organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[1-(2-Hy­droxy­phen­yl)ethyl­­idene]benzene­sulfonohydrazide

aDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and bWeifang Institute of Supervision and Inspection of product Quality, Weifang 261061, People's Republic of China
*Correspondence e-mail: taixishi@lzu.edu.cn

(Received 19 April 2008; accepted 19 April 2008; online 26 April 2008)

In the title compound, C14H14N2O3S, the conformation is stabilized by an intra­moleclar O—H⋯N hydrogen bond and the dihedral angle between the aromatic ring planes is 79.55 (18)°. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds lead to [100] chains of mol­ecules.

Related literature

For related literature, see: Tai et al. (2003[Tai, X.-S., Yin, X.-H., Tan, M.-Y. & Li, Y.-Z. (2003). Acta Cryst. E59, o681-o682.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14N2O3S

  • Mr = 290.33

  • Monoclinic, P 21 /n

  • a = 5.2435 (9) Å

  • b = 13.2515 (18) Å

  • c = 20.375 (2) Å

  • β = 90.531 (2)°

  • V = 1415.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 298 (2) K

  • 0.50 × 0.40 × 0.37 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.891, Tmax = 0.918

  • 7165 measured reflections

  • 2484 independent reflections

  • 1755 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.131

  • S = 1.04

  • 2484 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N2 0.82 1.85 2.561 (3) 145
N1—H1⋯O2i 0.90 2.20 3.093 (3) 174
Symmetry code: (i) x+1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of our ongoing studies of the coordination chemistry of aroylhydrazones as potential ligands (Tai et al., 2003), we now report the synthesis and structure of the title compound, (I), (Fig. 1).

The molecular conformation is stabilised by an intramoleclar O-H···N hydrogen bond (Table 1) and the dihedral angle between the aromatic ring planes is 79.55 (18)°. In the crystal, an intermolecular N-H···O hydrogen bond lead to [100] chains of molecules.

Related literature top

For related literature, see: Tai et al. (2003).

Experimental top

3 mmol of 2'-hydroxyacetophenone (3 mmol) was added to a solution of benzenesulfonyl hydrazide (3 mmol) in 10 ml of 95% ethanol. The mixture was continuously stirred for 3 h at refluxing temperature, evaporating some ethanol, then, upon cooling, the solid product was collected by filtration and dried in vacuo (yield 68%). Colourless blocks of (I) were obtained by evaporation from a methanol solution after 3 days.

Refinement top

The H atoms were placed geometrically (C—H = 0.93–0.96 Å, O—H = 0.82Å, N—H = 0.90 Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 40% displacement ellipsoids (arbitrary spheres for the H atoms). The hydrogen bond is indicated by a double-dashed line.
N'-[1-(2-Hydroxyphenyl)ethylidene]benzenesulfonohydrazide top
Crystal data top
C14H14N2O3SF(000) = 608
Mr = 290.33Dx = 1.362 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2187 reflections
a = 5.2435 (9) Åθ = 2.5–26.2°
b = 13.2515 (18) ŵ = 0.24 mm1
c = 20.375 (2) ÅT = 298 K
β = 90.531 (2)°Block, colourless
V = 1415.7 (3) Å30.50 × 0.40 × 0.37 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2484 independent reflections
Radiation source: fine-focus sealed tube1755 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 66
Tmin = 0.891, Tmax = 0.918k = 1515
7165 measured reflectionsl = 2024
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0428P)2 + 0.8643P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2484 reflectionsΔρmax = 0.26 e Å3
182 parametersΔρmin = 0.26 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.018 (2)
Crystal data top
C14H14N2O3SV = 1415.7 (3) Å3
Mr = 290.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.2435 (9) ŵ = 0.24 mm1
b = 13.2515 (18) ÅT = 298 K
c = 20.375 (2) Å0.50 × 0.40 × 0.37 mm
β = 90.531 (2)°
Data collection top
Bruker SMART CCD
diffractometer
2484 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1755 reflections with I > 2σ(I)
Tmin = 0.891, Tmax = 0.918Rint = 0.062
7165 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.04Δρmax = 0.26 e Å3
2484 reflectionsΔρmin = 0.26 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3921 (4)0.13317 (15)0.94596 (10)0.0397 (6)
H10.55690.13450.95870.048*
N20.3516 (4)0.21056 (16)0.90070 (10)0.0378 (5)
O10.2888 (4)0.06000 (14)1.05125 (9)0.0589 (6)
O20.0427 (4)0.15363 (16)0.98874 (10)0.0560 (6)
O30.0643 (4)0.35673 (15)0.86405 (10)0.0590 (6)
H30.11230.31120.88840.089*
S10.21361 (14)0.14329 (5)1.01133 (3)0.0403 (3)
C10.2935 (5)0.2560 (2)1.05229 (13)0.0414 (7)
C20.1465 (7)0.3404 (2)1.04223 (18)0.0659 (10)
H20.00900.33881.01310.079*
C30.2063 (10)0.4282 (3)1.0763 (2)0.0931 (14)
H3A0.11080.48641.06940.112*
C40.4057 (10)0.4288 (4)1.1200 (3)0.1013 (16)
H40.44280.48711.14360.122*
C50.5504 (8)0.3446 (4)1.1293 (2)0.0922 (14)
H50.68760.34631.15860.111*
C60.4952 (6)0.2567 (3)1.09574 (17)0.0651 (9)
H60.59280.19901.10240.078*
C70.6988 (6)0.1407 (2)0.83455 (14)0.0472 (7)
H7A0.85930.16930.84790.071*
H7B0.70180.12650.78840.071*
H7C0.66990.07930.85840.071*
C80.4892 (5)0.21397 (19)0.84856 (12)0.0357 (6)
C90.4232 (5)0.29502 (19)0.80152 (12)0.0381 (6)
C100.2176 (5)0.3608 (2)0.81077 (13)0.0421 (7)
C110.1611 (6)0.4351 (2)0.76493 (15)0.0553 (8)
H110.02300.47790.77160.066*
C120.3072 (7)0.4462 (3)0.70987 (16)0.0619 (9)
H120.26750.49600.67930.074*
C130.5109 (7)0.3840 (3)0.70007 (15)0.0631 (9)
H130.61180.39200.66310.076*
C140.5665 (6)0.3096 (2)0.74492 (14)0.0524 (8)
H140.70470.26730.73730.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0424 (14)0.0379 (12)0.0388 (12)0.0084 (10)0.0018 (10)0.0056 (10)
N20.0423 (13)0.0336 (12)0.0374 (12)0.0046 (10)0.0001 (10)0.0029 (10)
O10.0933 (17)0.0375 (11)0.0461 (12)0.0088 (11)0.0154 (11)0.0074 (9)
O20.0413 (13)0.0634 (14)0.0636 (13)0.0068 (10)0.0049 (10)0.0136 (11)
O30.0633 (15)0.0536 (13)0.0605 (13)0.0217 (11)0.0148 (11)0.0146 (10)
S10.0473 (5)0.0335 (4)0.0402 (4)0.0002 (3)0.0065 (3)0.0006 (3)
C10.0423 (17)0.0383 (15)0.0436 (16)0.0023 (12)0.0051 (13)0.0047 (12)
C20.081 (3)0.0445 (19)0.073 (2)0.0108 (17)0.0073 (19)0.0115 (16)
C30.123 (4)0.046 (2)0.111 (3)0.009 (2)0.011 (3)0.022 (2)
C40.102 (4)0.084 (3)0.118 (4)0.034 (3)0.012 (3)0.050 (3)
C50.069 (3)0.114 (4)0.094 (3)0.019 (3)0.012 (2)0.045 (3)
C60.048 (2)0.074 (2)0.073 (2)0.0026 (17)0.0069 (18)0.0137 (18)
C70.0505 (19)0.0457 (16)0.0457 (16)0.0071 (14)0.0069 (14)0.0027 (13)
C80.0362 (15)0.0342 (14)0.0366 (14)0.0051 (12)0.0013 (12)0.0055 (11)
C90.0418 (17)0.0361 (14)0.0363 (14)0.0049 (12)0.0048 (12)0.0004 (11)
C100.0421 (17)0.0400 (15)0.0442 (16)0.0037 (13)0.0021 (13)0.0025 (13)
C110.056 (2)0.0466 (18)0.063 (2)0.0022 (15)0.0082 (16)0.0154 (15)
C120.071 (2)0.059 (2)0.055 (2)0.0072 (18)0.0139 (18)0.0214 (16)
C130.076 (3)0.069 (2)0.0450 (18)0.0073 (19)0.0049 (17)0.0140 (16)
C140.056 (2)0.0562 (19)0.0448 (17)0.0011 (15)0.0025 (15)0.0065 (14)
Geometric parameters (Å, º) top
N1—N21.394 (3)C5—H50.9300
N1—S11.641 (2)C6—H60.9300
N1—H10.9000C7—C81.496 (4)
N2—C81.291 (3)C7—H7A0.9600
O1—S11.4246 (19)C7—H7B0.9600
O2—S11.423 (2)C7—H7C0.9600
O3—C101.358 (3)C8—C91.478 (4)
O3—H30.8200C9—C141.395 (4)
S1—C11.760 (3)C9—C101.401 (4)
C1—C21.372 (4)C10—C111.387 (4)
C1—C61.373 (4)C11—C121.372 (4)
C2—C31.390 (5)C11—H110.9300
C2—H20.9300C12—C131.366 (5)
C3—C41.367 (6)C12—H120.9300
C3—H3A0.9300C13—C141.374 (4)
C4—C51.361 (6)C13—H130.9300
C4—H40.9300C14—H140.9300
C5—C61.380 (5)
N2—N1—S1113.09 (16)C5—C6—H6120.6
N2—N1—H1108.5C8—C7—H7A109.5
S1—N1—H1108.5C8—C7—H7B109.5
C8—N2—N1119.2 (2)H7A—C7—H7B109.5
C10—O3—H3109.5C8—C7—H7C109.5
O2—S1—O1120.99 (14)H7A—C7—H7C109.5
O2—S1—N1106.82 (12)H7B—C7—H7C109.5
O1—S1—N1104.08 (11)N2—C8—C9115.5 (2)
O2—S1—C1106.95 (13)N2—C8—C7123.5 (2)
O1—S1—C1108.88 (13)C9—C8—C7121.0 (2)
N1—S1—C1108.63 (12)C14—C9—C10116.5 (2)
C2—C1—C6121.3 (3)C14—C9—C8120.8 (2)
C2—C1—S1119.3 (2)C10—C9—C8122.7 (2)
C6—C1—S1119.3 (2)O3—C10—C11116.3 (3)
C1—C2—C3118.9 (4)O3—C10—C9123.0 (2)
C1—C2—H2120.5C11—C10—C9120.7 (3)
C3—C2—H2120.5C12—C11—C10120.6 (3)
C4—C3—C2119.9 (4)C12—C11—H11119.7
C4—C3—H3A120.1C10—C11—H11119.7
C2—C3—H3A120.1C13—C12—C11119.9 (3)
C5—C4—C3120.5 (4)C13—C12—H12120.1
C5—C4—H4119.7C11—C12—H12120.1
C3—C4—H4119.7C12—C13—C14119.8 (3)
C4—C5—C6120.6 (4)C12—C13—H13120.1
C4—C5—H5119.7C14—C13—H13120.1
C6—C5—H5119.7C13—C14—C9122.4 (3)
C1—C6—C5118.8 (4)C13—C14—H14118.8
C1—C6—H6120.6C9—C14—H14118.8
S1—N1—N2—C8176.68 (19)N1—N2—C8—C9176.6 (2)
N2—N1—S1—O252.5 (2)N1—N2—C8—C72.1 (4)
N2—N1—S1—O1178.43 (18)N2—C8—C9—C14176.8 (2)
N2—N1—S1—C162.5 (2)C7—C8—C9—C144.5 (4)
O2—S1—C1—C217.1 (3)N2—C8—C9—C103.1 (4)
O1—S1—C1—C2149.4 (3)C7—C8—C9—C10175.6 (3)
N1—S1—C1—C297.9 (3)C14—C9—C10—O3178.9 (3)
O2—S1—C1—C6160.2 (2)C8—C9—C10—O31.0 (4)
O1—S1—C1—C627.9 (3)C14—C9—C10—C110.8 (4)
N1—S1—C1—C684.8 (3)C8—C9—C10—C11179.3 (3)
C6—C1—C2—C30.8 (5)O3—C10—C11—C12179.1 (3)
S1—C1—C2—C3178.0 (3)C9—C10—C11—C120.6 (5)
C1—C2—C3—C41.3 (6)C10—C11—C12—C130.3 (5)
C2—C3—C4—C51.6 (7)C11—C12—C13—C141.0 (5)
C3—C4—C5—C61.3 (7)C12—C13—C14—C90.7 (5)
C2—C1—C6—C50.5 (5)C10—C9—C14—C130.2 (4)
S1—C1—C6—C5177.7 (3)C8—C9—C14—C13180.0 (3)
C4—C5—C6—C10.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N20.821.852.561 (3)145
N1—H1···O2i0.902.203.093 (3)174
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC14H14N2O3S
Mr290.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)5.2435 (9), 13.2515 (18), 20.375 (2)
β (°) 90.531 (2)
V3)1415.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.50 × 0.40 × 0.37
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.891, 0.918
No. of measured, independent and
observed [I > 2σ(I)] reflections
7165, 2484, 1755
Rint0.062
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.131, 1.04
No. of reflections2484
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.26

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N20.821.852.561 (3)145
N1—H1···O2i0.902.203.093 (3)174
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (20671073), the Natural Science Foundation of Shandong (Y2007B60), and the Science and Technology Foundation of Weifang University for research grants.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTai, X.-S., Yin, X.-H., Tan, M.-Y. & Li, Y.-Z. (2003). Acta Cryst. E59, o681–o682.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds