organic compounds
Methyl 4-amino-3-methylbenzoate
aDepartment of Applied Chemistry, College of Sciences, Nanjing University of Technolgy, Xinmofan Road No. 5, Nanjing 210009, People's Republic of China, and bBioengineering Department, Xuzhou Higher Vocational College of Bioengineering, Mine West Road, Xuzhou 221006, People's Republic of China
*Correspondence e-mail: yaocheng@njut.edu.cn
In the molecule of the title compound, C9H11NO2, the methyl C and amino N atoms bonded to the benzene ring lie in the ring plane. Intramolecular C—H⋯O hydrogen bonding results in the formation of a five-membered planar ring, which is oriented at a dihedral angle of 2.73 (3)° with respect to the benzene ring, so they are nearly coplanar. In the intermolecular N—H⋯O hydrogen bonds link the molecules into chains elongated along the c axis and stacked along the b axis.
Related literature
For related literature, see: Ries et al. (1993); Engeli et al. (2000); Kintscher et al. (2004); Goossens et al. (2003); Kurtz et al. (2004). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808006223/hk2431sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808006223/hk2431Isup2.hkl
The title compound (I) was prepared from 3-methyl-4-aminobenzoic acid (38 g, 250 mmol) in methanol (101 ml, 250 mmol). After the solid has melted, concentrated sulfuric acid (16 ml, 300 mmol) was dropped from the dropping funnel at 363 K, the latter was treated with a mixture of ice and water. The product was filtered by suction. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.
H atoms were positioned geometrically, with N—H = 0.86 Å (for NH2) and C—H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.
Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell
CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C9H11NO2 | F(000) = 352 |
Mr = 165.19 | Dx = 1.323 Mg m−3 |
Monoclinic, P21/c | Melting point: 391(2) K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 7.5670 (15) Å | Cell parameters from 25 reflections |
b = 6.1080 (12) Å | θ = 9–13° |
c = 18.127 (4) Å | µ = 0.09 mm−1 |
β = 98.14 (3)° | T = 294 K |
V = 829.4 (3) Å3 | Block, colorless |
Z = 4 | 0.40 × 0.30 × 0.20 mm |
Enraf–Nonius CAD-4 diffractometer | 1079 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.022 |
Graphite monochromator | θmax = 26.0°, θmin = 2.3° |
ω/2θ scans | h = −9→9 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→7 |
Tmin = 0.963, Tmax = 0.981 | l = 0→22 |
1747 measured reflections | 3 standard reflections every 200 reflections |
1620 independent reflections | intensity decay: none |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.053 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.188 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.06P)2 + 1.3P] where P = (Fo2 + 2Fc2)/3 |
1620 reflections | (Δ/σ)max < 0.001 |
109 parameters | Δρmax = 0.25 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
C9H11NO2 | V = 829.4 (3) Å3 |
Mr = 165.19 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.5670 (15) Å | µ = 0.09 mm−1 |
b = 6.1080 (12) Å | T = 294 K |
c = 18.127 (4) Å | 0.40 × 0.30 × 0.20 mm |
β = 98.14 (3)° |
Enraf–Nonius CAD-4 diffractometer | 1079 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.022 |
Tmin = 0.963, Tmax = 0.981 | 3 standard reflections every 200 reflections |
1747 measured reflections | intensity decay: none |
1620 independent reflections |
R[F2 > 2σ(F2)] = 0.053 | 0 restraints |
wR(F2) = 0.188 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.25 e Å−3 |
1620 reflections | Δρmin = −0.27 e Å−3 |
109 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N | 0.8206 (4) | 0.4908 (5) | 0.17914 (15) | 0.0570 (8) | |
H0A | 0.8716 | 0.6166 | 0.1792 | 0.068* | |
H0B | 0.7811 | 0.4279 | 0.1376 | 0.068* | |
O1 | 0.6922 (3) | −0.1169 (4) | 0.44629 (12) | 0.0549 (7) | |
O2 | 0.8163 (4) | 0.1644 (4) | 0.51362 (13) | 0.0621 (8) | |
C1 | 0.6852 (5) | −0.2393 (6) | 0.51341 (18) | 0.0561 (10) | |
H1A | 0.6303 | −0.3788 | 0.5012 | 0.084* | |
H1B | 0.6164 | −0.1599 | 0.5451 | 0.084* | |
H1C | 0.8041 | −0.2610 | 0.5388 | 0.084* | |
C2 | 0.7641 (4) | 0.0832 (5) | 0.45389 (18) | 0.0440 (8) | |
C3 | 0.7726 (4) | 0.1877 (5) | 0.38130 (17) | 0.0404 (7) | |
C4 | 0.7052 (4) | 0.0892 (5) | 0.31364 (17) | 0.0423 (8) | |
H4A | 0.6496 | −0.0464 | 0.3145 | 0.051* | |
C5 | 0.7176 (4) | 0.1847 (5) | 0.24532 (17) | 0.0405 (8) | |
C6 | 0.8021 (4) | 0.3903 (5) | 0.24530 (17) | 0.0414 (7) | |
C7 | 0.8662 (4) | 0.4927 (5) | 0.31251 (18) | 0.0450 (8) | |
H7A | 0.9196 | 0.6297 | 0.3120 | 0.054* | |
C8 | 0.8517 (4) | 0.3940 (5) | 0.37935 (18) | 0.0427 (8) | |
H8A | 0.8947 | 0.4649 | 0.4237 | 0.051* | |
C9 | 0.6433 (5) | 0.0725 (6) | 0.17397 (18) | 0.0525 (9) | |
H9A | 0.5906 | −0.0644 | 0.1851 | 0.079* | |
H9B | 0.7377 | 0.0463 | 0.1448 | 0.079* | |
H9C | 0.5541 | 0.1639 | 0.1464 | 0.079* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N | 0.076 (2) | 0.0464 (17) | 0.0479 (17) | −0.0106 (16) | 0.0050 (15) | 0.0071 (14) |
O1 | 0.0748 (17) | 0.0429 (13) | 0.0455 (13) | −0.0097 (13) | 0.0031 (11) | 0.0032 (11) |
O2 | 0.090 (2) | 0.0538 (16) | 0.0409 (13) | −0.0084 (14) | 0.0053 (13) | −0.0040 (12) |
C1 | 0.076 (3) | 0.048 (2) | 0.0449 (19) | −0.0029 (19) | 0.0100 (17) | 0.0037 (16) |
C2 | 0.0489 (19) | 0.0416 (18) | 0.0418 (17) | 0.0019 (16) | 0.0079 (14) | −0.0005 (15) |
C3 | 0.0425 (17) | 0.0373 (17) | 0.0414 (17) | 0.0040 (14) | 0.0058 (13) | −0.0029 (14) |
C4 | 0.0430 (18) | 0.0349 (17) | 0.0479 (18) | −0.0003 (14) | 0.0021 (14) | −0.0008 (14) |
C5 | 0.0419 (18) | 0.0344 (16) | 0.0435 (17) | 0.0038 (14) | 0.0003 (13) | −0.0020 (14) |
C6 | 0.0448 (18) | 0.0325 (16) | 0.0468 (17) | 0.0050 (14) | 0.0065 (14) | 0.0022 (14) |
C7 | 0.0458 (19) | 0.0327 (16) | 0.056 (2) | −0.0036 (14) | 0.0061 (15) | −0.0014 (15) |
C8 | 0.0477 (18) | 0.0372 (17) | 0.0434 (17) | 0.0030 (15) | 0.0071 (13) | −0.0067 (14) |
C9 | 0.057 (2) | 0.051 (2) | 0.0469 (19) | −0.0055 (17) | −0.0031 (16) | −0.0022 (16) |
N—C6 | 1.372 (4) | C4—C5 | 1.384 (4) |
N—H0A | 0.8600 | C4—H4A | 0.9300 |
N—H0B | 0.8600 | C5—C6 | 1.410 (4) |
O1—C2 | 1.336 (4) | C5—C9 | 1.501 (4) |
O1—C1 | 1.435 (4) | C6—C7 | 1.394 (4) |
C1—H1A | 0.9600 | C7—C8 | 1.372 (4) |
C1—H1B | 0.9600 | C7—H7A | 0.9300 |
C1—H1C | 0.9600 | C8—H8A | 0.9300 |
O2—C2 | 1.206 (4) | C9—H9A | 0.9600 |
C2—C3 | 1.472 (4) | C9—H9B | 0.9600 |
C3—C4 | 1.396 (4) | C9—H9C | 0.9600 |
C3—C8 | 1.398 (4) | ||
C6—N—H0A | 120.0 | C4—C5—C6 | 117.6 (3) |
C6—N—H0B | 120.0 | C4—C5—C9 | 120.9 (3) |
H0A—N—H0B | 120.0 | C6—C5—C9 | 121.4 (3) |
C2—O1—C1 | 116.9 (3) | N—C6—C7 | 119.9 (3) |
O1—C1—H1A | 109.5 | N—C6—C5 | 120.1 (3) |
O1—C1—H1B | 109.5 | C7—C6—C5 | 120.1 (3) |
H1A—C1—H1B | 109.5 | C8—C7—C6 | 120.9 (3) |
O1—C1—H1C | 109.5 | C8—C7—H7A | 119.5 |
H1A—C1—H1C | 109.5 | C6—C7—H7A | 119.5 |
H1B—C1—H1C | 109.5 | C7—C8—C3 | 120.4 (3) |
O2—C2—O1 | 123.1 (3) | C7—C8—H8A | 119.8 |
O2—C2—C3 | 125.0 (3) | C3—C8—H8A | 119.8 |
O1—C2—C3 | 111.9 (3) | C5—C9—H9A | 109.5 |
C4—C3—C8 | 118.1 (3) | C5—C9—H9B | 109.5 |
C4—C3—C2 | 122.8 (3) | H9A—C9—H9B | 109.5 |
C8—C3—C2 | 119.1 (3) | C5—C9—H9C | 109.5 |
C5—C4—C3 | 122.8 (3) | H9A—C9—H9C | 109.5 |
C5—C4—H4A | 118.6 | H9B—C9—H9C | 109.5 |
C3—C4—H4A | 118.6 | ||
C1—O1—C2—O2 | −2.4 (5) | C4—C5—C6—N | 179.0 (3) |
C1—O1—C2—C3 | 177.0 (3) | C9—C5—C6—N | −1.1 (5) |
O2—C2—C3—C4 | −178.0 (3) | C4—C5—C6—C7 | −1.4 (4) |
O1—C2—C3—C4 | 2.7 (4) | C9—C5—C6—C7 | 178.5 (3) |
O2—C2—C3—C8 | 2.2 (5) | N—C6—C7—C8 | −179.0 (3) |
O1—C2—C3—C8 | −177.2 (3) | C5—C6—C7—C8 | 1.3 (5) |
C8—C3—C4—C5 | 1.7 (5) | C6—C7—C8—C3 | 0.3 (5) |
C2—C3—C4—C5 | −178.2 (3) | C4—C3—C8—C7 | −1.7 (5) |
C3—C4—C5—C6 | −0.1 (5) | C2—C3—C8—C7 | 178.1 (3) |
C3—C4—C5—C9 | 180.0 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4A···O1 | 0.93 | 2.40 | 2.728 (4) | 100 |
N—H0B···O2i | 0.86 | 2.37 | 3.142 (3) | 150 |
Symmetry code: (i) x, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C9H11NO2 |
Mr | 165.19 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 294 |
a, b, c (Å) | 7.5670 (15), 6.1080 (12), 18.127 (4) |
β (°) | 98.14 (3) |
V (Å3) | 829.4 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.40 × 0.30 × 0.20 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.963, 0.981 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1747, 1620, 1079 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.616 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.053, 0.188, 1.04 |
No. of reflections | 1620 |
No. of parameters | 109 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.25, −0.27 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4A···O1 | 0.93 | 2.40 | 2.728 (4) | 100.30 |
N—H0B···O2i | 0.86 | 2.37 | 3.142 (3) | 149.88 |
Symmetry code: (i) x, −y+1/2, z−1/2. |
Acknowledgements
The authors thank the Center of Testing and Analysis, Nanjing University, for support.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Engeli, S., Negrel, R. & Sharma, A. M. (2000). Hypertension, 35, 1270–1277. Web of Science CrossRef PubMed CAS Google Scholar
Enraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Goossens, G. H., Blaak, E. E. & van Baak, M. A. (2003). Obes. Rev. 4, 43–55. CrossRef PubMed CAS Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Kintscher, U., Lyon, C. J. & Law, R. E. (2004). Front. Biosci. 9, 359–369. Web of Science CrossRef PubMed CAS Google Scholar
Kurtz, T. W. & Pravenec, M. (2004). J. Hypertens. 22, 2253–2261. Web of Science CrossRef PubMed CAS Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Ries, U. J., Mihm, G., Narr, B., Hasselbach, K. M., Wittneben, H., Entzeroth, M., van Meel, J. C. A., Wienen, W. & Hauel, N. H. (1993). J. Med. Chem. 36, 4040–4051. CrossRef CAS PubMed Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Methyl 3-methyl-4-aminobenzoate is important as an intermedicine to prepare telmisartan, an angiotensin II receptor blocker, on the development of obesity and related metabolic disorders in diet-induced obese mice (Ries et al., 1993). Telmisartan can be used as a therapeutic tool for metabolic syndrome, including visceral obesity (Engeli et al., 2000; Kintscher et al., 2004; Goossens et al., 2003; Kurtz et al., 2004). As part of our studies in this area, we report herein the synthesis and crystal structure of the title compound, (I).
In the molecule of (I), (Fig. 1), the ligand bond lengths (Allen et al., 1987) and angles are within normal ranges. The atoms N and C9 lie in the benzene ring plane. The intramolecular C—H···O hydrogen bond (Table 1) results in the formation of a five-membered planar ring A (O1/C2/C3/C4/H4A), in which it is oriented with respect to the six-membered planar ring B (C3—C8) at a dihedral angle of A/B = 2.73 (3)°. So, they are also nearly coplanar.
In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into chains elongated along the c axis and stacked along the b axis (Fig. 2), in which they may be effective in the stabilization of the structure.