organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

L-Alanine hydrochloride monohydrate

aNational Institute for Materials Science, 3-13, Sakura, Tsukuba 305-0003, Japan, and bProtein Research Group, Genomic Sciences Center, Yokohama Institute, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan
*Correspondence e-mail: yamada.kazuhiko@nims.go.jp

(Received 6 March 2008; accepted 1 April 2008; online 4 April 2008)

Colorless crystals of L-alanine hydrochloride monohydrate, C3H8NO2+·Cl·H2O, were obtained from a powder sample that had been left standing in a refrigerator for a few years. The structure displays several inter­molecular hydrogen bonds: the hydroxyl O atom is involved in a single hydrogen bond to the chloride anion, while the ammonium group forms one hydrogen bond to the chloride anion and two hydrogen bonds to water mol­ecules. An intermolecular bond between the carbonyl O atom and the ammonium group [2.8459 (15) Å] is also found.

Related literature

For the crystal structures of L-alanine and DL-alanine, see: Simpson & Marsh, (1966[Simpson, H. J. & Marsh, R. E. (1966). Acta Cryst. 20, 550-555.]); Dunitz & Ryan, (1966[Dunitz, J. D. & Ryan, R. R. (1966). Acta Cryst. 21, 617-618.]); Lehmann et al. (1972[Lehmann, M. S., Koetzle, T. F. & Hamilton, W. C. (1972). J. Am. Chem. Soc. 94, 2657-2660.]); Destro et al. (1988[Destro, R., Marsh, R. E. & Bianchi, R. (1988). J. Phys. Chem. 92, 966-973.]); Donohue, (1950[Donohue, J. (1950). J. Am. Chem. Soc. 72, 949-953.]); Subha Nandhini et al. (2001[Subha Nandhini, M., Krishnakumar, R. V. & Natarajan, S. (2001). Acta Cryst. C57, 614-615.]). For the crystal structures of D-alanine hydro­chloride and DL-alanine hydro­chloride, see: di Blasio et al. (1977[Blasio, B. di, Pavone, V. & Pedone, C. (1977). Cryst. Struct. Commun. 6, 745-748.]); Trotter, (1962[Trotter, J. (1962). Can. J. Chem. 40, 1218-1220.]). For the preparation of the title compound with respect to 17O-labelling, see: Steinschneider et al. (1981[Steinschneider, A., Burgar, M. I., Buku, A. & Fiat, D. (1981). Int. J. Pept. Protein Res. 18, 324-333.]).

[Scheme 1]

Experimental

Crystal data
  • C3H8NO2+·Cl·H2O

  • Mr = 143.57

  • Orthorhombic, P 21 21 21

  • a = 6.1925 (13) Å

  • b = 9.929 (2) Å

  • c = 11.759 (3) Å

  • V = 723.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 150 (2) K

  • 0.45 × 0.40 × 0.35 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.819, Tmax = 0.855

  • 5762 measured reflections

  • 1467 independent reflections

  • 1452 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.053

  • S = 1.11

  • 1467 reflections

  • 84 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 533 Friedel pairs

  • Flack parameter: 0.02 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—HA⋯O3 0.89 1.96 2.8479 (14) 174
N—HB⋯Cli 0.89 2.31 3.1957 (11) 171
N—HC⋯O3ii 0.89 1.95 2.8380 (15) 180
O2—H2⋯Cl 0.82 2.23 3.0446 (11) 175
O3—H4⋯Cliii 0.82 (2) 2.35 (2) 3.1432 (12) 161.0 (17)
O3—H5⋯Cliv 0.78 (2) 2.38 (2) 3.1283 (11) 163.3 (16)
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (iii) x+1, y, z; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{5\over 2}}].

Data collection: SMART for WNT/2000 (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

L-Alanine is one of the 20 proteinogenic amino acids and has been currently recognized as one of the most abundant amino acids in natural proteins. In general, amino acids very often have polymorphs. The crystal structures of L-alanine (Simpson & Marsh, 1966; Dunitz & Ryan, 1966; Lehmann et al., 1972; Destro et al., 1988), DL-alanine (Donohue, 1950; Subha Nandhini et al., 2001; Trotter, 1962), and D-alanine hydrochloride (di Blasio et al., 1977) have been reported. In the present study, a single-crystal structure determination of L-alanine hydrochloride monohydrate, (I), is reported.

The distances and angles of the present L-alanine molecule are consistent in the typical values reported in the literature of L-alanine molecules (See Table 1 and Figure 1). The atoms N, C2, C3, O1, and O2 are found to be nearly coplanar. The torsion angles of O2—C2—C3—N and O1—C2—C3—N are 174.27 (9) and -6.07 (18), respectively. The angles of O1—C2—O2 and O1—C2—C3, for example, are 125.35 (11) and 123.71 (11)°, respectively. These observations are in reasonable agreement with those of D-alanine hydrochloride reported previously (di Blasio et al., 1977). The torsion angle of O2—C2—C3—C1 was observed to be -64.37 (14)°, which is slightly different from that of L-alanine, the corresponding angle was -76.0° (Lehmann et al., 1972).

The single-crystal diffraction analysis exhibits that the titled compound contains several intermolecular hydrogen bonds. O2 is involved to a single hydrogen bond to a chloride ion with the hydrogen bond distance of 3.0446 (11) Å, while O1 is not involved to hydrogen bonds. Instead, a short contact is observed between O1 and N with the intermolecular bond length of 2.8450 (15) Å. A water molecule donates four hydrogen bonds to two chlorides and two ammonium groups, while a chloride ion accepts four hydrogen bonds from two water molecules, and ammonium and hydroxyl groups (See Table 2 and Figure 2).

It is interesting to compare the present structure with that of D-alanine hydrochloride (di Blasio et al., 1977). In the anhydrous D-alanine hydrochloride crystal, O1 (carbonyl oxygen) exhibits a single hydrogen bond to an ammonium group, and O2 (hydroxyl oxygen) also forms a single hydrogen bond to a chloride ion. The chloride anion, on the other hand, forms three hydrogen bonds, two of which with ammonium groups and one of which with a hydroxyl group. These intermolecular environments are different from the present observations.

Related literature top

For he crystal structures of L-alanine and DL-alanine, see: Simpson & Marsh, (1966); Dunitz & Ryan, (1966); Lehmann et al. (1972); Destro et al. (1988); Donohue, (1950); Subha Nandhini et al. (2001). For the crystal structures of D-alanine hydrochloride and DL-alanine hydrochloride, see: di Blasio et al. (1977); Trotter, (1962). For the preparation of the title compound with respect to 17O-labelling, see: Steinschneider et al. (1981).

Experimental top

In the title compound, oxygen-17 isotope enrichments were carried out to the carboxyl group with the aim to perform solid-state 17O NMR experiments. L-alanine hydrochloride was obtained by acid-catalyzed exchange (Steinschneider et al., 1981) with L-alanine and H217O (20% 17O atom, purchased from Taiyo Nippon Sanso Corp., Tokyo, Japan). Colorless crystals of the title compound were obtained from the powder sample after it was left standing in a refrigerator for a few years.

Refinement top

All the H atoms except for H4 and H5 were treated as riding atoms with the following distances: for the methyl C—H distance, C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C); for the methyne C—H distance, C—H = 0.98Å and Uiso(H) = 1.2Ueq(C); for the hydroxyl O—H distance, O—H = 0.82Å and Uiso(H) = 1.2Ueq(O); for the ammonium N—H distance, N—H = 0.89Å and Uiso(H) = 1.5Ueq(N). The H4 and H5 atoms were found in difference density Fourier maps, and their positions and isotropic displacement parameters were freely refined.

It might be possible that some degree of racemization occurred since the titled compound had been placed in the refrigerator for a few years. The present diffraction measurements, however, exhibited negligible recemization (the Flack parameter = 0.02 (6)).

It should be noted that "Alert Level B (detecting a pseudo center of symmetry)" was generated by checkCIF/PLATON REPORT during the course of the publication check. The error may come from the fact that the chloride anions are close to a center of symmetry. The present experimental data certainly suggest non-centrosymmetric.

Computing details top

Data collection: SMART for WNT/2000 (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I), showing the atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I) viewed from a axis. Broken lines indicate the hydrogen bonds.
L-Alanine hydrochloride monohydrate top
Crystal data top
C3H8NO2+·Cl·H2OF(000) = 304
Mr = 143.57Dx = 1.319 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 902 reflections
a = 6.1925 (13) Åθ = 7.4–53.9°
b = 9.929 (2) ŵ = 0.46 mm1
c = 11.759 (3) ÅT = 150 K
V = 723.0 (3) Å3Plate, colourless
Z = 40.45 × 0.40 × 0.35 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1467 independent reflections
Radiation source: fine-focus sealed tube1452 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 27.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker 2001)
h = 77
Tmin = 0.819, Tmax = 0.855k = 1112
5762 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.019H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.053 w = 1/[σ2(Fo2) + (0.0308P)2 + 0.0901P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
1467 reflectionsΔρmax = 0.19 e Å3
84 parametersΔρmin = 0.20 e Å3
0 restraintsAbsolute structure: Flack (1983), 533 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (6)
Crystal data top
C3H8NO2+·Cl·H2OV = 723.0 (3) Å3
Mr = 143.57Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.1925 (13) ŵ = 0.46 mm1
b = 9.929 (2) ÅT = 150 K
c = 11.759 (3) Å0.45 × 0.40 × 0.35 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1467 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 2001)
1452 reflections with I > 2σ(I)
Tmin = 0.819, Tmax = 0.855Rint = 0.022
5762 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.019H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.053Δρmax = 0.19 e Å3
S = 1.11Δρmin = 0.20 e Å3
1467 reflectionsAbsolute structure: Flack (1983), 533 Friedel pairs
84 parametersAbsolute structure parameter: 0.02 (6)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.19971 (4)0.55991 (3)1.25180 (2)0.02475 (10)
C10.8057 (2)0.60202 (13)0.88317 (11)0.0295 (3)
H1A0.93010.61670.83600.044*
H1B0.74830.68720.90730.044*
H1C0.69790.55400.84070.044*
C20.6780 (2)0.49201 (12)1.06398 (10)0.0249 (2)
N0.96092 (17)0.38728 (10)0.95162 (8)0.0230 (2)
HA1.01160.34431.01240.034*
HB1.06760.40030.90210.034*
HC0.85770.33810.91930.034*
O31.13229 (15)0.26883 (10)1.15289 (8)0.0261 (2)
O10.60730 (17)0.38141 (9)1.08180 (8)0.0342 (2)
O20.60094 (18)0.60494 (10)1.10708 (9)0.0374 (2)
H20.49670.58801.14760.056*
C30.87031 (18)0.51981 (12)0.98686 (10)0.0228 (2)
H30.98010.56941.02990.027*
H41.159 (3)0.335 (2)1.1930 (16)0.047 (5)*
H51.050 (3)0.2271 (18)1.1882 (14)0.036 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.02114 (14)0.02522 (15)0.02790 (15)0.00128 (9)0.00012 (12)0.00516 (12)
C10.0308 (6)0.0239 (6)0.0337 (6)0.0021 (5)0.0026 (5)0.0073 (5)
C20.0260 (5)0.0230 (5)0.0256 (5)0.0013 (5)0.0015 (5)0.0018 (5)
N0.0232 (5)0.0200 (5)0.0257 (5)0.0019 (4)0.0028 (4)0.0023 (4)
O30.0281 (5)0.0235 (4)0.0268 (5)0.0044 (4)0.0023 (4)0.0008 (4)
O10.0398 (5)0.0238 (4)0.0389 (5)0.0059 (4)0.0160 (4)0.0029 (4)
O20.0384 (5)0.0244 (4)0.0494 (6)0.0011 (4)0.0183 (5)0.0046 (4)
C30.0227 (5)0.0183 (5)0.0274 (6)0.0003 (4)0.0011 (5)0.0002 (4)
Geometric parameters (Å, º) top
C1—C31.5209 (17)N—HA0.8900
C1—H1A0.9600N—HB0.8900
C1—H1B0.9600N—HC0.8900
C1—H1C0.9600O3—H40.82 (2)
C2—O11.2006 (16)O3—H50.78 (2)
C2—O21.3196 (15)O2—H20.8200
C2—C31.5223 (16)C3—H30.9800
N—C31.4893 (15)
C3—C1—H1A109.5C3—N—HC109.5
C3—C1—H1B109.5HA—N—HC109.5
H1A—C1—H1B109.5HB—N—HC109.5
C3—C1—H1C109.5H4—O3—H5104.4 (17)
H1A—C1—H1C109.5C2—O2—H2109.5
H1B—C1—H1C109.5N—C3—C1110.50 (10)
O1—C2—O2125.34 (11)N—C3—C2107.48 (9)
O1—C2—C3123.71 (11)C1—C3—C2111.65 (11)
O2—C2—C3110.95 (10)N—C3—H3109.1
C3—N—HA109.5C1—C3—H3109.1
C3—N—HB109.5C2—C3—H3109.1
HA—N—HB109.5
O1—C2—C3—N6.06 (18)O1—C2—C3—C1115.28 (14)
O2—C2—C3—N174.26 (9)O2—C2—C3—C164.39 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—HA···O30.891.962.8479 (14)174
N—HB···Cli0.892.313.1957 (11)171
N—HC···O3ii0.891.952.8380 (15)180
O2—H2···Cl0.822.233.0446 (11)175
O3—H4···Cliii0.82 (2)2.35 (2)3.1432 (12)161.0 (17)
O3—H5···Cliv0.78 (2)2.38 (2)3.1283 (11)163.3 (16)
Symmetry codes: (i) x+3/2, y+1, z1/2; (ii) x1/2, y+1/2, z+2; (iii) x+1, y, z; (iv) x+1, y1/2, z+5/2.

Experimental details

Crystal data
Chemical formulaC3H8NO2+·Cl·H2O
Mr143.57
Crystal system, space groupOrthorhombic, P212121
Temperature (K)150
a, b, c (Å)6.1925 (13), 9.929 (2), 11.759 (3)
V3)723.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.45 × 0.40 × 0.35
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker 2001)
Tmin, Tmax0.819, 0.855
No. of measured, independent and
observed [I > 2σ(I)] reflections
5762, 1467, 1452
Rint0.022
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.053, 1.11
No. of reflections1467
No. of parameters84
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.20
Absolute structureFlack (1983), 533 Friedel pairs
Absolute structure parameter0.02 (6)

Computer programs: SMART for WNT/2000 (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Selected geometric parameters (Å, º) top
C2—O11.2006 (16)C2—C31.5223 (16)
C2—O21.3196 (15)N—C31.4893 (15)
O1—C2—O2125.34 (11)O2—C2—C3110.95 (10)
O1—C2—C3123.71 (11)
O1—C2—C3—N6.06 (18)O1—C2—C3—C1115.28 (14)
O2—C2—C3—N174.26 (9)O2—C2—C3—C164.39 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—HA···O30.891.962.8479 (14)173.8
N—HB···Cli0.892.313.1957 (11)170.6
N—HC···O3ii0.891.952.8380 (15)179.5
O2—H2···Cl0.822.233.0446 (11)174.6
O3—H4···Cliii0.82 (2)2.35 (2)3.1432 (12)161.0 (17)
O3—H5···Cliv0.78 (2)2.38 (2)3.1283 (11)163.3 (16)
Symmetry codes: (i) x+3/2, y+1, z1/2; (ii) x1/2, y+1/2, z+2; (iii) x+1, y, z; (iv) x+1, y1/2, z+5/2.
 

Acknowledgements

KY appreciates support from the Nanotechnology Support Project of the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. SY and TY appreciate support from the RIKEN Structural Genomics/Proteomics Initiative (RSGI), the National Project on Protein Structural and Functional Analyses, and MEXT.

References

First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDestro, R., Marsh, R. E. & Bianchi, R. (1988). J. Phys. Chem. 92, 966–973.  CSD CrossRef CAS Web of Science Google Scholar
First citationBlasio, B. di, Pavone, V. & Pedone, C. (1977). Cryst. Struct. Commun. 6, 745–748.  Google Scholar
First citationDonohue, J. (1950). J. Am. Chem. Soc. 72, 949–953.  CSD CrossRef CAS Web of Science Google Scholar
First citationDunitz, J. D. & Ryan, R. R. (1966). Acta Cryst. 21, 617–618.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLehmann, M. S., Koetzle, T. F. & Hamilton, W. C. (1972). J. Am. Chem. Soc. 94, 2657–2660.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSimpson, H. J. & Marsh, R. E. (1966). Acta Cryst. 20, 550–555.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSteinschneider, A., Burgar, M. I., Buku, A. & Fiat, D. (1981). Int. J. Pept. Protein Res. 18, 324–333.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSubha Nandhini, M., Krishnakumar, R. V. & Natarajan, S. (2001). Acta Cryst. C57, 614–615.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationTrotter, J. (1962). Can. J. Chem. 40, 1218–1220.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds