.07491.24700.69120.063*
C40.08304 (14)0.9485 (5)0.63495 (19)0.0343 (6)
C50.13250 (15)0.7954 (5)0.6086 (2)0.0447 (7)
H50.11630.66470.58300.054*
C60.20627 (14)0.8343 (5)0.6199 (2)0.0440 (7)
H60.23950.72960.60270.053*
C70.04225 (15)1.0304 (5)0.6320 (2)0.0406 (7)
H70.03021.17090.65070.049*
C80.11807 (14)0.9738 (4)0.61762 (19)0.0368 (7)
C90.13909 (15)0.7700 (5)0.5839 (2)0.0437 (7)
C100.21291 (15)0.7219 (5)0.5712 (2)0.0522 (8)
H100.22730.58610.54910.063*
C110.26382 (16)0.8743 (6)0.5911 (2)0.0521 (8)
H110.31270.84030.58260.063*
C120.24418 (16)1.0779 (6)0.6235 (2)0.0529 (8)
H120.27931.18080.63610.064*
C130.17160 (15)1.1260 (5)0.6369 (2)0.0464 (7)
H130.15801.26230.65920.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03180 (16)0.03028 (17)0.03128 (16)0.00014 (11)0.00026 (11)0.00045 (11)
N10.0266 (12)0.0439 (14)0.0467 (14)0.0041 (11)0.0031 (10)0.0035 (11)
O10.0316 (10)0.0456 (12)0.0490 (12)0.0008 (8)0.0082 (9)0.0114 (9)
O20.0331 (10)0.0496 (13)0.0438 (12)0.0010 (8)0.0079 (9)0.0034 (9)
O30.0378 (10)0.0300 (10)0.0600 (13)0.0074 (8)0.0050 (9)0.0035 (9)
O40.0424 (12)0.0513 (14)0.102 (2)0.0018 (11)0.0095 (12)0.0244 (14)
O50.0534 (12)0.0412 (12)0.0463 (12)0.0071 (10)0.0058 (9)0.0082 (9)
O60.0426 (11)0.0443 (11)0.0399 (11)0.0034 (9)0.0062 (9)0.0043 (9)
O70.0358 (10)0.0384 (11)0.0508 (12)0.0016 (9)0.0067 (9)0.0007 (9)
O80.0505 (12)0.0381 (12)0.0492 (12)0.0031 (9)0.0094 (9)0.0032 (9)
S10.0249 (3)0.0302 (3)0.0378 (4)0.0031 (3)0.0007 (3)0.0016 (3)
C10.0258 (13)0.0322 (15)0.0306 (13)0.0012 (11)0.0004 (10)0.0005 (11)
C20.0330 (15)0.0418 (17)0.064 (2)0.0024 (13)0.0032 (14)0.0210 (15)
C30.0283 (14)0.052 (2)0.076 (2)0.0050 (14)0.0011 (14)0.0259 (17)
C40.0285 (14)0.0411 (16)0.0332 (14)0.0034 (12)0.0013 (11)0.0016 (12)
C50.0329 (14)0.0346 (16)0.066 (2)0.0045 (13)0.0012 (13)0.0125 (14)
C60.0294 (14)0.0326 (16)0.070 (2)0.0018 (12)0.0036 (13)0.0113 (14)
C70.0344 (15)0.0415 (17)0.0458 (17)0.0083 (13)0.0000 (13)0.0011 (13)
C80.0274 (14)0.0446 (18)0.0384 (15)0.0035 (12)0.0001 (11)0.0035 (12)
C90.0354 (15)0.0475 (18)0.0477 (17)0.0032 (14)0.0036 (13)0.0003 (14)
C100.0398 (17)0.055 (2)0.061 (2)0.0140 (15)0.0127 (14)0.0020 (16)
C110.0293 (15)0.076 (3)0.0501 (19)0.0080 (16)0.0062 (13)0.0125 (17)
C120.0331 (16)0.069 (2)0.057 (2)0.0102 (16)0.0052 (14)0.0098 (17)
C130.0389 (16)0.0487 (19)0.0517 (18)0.0001 (14)0.0025 (13)0.0026 (14)
Geometric parameters (Å, º) top
Cd1—O52.2684 (19)C1—C21.371 (4)
Cd1—O5i2.2684 (19)C1—C61.380 (4)
Cd1—O72.2826 (18)C2—C31.380 (4)
Cd1—O7i2.2826 (18)C2—H20.9300
Cd1—O6i2.2862 (17)C3—C41.388 (4)
Cd1—O62.2862 (17)C3—H30.9300
N1—C71.278 (4)C4—C51.377 (4)
N1—C41.425 (3)C5—C61.386 (4)
O1—S11.4565 (19)C5—H50.9300
O2—S11.462 (2)C6—H60.9300
O3—S11.4570 (19)C7—C81.450 (4)
O4—C91.349 (4)C7—H70.9300
O4—H40.8200C8—C91.395 (4)
O5—H5A0.8499C8—C131.398 (4)
O5—H5B0.8501C9—C101.400 (4)
O6—H6A0.8500C10—C111.366 (4)
O6—H6B0.8501C10—H100.9300
O7—H7A0.8500C11—C121.381 (5)
O7—H7B0.8500C11—H110.9300
O8—H8A0.8499C12—C131.379 (4)
O8—H8B0.8499C12—H120.9300
S1—C11.768 (3)C13—H130.9300
O5—Cd1—O5i180.0C1—C2—C3120.1 (3)
O5—Cd1—O793.52 (7)C1—C2—H2120.0
O5i—Cd1—O786.48 (7)C3—C2—H2120.0
O5—Cd1—O7i86.48 (7)C2—C3—C4120.3 (3)
O5i—Cd1—O7i93.52 (7)C2—C3—H3119.8
O7—Cd1—O7i180.0C4—C3—H3119.8
O5—Cd1—O6i90.09 (7)C5—C4—C3119.2 (2)
O5i—Cd1—O6i89.91 (7)C5—C4—N1116.2 (2)
O7—Cd1—O6i91.93 (7)C3—C4—N1124.6 (3)
O7i—Cd1—O6i88.07 (7)C4—C5—C6120.5 (3)
O5—Cd1—O689.91 (7)C4—C5—H5119.7
O5i—Cd1—O690.09 (7)C6—C5—H5119.7
O7—Cd1—O688.07 (7)C1—C6—C5119.6 (3)
O7i—Cd1—O691.93 (7)C1—C6—H6120.2
O6i—Cd1—O6180.0C5—C6—H6120.2
C7—N1—C4122.1 (2)N1—C7—C8122.1 (3)
C9—O4—H4109.5N1—C7—H7119.0
Cd1—O5—H5A110.6C8—C7—H7119.0
Cd1—O5—H5B110.5C9—C8—C13118.9 (3)
H5A—O5—H5B108.8C9—C8—C7121.4 (3)
Cd1—O6—H6A109.8C13—C8—C7119.7 (3)
Cd1—O6—H6B110.0O4—C9—C8122.1 (2)
H6A—O6—H6B108.4O4—C9—C10118.4 (3)
Cd1—O7—H7A109.0C8—C9—C10119.5 (3)
Cd1—O7—H7B109.2C11—C10—C9120.1 (3)
H7A—O7—H7B107.9C11—C10—H10120.0
H8A—O8—H8B108.3C9—C10—H10120.0
O1—S1—O3112.68 (12)C10—C11—C12121.4 (3)
O1—S1—O2112.09 (12)C10—C11—H11119.3
O3—S1—O2111.19 (12)C12—C11—H11119.3
O1—S1—C1107.08 (12)C13—C12—C11118.9 (3)
O3—S1—C1106.63 (11)C13—C12—H12120.5
O2—S1—C1106.74 (12)C11—C12—H12120.5
C2—C1—C6120.2 (2)C12—C13—C8121.2 (3)
C2—C1—S1119.5 (2)C12—C13—H13119.4
C6—C1—S1120.2 (2)C8—C13—H13119.4
O1—S1—C1—C2148.3 (2)S1—C1—C6—C5179.8 (2)
O3—S1—C1—C227.4 (3)C4—C5—C6—C10.8 (5)
O2—S1—C1—C291.5 (2)C4—N1—C7—C8179.3 (3)
O1—S1—C1—C632.8 (3)N1—C7—C8—C94.2 (4)
O3—S1—C1—C6153.7 (2)N1—C7—C8—C13176.4 (3)
O2—S1—C1—C687.4 (2)C13—C8—C9—O4180.0 (3)
C6—C1—C2—C31.0 (5)C7—C8—C9—O40.6 (4)
S1—C1—C2—C3179.9 (3)C13—C8—C9—C100.7 (4)
C1—C2—C3—C40.2 (5)C7—C8—C9—C10179.9 (3)
C2—C3—C4—C50.3 (5)O4—C9—C10—C11179.7 (3)
C2—C3—C4—N1179.3 (3)C8—C9—C10—C110.5 (5)
C7—N1—C4—C5172.3 (3)C9—C10—C11—C120.3 (5)
C7—N1—C4—C37.3 (5)C10—C11—C12—C130.8 (5)
C3—C4—C5—C60.0 (5)C11—C12—C13—C80.5 (5)
N1—C4—C5—C6179.6 (3)C9—C8—C13—C120.2 (4)
C2—C1—C6—C51.3 (4)C7—C8—C13—C12179.6 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···N10.821.892.611 (3)147
O5—H5A···O1ii0.852.072.909 (3)170
O5—H5B···O8iii0.851.922.750 (3)167
O6—H6A···O8i0.851.932.778 (3)177
O6—H6B···O2iv0.851.972.802 (3)166
O7—H7A···O10.851.952.793 (3)174
O7—H7B···O3ii0.851.912.757 (3)172
O8—H8A···O20.851.902.750 (3)176
O8—H8B···O3ii0.852.002.851 (3)176
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z; (iii) x+1, y1/2, z+3/2; (iv) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cd(H2O)6](C13H10NO4S)2·2H2O
Mr809.09
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)18.464 (2), 6.1488 (8), 14.5701 (12)
β (°) 92.226 (2)
V3)1652.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.86
Crystal size (mm)0.48 × 0.45 × 0.18
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.682, 0.860
No. of measured, independent and
observed [I > 2σ(I)] reflections
7936, 2904, 2447
Rint0.035
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.075, 1.06
No. of reflections2904
No. of parameters214
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.60

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd1—O52.2684 (19)Cd1—O62.2862 (17)
Cd1—O72.2826 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···N10.821.892.611 (3)147
O5—H5A···O1i0.852.072.909 (3)170
O5—H5B···O8ii0.851.922.750 (3)167
O6—H6A···O8iii0.851.932.778 (3)177
O6—H6B···O2iv0.851.972.802 (3)166
O7—H7A···O10.851.952.793 (3)174
O7—H7B···O3i0.851.912.757 (3)172
O8—H8A···O20.851.902.750 (3)176
O8—H8B···O3i0.852.002.851 (3)176
Symmetry codes: (i) x, y1, z; (ii) x+1, y1/2, z+3/2; (iii) x+1, y+1, z+1; (iv) x, y+3/2, z1/2.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (grant No. 20671073), the National Natural Science Foundation of Shandong (grant No. Y2007B60), the Science and Technology Foundation of Weifang and Weifang University for research grants.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTai, X.-S., Feng, Y.-M. & Zhang, H.-X. (2008). Acta Cryst. E64, m502.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds