organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(R)-1-(4-Bromo­benzo­yl)-4-(1-phenyl­prop­yl)thio­semicarbazide

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment of Chemistry, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
*Correspondence e-mail: shameed@qau.edu.pk

(Received 9 March 2008; accepted 11 March 2008; online 10 April 2008)

The title compound, C17H18BrN3OS, is an important inter­mediate for the synthesis of biologically active heterocyclic compounds. The thio­urea group is approximately planar. The crystal structure is stabilized by inter­molecular N—H⋯O hydrogen-bonding inter­actions.

Related literature

For related literature, see: Akhtar et al. (2006[Akhtar, T., Hameed, S., Lu, X., Yasin, K. A. & Khan, M. H. (2006). Anal. Sci. X-ray Struct. Anal. Online, 22, 307-308.], 2007[Akhtar, T., Hameed, S., Al-Masoudi, N. A. & Khan, K. M. (2007). Heteroatom. Chem. 18, 316-322.]); Cardia et al. (2006[Cardia, M. C., Distinto, S., Maccioni, E., Plumitallo, A., Saddi, M., Sanna, M. L. & DeLogu, A. (2006). J. Heterocycl. Chem. 43, 1337-1342.]); Dolman et al. (2006[Dolman, S. J., Gosselin, F., O'Shea, P. D. & Davies, I. W. (2006). J. Org. Chem. 71, 9548-9551.]); Hassan et al. (2006[Hassan, A. A., Mourad, A. E., El-Shaieb, K. M. & Abou-Zeid, A. H. (2006). J. Heterocycl. Chem. 43, 471-476.]); Jalilian et al. (2000[Jalilian, A. R., Sattari, S., Bineshmarvasti, M., Shafiee, A. & Daneshtalab, M. (2000). Arch. Pharm. Pharm. Med. Chem. 333, 347-354.]); Kucukguzel et al. (2006[Kucukguzel, G., Kocatepa, A., DeClercq, E., Sahin, F. & Gulluce, M. (2006). Eur. J. Med. Chem. 41, 353-359.]); Mohareb et al. (2007[Mohareb, R. M., Ho, J. Z. & Mohamed, A. A. (2007). Phosphorus Sulfur Silicon Relat. Elem. 182, 1661-1681.]); Singh et al. (2003[Singh, M. M., Rastogi, R. B., Upadhyay, B. N. & Yadav, M. (2003). Mater. Chem. Phys. 80, 283-293.], 2005[Singh, S., Husain, K., Athar, F. & Azam, A. (2005). Eur. J. Pharm. Sci. 25, 255-262.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18BrN3OS

  • Mr = 392.31

  • Orthorhombic, P 21 21 21

  • a = 6.263 (3) Å

  • b = 9.698 (5) Å

  • c = 27.651 (15) Å

  • V = 1679.5 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.58 mm−1

  • T = 123 (2) K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Rigaku/MSC Mercury CCD diffractometer

  • Absorption correction: integration (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.512, Tmax = 0.626

  • 13732 measured reflections

  • 3824 independent reflections

  • 3516 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.074

  • S = 1.13

  • 3824 reflections

  • 219 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.35 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1584 Friedel pairs

  • Flack parameter: 0.020 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.84 (4) 2.03 (4) 2.834 (4) 161 (4)
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001[Molecular Structure Corporation & Rigaku (2001). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: TEXSAN (Molecular Structure Corporation & Rigaku, 2004[Molecular Structure Corporation & Rigaku (2004). TEXSAN. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tenessee, USA.]); software used to prepare material for publication: SHELXL97 and TEXSAN.

Supporting information


Comment top

Thiosemicarbazides have attracted much attention partly because of their biological activities such as antifungal (Mohareb et al., 2007), antibacterial (Kucukguzel et al., 2006), antiamoebic (Singh et al., 2005) antitubercular (Cardia et al.,2006), corrosion inhibitors (Singh et al., 2003) and partly because of their use as intermediates in the synthesis of many biologically active heterocyclic compounds like 1,3,4-oxadiazoles (Dolman et al., 2006), 1,3,4-thiadiazoles (Jalilian et al.,2000) and 1,2,4-triazole (Akhtar et al., 2007; Akhtar et al., 2006). The other important biologically active compounds synthesized from thiosemicarbazides include thiazoles, thiazines, thiadiazines, pyrazines and indazoles (Hassan et al., 2006). The C2—S1 and C1—O1 bonds both show the expected full double-bond character, while the short values for the C1—N1, C2—N2, N1—N2,C2—N3 and C9—N3 bond lengths also indicate partial double-bond character. The thiourea group is approximately planar. The crystal packing is stabilized by N(1)—H(1)···O(1) and N(3)—H(3)···S(1) hydrogen bonds.

Related literature top

For related literature, see: Akhtar et al. (2006, 2007); Cardia et al. (2006); Dolman et al. (2006); Hassan et al. (2006); Jalilian et al. (2000); Kucukguzel et al. (2006); Mohareb et al. (2007); Singh et al. (2003, 2005).

Experimental top

The 4-bromobenzoic acid hydrazide (0.0068 moles) was dissolved in methanol (30ml) and a solution of 0.0066 moles of R-(+)-1-phenylpropylisothiocyanate, separately dissolved in 10 ml of methanol, was added drop wise with continuous stirring. The reaction mixture was refluxed and after consumption of the starting materials (tlc), the mixture was cooled to room temperature and methanol evaporated in vacuo. The crude thiosemicarbazide was recrystallized from a mixture of ethyl acetate and petroleum ether. Yield: 85%; m.p 160-161 °C; Rf: 0.34 (Petroleum ether: acetone; 6:4); IR (νmax, KBr, cm-1): 3378, 3273, 3191, 3033, 2967, 2877, 1669, 1238, 1591, 1528, 699; 1H-NMR (Acetone-d6): δ 9.81 (1H, s), 8.58 (1H, s), 8.06 (1H, s), 0.97 (3H, t, J = 7.5 Hz), 1.92-1.82 (2H, m), 5.58 (1H, dd, J = 15.6, 7.2 Hz), 7.39 (2H, dd, J = 7.2, 1.5 Hz ), 7.30 (2H, dt, J = 7.5, 3.0 Hz), 7.22 (1H, dt, J = 7.2, 3.0 Hz), 7.92 (2H, d, J = 8.4 Hz), 7.72 (2H, d, J = 8.7 Hz); 13C-NMR (Acetone-d6):δ 183.51, 165.60, 142.88, 133.20, 131.64, 129.61, 128.10, 126.87, 126.74,126.12, 59.55, 28.21, 10.47; EIMS: (m/z %) 214 (20), 183 (100), 155 (55),104 (10), 76 (50), 50 (45). Elemental analysis for C17H18N3SOBr (391):C, 52.05; H, 4.62; N, 10.71; S, 8.17. Found: C, 51.96; H, 4.70; N, 10.82; S, 8.07.

Refinement top

H atom on the N atom was refined isotropically. Other H atoms were placed in idealized positions and treated as riding atoms with C—H distance in the range 0.95–0.99 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C).

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); data reduction: TEXSAN (Molecular Structure Corporation & Rigaku, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and TEXSAN (Molecular Structure Corporation & Rigaku, 2004).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. Showing hydrogen bonded molecules through N—H···O.
(R)-1-(4-Bromobenzoyl)-4-(1-phenylpropyl)thiosemicarbazide top
Crystal data top
C17H18BrN3OSF(000) = 800
Mr = 392.31Dx = 1.552 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71070 Å
Hall symbol: P 2ac 2abCell parameters from 4820 reflections
a = 6.263 (3) Åθ = 3.1–27.5°
b = 9.698 (5) ŵ = 2.58 mm1
c = 27.651 (15) ÅT = 123 K
V = 1679.5 (15) Å3Block, colourles
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
3824 independent reflections
Radiation source: fine-focus sealed tube3516 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: integration
(NUMABS; Higashi, 1999)
h = 88
Tmin = 0.512, Tmax = 0.627k = 128
13732 measured reflectionsl = 2635
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + 1.3691P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.074(Δ/σ)max < 0.001
S = 1.13Δρmax = 0.34 e Å3
3824 reflectionsΔρmin = 0.35 e Å3
219 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0018 (4)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1584 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.020 (10)
Crystal data top
C17H18BrN3OSV = 1679.5 (15) Å3
Mr = 392.31Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.263 (3) ŵ = 2.58 mm1
b = 9.698 (5) ÅT = 123 K
c = 27.651 (15) Å0.30 × 0.25 × 0.20 mm
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
3824 independent reflections
Absorption correction: integration
(NUMABS; Higashi, 1999)
3516 reflections with I > 2σ(I)
Tmin = 0.512, Tmax = 0.627Rint = 0.057
13732 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074Δρmax = 0.34 e Å3
S = 1.13Δρmin = 0.35 e Å3
3824 reflectionsAbsolute structure: Flack (1983), 1584 Friedel pairs
219 parametersAbsolute structure parameter: 0.020 (10)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0742 (6)0.2098 (3)0.24009 (12)0.0141 (8)
O10.0089 (4)0.0922 (2)0.23367 (10)0.0260 (7)
N10.0306 (5)0.3005 (3)0.26956 (12)0.0144 (7)
H10.006 (6)0.384 (4)0.2666 (13)0.017*
C20.2924 (6)0.2804 (3)0.33209 (13)0.0124 (8)
S10.55059 (15)0.30911 (9)0.34643 (4)0.0169 (2)
N20.2383 (5)0.2701 (3)0.28467 (12)0.0144 (7)
H20.319 (7)0.288 (4)0.2668 (15)0.017*
N30.1369 (5)0.2639 (3)0.36436 (12)0.0146 (6)
H30.024 (6)0.254 (3)0.3547 (15)0.017*
C30.2725 (6)0.2613 (3)0.21649 (13)0.0134 (8)
C40.3408 (6)0.3985 (4)0.21787 (13)0.0156 (8)
H40.26250.46430.23610.019*
C50.5216 (6)0.4390 (3)0.19285 (14)0.0171 (8)
H50.56810.53220.19390.020*
C60.6334 (7)0.3426 (3)0.16636 (12)0.0153 (7)
C70.5710 (6)0.2056 (4)0.16486 (13)0.0197 (8)
H70.65080.14010.14680.024*
C80.3915 (7)0.1659 (3)0.18998 (13)0.0169 (8)
H80.34790.07210.18930.020*
Br10.87772 (7)0.39971 (4)0.131114 (15)0.02482 (12)
C90.1593 (6)0.2802 (3)0.41665 (12)0.0152 (8)
H90.30330.32170.42240.018*
C100.1581 (6)0.1398 (3)0.44199 (13)0.0154 (8)
C110.3136 (6)0.0440 (3)0.42905 (14)0.0207 (9)
H110.41710.06740.40530.025*
C120.3188 (7)0.0852 (4)0.45040 (15)0.0258 (10)
H120.42440.15030.44100.031*
C130.1711 (7)0.1193 (4)0.48521 (14)0.0273 (10)
H130.17480.20780.49990.033*
C140.0166 (7)0.0245 (4)0.49888 (16)0.0305 (11)
H140.08480.04750.52310.037*
C150.0110 (6)0.1039 (4)0.47705 (14)0.0231 (9)
H150.09560.16830.48630.028*
C160.0052 (6)0.3842 (4)0.43521 (13)0.0200 (8)
H16A0.15060.34750.42960.024*
H16B0.01370.39660.47050.024*
C170.0165 (7)0.5243 (4)0.41003 (15)0.0276 (10)
H17A0.02090.51470.37580.041*
H17B0.07980.59090.42540.041*
H17C0.16410.55690.41290.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.017 (2)0.0147 (16)0.0109 (19)0.0004 (14)0.0000 (16)0.0045 (13)
O10.0226 (16)0.0156 (12)0.0397 (18)0.0052 (12)0.0131 (13)0.0043 (12)
N10.0114 (16)0.0133 (13)0.0185 (19)0.0054 (12)0.0049 (14)0.0010 (12)
C20.0131 (19)0.0096 (15)0.015 (2)0.0006 (13)0.0013 (16)0.0013 (13)
S10.0102 (5)0.0220 (4)0.0184 (5)0.0014 (4)0.0029 (4)0.0007 (4)
N20.0078 (17)0.0215 (16)0.0140 (19)0.0001 (13)0.0027 (14)0.0057 (13)
N30.0102 (15)0.0230 (13)0.0105 (16)0.0013 (12)0.0013 (17)0.0019 (12)
C30.0120 (19)0.0140 (16)0.014 (2)0.0009 (13)0.0015 (16)0.0044 (13)
C40.015 (2)0.0156 (15)0.0165 (19)0.0032 (17)0.0005 (16)0.0038 (15)
C50.018 (2)0.0155 (17)0.018 (2)0.0002 (14)0.0004 (18)0.0023 (14)
C60.0116 (18)0.0256 (16)0.0087 (18)0.0002 (15)0.0002 (18)0.0040 (13)
C70.020 (2)0.0242 (17)0.015 (2)0.0037 (15)0.0044 (17)0.0027 (15)
C80.016 (2)0.0158 (15)0.019 (2)0.0009 (15)0.0043 (19)0.0004 (13)
Br10.01688 (19)0.03197 (19)0.0256 (2)0.00092 (17)0.0097 (2)0.00672 (18)
C90.015 (2)0.0230 (17)0.0078 (19)0.0003 (15)0.0031 (16)0.0007 (13)
C100.018 (2)0.0194 (16)0.0090 (18)0.0018 (14)0.0014 (17)0.0006 (12)
C110.020 (2)0.0270 (18)0.015 (2)0.0036 (15)0.0038 (17)0.0045 (15)
C120.028 (3)0.028 (2)0.021 (2)0.0071 (18)0.0013 (18)0.0019 (17)
C130.038 (3)0.0230 (19)0.021 (2)0.0071 (18)0.005 (2)0.0009 (16)
C140.035 (3)0.033 (2)0.023 (3)0.0116 (19)0.011 (2)0.0005 (18)
C150.027 (2)0.0242 (18)0.018 (2)0.0021 (19)0.0045 (18)0.0018 (18)
C160.020 (2)0.0275 (18)0.013 (2)0.0051 (16)0.0007 (16)0.0030 (16)
C170.032 (3)0.030 (2)0.021 (2)0.0109 (18)0.004 (2)0.0027 (17)
Geometric parameters (Å, º) top
C1—O11.224 (4)C8—H80.9500
C1—N11.367 (4)C9—C161.531 (5)
C1—C31.489 (5)C9—C101.532 (4)
N1—N21.397 (4)C9—H91.0000
N1—H10.84 (4)C10—C151.382 (5)
C2—N31.330 (5)C10—C111.393 (5)
C2—N21.358 (5)C11—C121.386 (5)
C2—S11.688 (4)C11—H110.9500
N2—H20.73 (4)C12—C131.376 (6)
N3—C91.461 (5)C12—H120.9500
N3—H30.76 (4)C13—C141.387 (6)
C3—C81.396 (5)C13—H130.9500
C3—C41.398 (5)C14—C151.384 (5)
C4—C51.384 (5)C14—H140.9500
C4—H40.9500C15—H150.9500
C5—C61.379 (5)C16—C171.532 (5)
C5—H50.9500C16—H16A0.9900
C6—C71.386 (5)C16—H16B0.9900
C6—Br11.897 (4)C17—H17A0.9800
C7—C81.376 (5)C17—H17B0.9800
C7—H70.9500C17—H17C0.9800
O1—C1—N1121.7 (3)C16—C9—C10115.4 (3)
O1—C1—C3121.8 (3)N3—C9—H9106.8
N1—C1—C3116.5 (3)C16—C9—H9106.8
C1—N1—N2119.3 (3)C10—C9—H9106.8
C1—N1—H1115 (3)C15—C10—C11118.6 (3)
N2—N1—H1119 (3)C15—C10—C9123.3 (3)
N3—C2—N2117.1 (3)C11—C10—C9118.2 (3)
N3—C2—S1124.3 (3)C12—C11—C10120.7 (4)
N2—C2—S1118.6 (3)C12—C11—H11119.6
C2—N2—N1120.4 (3)C10—C11—H11119.6
C2—N2—H2118 (3)C13—C12—C11120.0 (4)
N1—N2—H2113 (3)C13—C12—H12120.0
C2—N3—C9125.5 (3)C11—C12—H12120.0
C2—N3—H3117 (3)C12—C13—C14120.0 (4)
C9—N3—H3117 (3)C12—C13—H13120.0
C8—C3—C4118.8 (3)C14—C13—H13120.0
C8—C3—C1117.0 (3)C15—C14—C13119.7 (4)
C4—C3—C1124.2 (3)C15—C14—H14120.2
C5—C4—C3120.4 (3)C13—C14—H14120.2
C5—C4—H4119.8C10—C15—C14121.1 (4)
C3—C4—H4119.8C10—C15—H15119.5
C6—C5—C4119.2 (3)C14—C15—H15119.5
C6—C5—H5120.4C9—C16—C17111.8 (3)
C4—C5—H5120.4C9—C16—H16A109.3
C5—C6—C7121.5 (4)C17—C16—H16A109.3
C5—C6—Br1119.0 (3)C9—C16—H16B109.3
C7—C6—Br1119.5 (3)C17—C16—H16B109.3
C8—C7—C6118.9 (3)H16A—C16—H16B107.9
C8—C7—H7120.5C16—C17—H17A109.5
C6—C7—H7120.5C16—C17—H17B109.5
C7—C8—C3121.0 (3)H17A—C17—H17B109.5
C7—C8—H8119.5C16—C17—H17C109.5
C3—C8—H8119.5H17A—C17—H17C109.5
N3—C9—C16109.8 (3)H17B—C17—H17C109.5
N3—C9—C10110.8 (3)
O1—C1—N1—N213.7 (5)C4—C3—C8—C71.1 (6)
C3—C1—N1—N2166.7 (3)C1—C3—C8—C7176.6 (3)
N3—C2—N2—N126.7 (4)C2—N3—C9—C16125.2 (3)
S1—C2—N2—N1154.7 (2)C2—N3—C9—C10106.1 (4)
C1—N1—N2—C2131.2 (3)N3—C9—C10—C15121.4 (4)
N2—C2—N3—C9175.6 (3)C16—C9—C10—C154.2 (5)
S1—C2—N3—C96.0 (4)N3—C9—C10—C1158.7 (4)
O1—C1—C3—C85.4 (5)C16—C9—C10—C11175.7 (3)
N1—C1—C3—C8174.2 (3)C15—C10—C11—C120.8 (6)
O1—C1—C3—C4172.1 (3)C9—C10—C11—C12179.3 (3)
N1—C1—C3—C48.3 (5)C10—C11—C12—C130.8 (6)
C8—C3—C4—C50.8 (5)C11—C12—C13—C140.1 (6)
C1—C3—C4—C5176.7 (3)C12—C13—C14—C150.5 (6)
C3—C4—C5—C60.2 (5)C11—C10—C15—C140.2 (6)
C4—C5—C6—C71.1 (6)C9—C10—C15—C14180.0 (4)
C4—C5—C6—Br1178.7 (3)C13—C14—C15—C100.5 (6)
C5—C6—C7—C80.8 (6)N3—C9—C16—C1757.4 (4)
Br1—C6—C7—C8179.0 (3)C10—C9—C16—C17176.5 (3)
C6—C7—C8—C30.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.84 (4)2.03 (4)2.834 (4)161 (4)
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H18BrN3OS
Mr392.31
Crystal system, space groupOrthorhombic, P212121
Temperature (K)123
a, b, c (Å)6.263 (3), 9.698 (5), 27.651 (15)
V3)1679.5 (15)
Z4
Radiation typeMo Kα
µ (mm1)2.58
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerRigaku/MSC Mercury CCD
diffractometer
Absorption correctionIntegration
(NUMABS; Higashi, 1999)
Tmin, Tmax0.512, 0.627
No. of measured, independent and
observed [I > 2σ(I)] reflections
13732, 3824, 3516
Rint0.057
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.074, 1.13
No. of reflections3824
No. of parameters219
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.35
Absolute structureFlack (1983), 1584 Friedel pairs
Absolute structure parameter0.020 (10)

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2001), TEXSAN (Molecular Structure Corporation & Rigaku, 2004), SIR97 (Altomare et al., 1999), ORTEPII (Johnson, 1976), SHELXL97 (Sheldrick, 2008) and TEXSAN (Molecular Structure Corporation & Rigaku, 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.84 (4)2.03 (4)2.834 (4)161 (4)
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

MKR is grateful to the Higher Education Commission of Pakistan for financial support under the International Support Initiative program for Doctoral Fellowships at Gifu University, Japan.

References

First citationAkhtar, T., Hameed, S., Al-Masoudi, N. A. & Khan, K. M. (2007). Heteroatom. Chem. 18, 316–322.  Web of Science CrossRef CAS Google Scholar
First citationAkhtar, T., Hameed, S., Lu, X., Yasin, K. A. & Khan, M. H. (2006). Anal. Sci. X-ray Struct. Anal. Online, 22, 307–308.  CSD CrossRef Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCardia, M. C., Distinto, S., Maccioni, E., Plumitallo, A., Saddi, M., Sanna, M. L. & DeLogu, A. (2006). J. Heterocycl. Chem. 43, 1337–1342.  CrossRef CAS Google Scholar
First citationDolman, S. J., Gosselin, F., O'Shea, P. D. & Davies, I. W. (2006). J. Org. Chem. 71, 9548–9551.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHassan, A. A., Mourad, A. E., El-Shaieb, K. M. & Abou-Zeid, A. H. (2006). J. Heterocycl. Chem. 43, 471–476.  CrossRef CAS Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJalilian, A. R., Sattari, S., Bineshmarvasti, M., Shafiee, A. & Daneshtalab, M. (2000). Arch. Pharm. Pharm. Med. Chem. 333, 347–354.  Web of Science CrossRef CAS Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tenessee, USA.  Google Scholar
First citationKucukguzel, G., Kocatepa, A., DeClercq, E., Sahin, F. & Gulluce, M. (2006). Eur. J. Med. Chem. 41, 353–359.  Web of Science CrossRef PubMed Google Scholar
First citationMohareb, R. M., Ho, J. Z. & Mohamed, A. A. (2007). Phosphorus Sulfur Silicon Relat. Elem. 182, 1661–1681.  Web of Science CrossRef CAS Google Scholar
First citationMolecular Structure Corporation & Rigaku (2001). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMolecular Structure Corporation & Rigaku (2004). TEXSAN. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, S., Husain, K., Athar, F. & Azam, A. (2005). Eur. J. Pharm. Sci. 25, 255–262.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSingh, M. M., Rastogi, R. B., Upadhyay, B. N. & Yadav, M. (2003). Mater. Chem. Phys. 80, 283–293.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds