organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-Methyl-5-methyl­ene-2-oxotri­cyclo[5.3.1.13,9]dodecan-endo-8-ol

aSchool of Chemistry, University of New South Wales, Sydney 2052, Australia, and bSchool of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
*Correspondence e-mail: m.scudder@unsw.edu.au

(Received 7 April 2008; accepted 8 April 2008; online 16 April 2008)

The title compound, C14H20O2, crystallizes with homochiral chains of mol­ecules hydrogen bonded together along the b axis. Adjacent chains in the ab plane contain mol­ecules of the same chirality, leading to a chiral segregation of the mol­ecules into layers.

Related literature

For related literature, see: Yue et al. (2002[Yue, W., Bishop, R., Craig, D. C. & Scudder, M. L. (2002). CrystEngComm, 4, 591-595.], 2006[Yue, W., Nakano, K., Bishop, R., Craig, D. C., Harris, K. D. M. & Scudder, M. L. (2006). CrystEngComm, 8, 250-256.], 2007[Yue, W., Bishop, R., Craig, D. C. & Scudder, M. L. (2007). Acta Cryst. E63, o4689.], 1997[Yue, W., Bishop, R., Scudder, M. L. & Craig, D. C. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 2937-2946.], 2000[Yue, W., Bishop, R., Craig, D. C. & Scudder, M. L. (2000). Tetrahedron, 56, 6667-6673.]).

[Scheme 1]

Experimental

Crystal data
  • C14H20O2

  • Mr = 220.3

  • Monoclinic, P 21 /c

  • a = 7.554 (3) Å

  • b = 13.196 (3) Å

  • c = 12.597 (5) Å

  • β = 108.16 (2)°

  • V = 1193.2 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 294 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 2247 measured reflections

  • 2079 independent reflections

  • 1296 reflections with I > 2σ(I)

  • Rint = 0.016

  • 1 standard reflection frequency: 30 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.052

  • S = 1.27

  • 2079 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O2i 1.00 1.87 2.867 (4) 180
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: local program; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: RAELS (Rae, 2000[Rae, A. D. (2000). RAELS. Australian National University, Canberra, Australia.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and CrystalMaker (Palmer, 2005[Palmer, D. (2005). CrystalMaker. CrystalMaker Software Ltd, Yarnton, Oxfordshire, England. http://www.CrystalMaker.co.uk.]); software used to prepare material for publication: local programs.

Supporting information


Comment top

The preparation of this compound is part of a project involving alicyclic diols (Yue et al. 2002, 2006, 2007). The title compound (Fig. 1) crystallizes in space group P21/c with homochiral chains of molecules along b which are held together by O—H···OC hydrogen bonding. Adjacent chains along a are of the same chirality, leading to chirally pure layers within the crystal which are shaded light and dark in Fig. 2. It is unusual to observe chirally pure layers within a centrosymmetric lattice. In this case the layer is generated by a combination of the 21 screw axis along b and translation along the short a axis, neither of which generates a change in chirality.

Related literature top

For related literature, see: Yue et al. (2002, 2006, 2007, 1997, 2000)).

Experimental top

5-Methylidenetricyclo[5.3.1.13,9]dodecane-2,8-dione (Yue et al., 1997, 2000) was reacted with ca 1 equivalent of methyllithium in tetrahydrofuran solution. After standard work up of the reaction, the crude solid product was recrystallized to afford the title compound of m.p. 105–107°C. 13C NMR (75.5 MHz, CDCl3) δ: 28.1 (CH2), 30.9 (CH2), 31.9 (CH3), 34.7 (CH2), 38.6 (CH2), 38.8 (CH), 40.6 (CH), 42.7 (CH), 43.3 (CH), 45.3 (CH2), 74.8 (C), 119.3 (CH2), 148.2 (C), 219.9 (C). 1H NMR (300 MHz, CDCl3) δ: 1.44 (s, 3H), 1.83–1.98 (m, 4H), 2.01–2.21 (m, 4H), 2.29–2.47 (m, 4H), 2.66–2.76 (m, 2H), 2.99 (dd, J = 14.3, 7.1 Hz, 1H), 4.94 (d, J = 15.1 Hz, 2H). X-ray quality crystals were obtained from diethyl ether solution.

Refinement top

Hydrogen atoms attached to C were included at calculated positions (C—H = 1.0 Å). The hydroxy hydrogen atom was located on a difference map, and was then fixed at a position along the O···O vector with O—H = 1.0 Å. All hydrogen atoms were refined with isotropic thermal parameters equivalent to those of the atom to which they were bonded.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: local program; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: RAELS (Rae, 2000); molecular graphics: ORTEPII (Johnson, 1976) and CrystalMaker (Palmer, 2005); software used to prepare material for publication: local programs.

Figures top
[Figure 1] Fig. 1. Molecular structure of the compound, with ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. Unit cell diagram showing the O—H···OC hydrogen bonded chain along b. Adjacent layers along c are chirally pure with alternating chirality. This is indicated by light and dark shading of C atoms.
8-Methyl-5-methylene-2-oxotricyclo[5.3.1.13,9]dodecan-endo-8-ol top
Crystal data top
C14H20O2F(000) = 480.0
Mr = 220.3Dx = 1.23 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.554 (3) ÅCell parameters from 11 reflections
b = 13.196 (3) Åθ = 10–11°
c = 12.597 (5) ŵ = 0.08 mm1
β = 108.16 (2)°T = 294 K
V = 1193.2 (7) Å3Block, colourless
Z = 40.25 × 0.20 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
θmax = 25°
ω/2θ scansh = 08
2247 measured reflectionsk = 015
2079 independent reflectionsl = 1515
1296 reflections with I > 2σ(I)1 standard reflections every 30 min
Rint = 0.016 intensity decay: none
Refinement top
Refinement on F0 restraints
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.052 w = 1/[σ2(F) + 0.0004F2]
S = 1.27(Δ/σ)max = 0.003
2079 reflectionsΔρmax = 0.28 e Å3
145 parametersΔρmin = 0.28 e Å3
Crystal data top
C14H20O2V = 1193.2 (7) Å3
Mr = 220.3Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.554 (3) ŵ = 0.08 mm1
b = 13.196 (3) ÅT = 294 K
c = 12.597 (5) Å0.25 × 0.20 × 0.20 mm
β = 108.16 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.016
2247 measured reflections1 standard reflections every 30 min
2079 independent reflections intensity decay: none
1296 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.052H-atom parameters constrained
S = 1.27Δρmax = 0.28 e Å3
2079 reflectionsΔρmin = 0.28 e Å3
145 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5397 (2)0.2837 (1)0.1016 (1)0.0557 (5)
O20.6667 (2)0.0303 (1)0.4412 (1)0.0595 (5)
C10.4341 (3)0.2236 (2)0.2535 (2)0.0417 (6)
C20.4327 (3)0.2060 (2)0.1324 (2)0.0416 (6)
C30.5169 (3)0.1035 (2)0.1158 (2)0.0429 (6)
C40.4404 (3)0.0172 (2)0.1708 (2)0.0447 (6)
C50.4266 (3)0.0387 (2)0.2886 (2)0.0438 (6)
C60.6110 (3)0.0420 (2)0.3790 (2)0.0426 (6)
C70.7296 (3)0.1362 (2)0.3922 (2)0.0430 (6)
C80.6271 (3)0.2343 (2)0.3406 (2)0.0452 (6)
C90.3273 (3)0.1393 (2)0.2908 (2)0.0477 (6)
C100.7322 (3)0.1007 (2)0.1397 (2)0.0522 (6)
C110.8518 (3)0.0511 (2)0.2448 (2)0.0498 (6)
C120.8989 (3)0.1092 (2)0.3527 (2)0.0535 (6)
C130.9221 (4)0.0409 (2)0.2436 (2)0.0705 (8)
C140.2323 (4)0.2130 (2)0.0531 (2)0.0609 (7)
H1O10.46770.34860.08660.056
HC10.36550.28830.25420.042
HC30.46430.09000.03380.043
H1C40.52360.04290.17660.045
H2C40.31240.00050.12080.045
HC50.35070.01650.30740.044
HC70.78110.14890.47440.043
H1C80.70850.27100.30410.045
H2C80.61190.27640.40330.045
H1C90.19690.13580.23870.048
H2C90.32470.15340.36820.048
H1C100.77510.17260.14140.052
H2C100.75580.06450.07570.052
H1C120.96120.17380.34280.054
H2C120.98720.06730.41220.054
H1C130.89580.07870.17150.071
H2C131.00140.07240.31470.071
H1C140.15440.15940.07280.061
H2C140.17980.28120.06040.061
H3C140.23210.20290.02560.061
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.080 (1)0.0411 (9)0.0500 (9)0.0072 (8)0.0264 (9)0.0068 (7)
O20.071 (1)0.050 (1)0.051 (1)0.0052 (9)0.0098 (9)0.0139 (8)
C10.047 (1)0.037 (1)0.041 (1)0.005 (1)0.014 (1)0.000 (1)
C20.052 (2)0.034 (1)0.038 (1)0.003 (1)0.013 (1)0.001 (1)
C30.054 (1)0.040 (1)0.033 (1)0.004 (1)0.010 (1)0.006 (1)
C40.049 (2)0.038 (1)0.041 (1)0.005 (1)0.005 (1)0.003 (1)
C50.044 (1)0.042 (1)0.045 (1)0.005 (1)0.014 (1)0.007 (1)
C60.052 (2)0.044 (1)0.034 (1)0.002 (1)0.018 (1)0.002 (1)
C70.048 (1)0.046 (1)0.031 (1)0.002 (1)0.008 (1)0.005 (1)
C80.059 (2)0.038 (1)0.038 (1)0.003 (1)0.014 (1)0.006 (1)
C90.048 (1)0.052 (1)0.045 (1)0.001 (1)0.018 (1)0.004 (1)
C100.062 (2)0.055 (2)0.045 (1)0.002 (1)0.024 (1)0.007 (1)
C110.041 (1)0.051 (1)0.059 (2)0.003 (1)0.019 (1)0.006 (1)
C120.045 (1)0.059 (2)0.052 (1)0.002 (1)0.008 (1)0.008 (1)
C130.059 (2)0.060 (2)0.090 (2)0.005 (1)0.019 (2)0.008 (2)
C140.064 (2)0.058 (2)0.050 (1)0.004 (1)0.002 (1)0.008 (1)
Geometric parameters (Å, º) top
O1—C21.432 (2)C7—C81.544 (3)
O1—H1O11.000C7—C121.551 (3)
O2—C61.223 (2)C7—HC71.000
C1—C21.540 (3)C8—H1C81.000
C1—C81.534 (3)C8—H2C81.000
C1—C91.531 (3)C9—H1C91.000
C1—HC11.000C9—H2C91.000
C2—C31.536 (3)C10—C111.501 (3)
C2—C141.535 (3)C10—H1C101.000
C3—C41.536 (3)C10—H2C101.000
C3—C101.560 (3)C11—C121.503 (3)
C3—HC31.000C11—C131.327 (3)
C4—C51.546 (3)C12—H1C121.000
C4—H1C41.000C12—H2C121.000
C4—H2C41.000C13—H1C131.000
C5—C61.500 (3)C13—H2C131.000
C5—C91.529 (3)C14—H1C141.000
C5—HC51.000C14—H2C141.000
C6—C71.511 (3)C14—H3C141.000
C2—O1—H1O1110.1C8—C7—HC7106.1
C2—C1—C8115.7 (2)C12—C7—HC7106.1
C2—C1—C9110.7 (2)C1—C8—C7117.6 (2)
C2—C1—HC1107.1C1—C8—H1C8107.4
C8—C1—C9108.7 (2)C1—C8—H2C8107.4
C8—C1—HC1107.1C7—C8—H1C8107.4
C9—C1—HC1107.1C7—C8—H2C8107.4
O1—C2—C1109.3 (2)H1C8—C8—H2C8109.5
O1—C2—C3107.5 (2)C1—C9—C5108.5 (2)
O1—C2—C14107.8 (2)C1—C9—H1C9109.7
C1—C2—C3113.1 (2)C1—C9—H2C9109.7
C1—C2—C14109.6 (2)C5—C9—H1C9109.7
C3—C2—C14109.3 (2)C5—C9—H2C9109.7
C2—C3—C4111.2 (2)H1C9—C9—H2C9109.5
C2—C3—C10116.5 (2)C3—C10—C11119.0 (2)
C2—C3—HC3104.4C3—C10—H1C10107.0
C4—C3—C10114.3 (2)C3—C10—H2C10107.0
C4—C3—HC3104.4C11—C10—H1C10107.0
C10—C3—HC3104.4C11—C10—H2C10107.0
C3—C4—C5116.3 (2)H1C10—C10—H2C10109.5
C3—C4—H1C4107.7C10—C11—C12118.8 (2)
C3—C4—H2C4107.7C10—C11—C13121.5 (2)
C5—C4—H1C4107.7C12—C11—C13119.6 (2)
C5—C4—H2C4107.7C7—C12—C11114.9 (2)
H1C4—C4—H2C4109.5C7—C12—H1C12108.1
C4—C5—C6114.2 (2)C7—C12—H2C12108.1
C4—C5—C9110.9 (2)C11—C12—H1C12108.1
C4—C5—HC5107.9C11—C12—H2C12108.1
C6—C5—C9107.8 (2)H1C12—C12—H2C12109.5
C6—C5—HC5107.9C11—C13—H1C13120.0
C9—C5—HC5107.9C11—C13—H2C13120.0
O2—C6—C5121.1 (2)H1C13—C13—H2C13120.0
O2—C6—C7119.9 (2)C2—C14—H1C14109.5
C5—C6—C7119.1 (2)C2—C14—H2C14109.5
C6—C7—C8116.2 (2)C2—C14—H3C14109.5
C6—C7—C12107.2 (2)H1C14—C14—H2C14109.5
C6—C7—HC7106.1H1C14—C14—H3C14109.5
C8—C7—C12114.4 (2)H2C14—C14—H3C14109.5
H1O1—O1—C2—C175.5HC3—C3—C10—H2C1018.6
H1O1—O1—C2—C3161.4C3—C4—C5—C672.0 (2)
H1O1—O1—C2—C1443.6C3—C4—C5—C950.0 (2)
C8—C1—C2—O153.4 (2)C3—C4—C5—HC5168.0
C8—C1—C2—C366.3 (2)H1C4—C4—C5—C649.0
C8—C1—C2—C14171.4 (2)H1C4—C4—C5—C9171.0
C9—C1—C2—O1177.7 (2)H1C4—C4—C5—HC571.0
C9—C1—C2—C358.0 (2)H2C4—C4—C5—C6167.0
C9—C1—C2—C1464.3 (2)H2C4—C4—C5—C971.0
HC1—C1—C2—O165.9H2C4—C4—C5—HC547.0
HC1—C1—C2—C3174.4C4—C5—C6—O2100.9 (2)
HC1—C1—C2—C1452.1C4—C5—C6—C778.6 (2)
C2—C1—C8—C785.4 (2)C9—C5—C6—O2135.4 (2)
C2—C1—C8—H1C835.7C9—C5—C6—C745.1 (2)
C2—C1—C8—H2C8153.4HC5—C5—C6—O219.1
C9—C1—C8—C739.9 (2)HC5—C5—C6—C7161.4
C9—C1—C8—H1C8161.0C4—C5—C9—C157.7 (2)
C9—C1—C8—H2C881.3C4—C5—C9—H1C962.2
HC1—C1—C8—C7155.3C4—C5—C9—H2C9177.5
HC1—C1—C8—H1C883.6C6—C5—C9—C168.0 (2)
HC1—C1—C8—H2C834.1C6—C5—C9—H1C9172.2
C2—C1—C9—C562.6 (2)C6—C5—C9—H2C951.9
C2—C1—C9—H1C957.2HC5—C5—C9—C1175.7
C2—C1—C9—H2C9177.5HC5—C5—C9—H1C955.8
C8—C1—C9—C565.6 (2)HC5—C5—C9—H2C964.5
C8—C1—C9—H1C9174.6O2—C6—C7—C8160.0 (2)
C8—C1—C9—H2C954.3O2—C6—C7—C1270.7 (2)
HC1—C1—C9—C5179.0O2—C6—C7—HC742.4
HC1—C1—C9—H1C959.2C5—C6—C7—C820.5 (3)
HC1—C1—C9—H2C961.1C5—C6—C7—C12108.8 (2)
O1—C2—C3—C4167.3 (2)C5—C6—C7—HC7138.1
O1—C2—C3—C1034.0 (2)C6—C7—C8—C117.6 (3)
O1—C2—C3—HC380.6C6—C7—C8—H1C8138.8
C1—C2—C3—C446.6 (2)C6—C7—C8—H2C8103.6
C1—C2—C3—C1086.8 (2)C12—C7—C8—C1108.2 (2)
C1—C2—C3—HC3158.7C12—C7—C8—H1C813.0
C14—C2—C3—C475.8 (2)C12—C7—C8—H2C8130.7
C14—C2—C3—C10150.8 (2)HC7—C7—C8—C1135.2
C14—C2—C3—HC336.2HC7—C7—C8—H1C8103.6
O1—C2—C14—H1C14180.0HC7—C7—C8—H2C814.0
O1—C2—C14—H2C1460.0C6—C7—C12—C1145.4 (2)
O1—C2—C14—H3C1460.0C6—C7—C12—H1C12166.2
C1—C2—C14—H1C1461.1C6—C7—C12—H2C1275.4
C1—C2—C14—H2C1458.9C8—C7—C12—C1184.9 (2)
C1—C2—C14—H3C14178.9C8—C7—C12—H1C1235.9
C3—C2—C14—H1C1463.4C8—C7—C12—H2C12154.3
C3—C2—C14—H2C14176.6HC7—C7—C12—C11158.4
C3—C2—C14—H3C1456.6HC7—C7—C12—H1C1280.8
C2—C3—C4—C543.4 (2)HC7—C7—C12—H2C1237.6
C2—C3—C4—H1C4164.4C3—C10—C11—C1280.0 (3)
C2—C3—C4—H2C477.6C3—C10—C11—C13102.6 (3)
C10—C3—C4—C591.0 (2)H1C10—C10—C11—C1241.4
C10—C3—C4—H1C430.0H1C10—C10—C11—C13136.0
C10—C3—C4—H2C4148.0H2C10—C10—C11—C12158.7
HC3—C3—C4—C5155.5H2C10—C10—C11—C1318.7
HC3—C3—C4—H1C483.5C10—C11—C12—C763.8 (3)
HC3—C3—C4—H2C434.5C10—C11—C12—H1C1257.0
C2—C3—C10—C11105.5 (2)C10—C11—C12—H2C12175.4
C2—C3—C10—H1C1015.8C13—C11—C12—C7118.7 (2)
C2—C3—C10—H2C10133.1C13—C11—C12—H1C12120.5
C4—C3—C10—C1126.4 (3)C13—C11—C12—H2C122.1
C4—C3—C10—H1C10147.8C10—C11—C13—H1C130.0
C4—C3—C10—H2C1094.9C10—C11—C13—H2C13180.0
HC3—C3—C10—C11139.9C12—C11—C13—H1C13177.4
HC3—C3—C10—H1C1098.7C12—C11—C13—H2C132.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O2i1.001.872.867 (4)180
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H20O2
Mr220.3
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)7.554 (3), 13.196 (3), 12.597 (5)
β (°) 108.16 (2)
V3)1193.2 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2247, 2079, 1296
Rint0.016
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.052, 1.27
No. of reflections2079
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.28

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), SIR92 (Altomare et al., 1994), RAELS (Rae, 2000), ORTEPII (Johnson, 1976) and CrystalMaker (Palmer, 2005), local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O2i1.001.872.867 (4)180
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

This research was supported by the Australian Research Council and the Shanghai Pujiang Program (WY).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationPalmer, D. (2005). CrystalMaker. CrystalMaker Software Ltd, Yarnton, Oxfordshire, England. http://www.CrystalMaker.co.uk.  Google Scholar
First citationRae, A. D. (2000). RAELS. Australian National University, Canberra, Australia.  Google Scholar
First citationYue, W., Bishop, R., Craig, D. C. & Scudder, M. L. (2000). Tetrahedron, 56, 6667–6673.  Web of Science CSD CrossRef CAS Google Scholar
First citationYue, W., Bishop, R., Craig, D. C. & Scudder, M. L. (2002). CrystEngComm, 4, 591–595.  Web of Science CSD CrossRef CAS Google Scholar
First citationYue, W., Bishop, R., Craig, D. C. & Scudder, M. L. (2007). Acta Cryst. E63, o4689.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYue, W., Bishop, R., Scudder, M. L. & Craig, D. C. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 2937–2946.  CSD CrossRef Web of Science Google Scholar
First citationYue, W., Nakano, K., Bishop, R., Craig, D. C., Harris, K. D. M. & Scudder, M. L. (2006). CrystEngComm, 8, 250–256.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds