organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,6-Di­chloro-2-(2-hy­droxy­phen­yl)­iso­indoline-1,3-dione

aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey, and bDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey
*Correspondence e-mail: muodabas@omu.edu.tr

(Received 25 March 2008; accepted 26 March 2008; online 2 April 2008)

In the mol­ecule of the title compound, C14H7Cl2NO3, the phthalimide ring system is virtually planar, with a dihedral angle between the fused five- and six-membered rings of 4.02 (3)°. In the crystal structure, inter­molecular C—H⋯O and O—H⋯O hydrogen bonds and C—Cl⋯O close contacts [Cl⋯O = 3.0123 (13) Å and C—Cl⋯O = 171.14 (7)°] link the mol­ecules, generating R22(16), R42(19) and R44(22) ring motifs by C(6) chains to form a three-dimensional network. A weak ππ inter­action between the six-membered rings of the phthalimide ring systems further stabilizes the structure, with a centroid–centroid distance of 3.666 (3) Å and an interplanar separation of 3.568 Å.

Related literature

For general background, see: Chapman et al. (1979[Chapman, J. M., Cocolas, G. H. & Hall, I. H. (1979). J. Med. Chem. 22, 1399-1402.]); Hall et al. (1983[Hall, I. H., Voorstad, P. J., Chapman, J. M. & Cocolas, G. H. (1983). J. Pharm. Sci. 72, 845-851.], 1987[Hall, I. H., Reynolds, D. J., Wong, O. T., Oswald, C. B. & Murthy, A. R. K. (1987). Pharm. Res. 4, 472-479.]); Srivastava et al. (2001[Srivastava, R. M., Oliveira, F. J. S., da Silva, L. P., de Freitas Filho, J. R., Oliveira, S. P. & Lima, V. L. M. (2001). Carbohydr. Res. 332, 335-340.]); Cechinel et al. (2003[Cechinel, V., de Campos, F., Correa, R., Yunes, R. A. & Nunes, R. J. (2003). Quím. Nova, 26, 230-241.]); Abdel-Hafez (2004[Abdel-Hafez, A. A. M. (2004). Arch. Pharm. Res. 27, 495-501.]); Antunes et al. (2003[Antunes, R., Batista, H., Srivastava, R. M., Thomas, G., Araújo, C. C., Longo, R. L., Magalhães, H., Leão, M. B. C. & Pavão, A. C. (2003). J. Mol. Struct. 660, 1-13.]); Sena et al. (2007[Sena, V. L. M., Srivastava, M. R., de Simone, C. A., da Cruz Gonçalves, S. M., Silva, R. O. & Pereira, M. A. (2007). J. Braz. Chem. Soc. 18, 1224-1234.]). For ring motif details, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • C14H7Cl2NO3

  • Mr = 308.11

  • Monoclinic, P 21 /c

  • a = 7.5993 (2) Å

  • b = 19.4088 (5) Å

  • c = 9.5086 (3) Å

  • β = 110.842 (2)°

  • V = 1310.68 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.50 mm−1

  • T = 296 K

  • 0.63 × 0.43 × 0.24 mm

Data collection
  • Stoe IPDSII diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.759, Tmax = 0.881

  • 20050 measured reflections

  • 2783 independent reflections

  • 2341 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.096

  • S = 1.04

  • 2783 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2i 0.82 1.90 2.7235 (18) 177
C3—H3⋯O3ii 0.93 2.55 3.397 (2) 152
C13—H13⋯O3iii 0.93 2.59 3.505 (2) 168
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) x-1, y, z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Phthalimide derivatives have been gaining considerable interest since 1979, when Chapman et al. tested the hypolipidemic activity of 23 N-substituted phthalimide derivatives (Chapman et al., 1979). Later on, Hall and co-workers reported the antihyperlipidemic activity of phthalimide analogs in rodents and also the same activity was found by the administration of ortho-(N-phthalimido) acetophenone in sprague dawley rats (Hall et al., 1983; 1987). In 2001, Srivastava et al. reported hypolipidemic activity in α-D-mannopyranosides containing phthalimidomethyl function as aglycone (Srivastava et al., 2001). There are other interesting biological aspects of these compounds which have been reviewed in 2003 (Cechinel et al., 2003). A recent paper cites the synthesis and anticonvulsant behavior of N-substituted phthalimides (Abdel-Hafez, 2004). Besides, certain phthalimide derivatives are synthetically important, and can be transformed to other useful products (Antunes et al., 2003). In 2007, Sena et al. prepared ten N-arylaminomethyl-arylaminomethyl- and two [1,2,4-triazol-3- and 4-yl]phthalimides that these imides are potential candidates for biological evaluations (Sena et al., 2007). In view of the importance of the N-arylphthalimides, we herein report the crystal structure of the title compound, (I).

The molecule of (I), (Fig. 1), is built up from a phthalimide unit connected to a o-hydroxyphenyl group through a nitrogen atom. Rings A (C2-C7), B (C1/C2/C7/C8/N1) and C (C9-C14) are, of course, planar. The dihedral angles between them are A/B = 4.02 (3)°, A/C = 75.55 (3)° and B/C = 75.13 (3)°. So, rings A and B are also nearly coplanar. Ring C is oriented with respect to the coplanar ring system at a dihedral angle of 75.37 (3)°.

In the crystal structure, intermolecular C-H···O and O-H···O hydrogen bonds (Table 1) and C-Cl···O close contacts [Cl2i···O1ii = 3.0123 (13) Å and C5-Cl2i···O1ii = 171.14 (7)°; symmetry codes: (i) x, 3/2 - y, z - 1/2 and (ii) x + 1, 3/2 - y, z + 1/2] link the molecules, generating R22(16) (Fig. 3), R42(19) (Fig. 4) and R44(22) (Fig. 5) ring motifs by C(6) chains (Fig. 2) (Bernstein et al., 1995; Etter, 1990), to form a three-dimensional network, in which they may be effective in the stabilization of the structure. A weak π···π interaction between the A rings, at x, y, z and 1 - x, 1 - y, 2 - z, further stabilizes the structure, with a centroid-centroid distance of 3.666 (3) Å and plane-plane separation of 3.568 Å.

Related literature top

For general background, see: Chapman et al. (1979); Hall et al. (1983, 1987); Srivastava et al. (2001); Cechinel et al. (2003); Abdel-Hafez (2004); Antunes et al. (2003); Sena et al. (2007). For ring motif details, see: Bernstein et al. (1995); Etter (1990).

Experimental top

A mixture of 4,5-dichlorophthalic acid (1.175 g, 5 mmol) and 2-aminophenol (0.545 g, 20 mmol) in DMF (1.5 ml) was heated at boiling temperature for 15 min, and then ethanol (50 ml, 95%) was added. Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of the mixture at room temperature (yield; 80%, m.p. 546-548 K).

Refinement top

H atoms were positioned geometrically, with O-H = 0.82 Å (for OH) and C-H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,O), where x = 1.5 for OH H and x = 1.2 for aromatic H atoms.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram of (I), showing the formation of C(6) chain [symmetry codes: (i) x - 1, y, z; (ii) x + 1, y, z]. H atoms not involved in hydrogen bondings have been omitted for clarity.
[Figure 3] Fig. 3. A partial packing diagram of (I), showing the formation of centro- symmetric R22(16) ring motifs. Hydrogen bonds are shown as dashed lines [symmetry code: (i) x + 1/2, 1 - y, 1 - z]. H atoms not involved in hydrogen bondings have been omitted for clarity.
[Figure 4] Fig. 4. A partial packing diagram of (I), showing the formation of R22(16) and R42(19) ring motifs. Hydrogen bonds are shown as dashed lines [symmetry codes: (i) x + 1/2, 1 - y, 1 - z; (ii) -x, 1 - y, 1 - z; (iii) x - 1, y, z]. H atoms not involved in hydrogen bondings have been omitted for clarity.
[Figure 5] Fig. 5. A partial packing diagram of (I), showing the formation of R44(22) ring motifs. Hydrogen bonds are shown as dashed lines [symmetry codes: (i) x, 3/2 - y, z - 1/2; (ii) x + 1, 3/2 - y, z + 1/2; (iii) x, 3/2 - y, z + 1/2].
5,6-dichloro-2-(2-hydroxyphenyl)isoindoline-1,3-dione top
Crystal data top
C14H7Cl2NO3F(000) = 624
Mr = 308.11Dx = 1.561 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 20050 reflections
a = 7.5993 (2) Åθ = 2.1–27.2°
b = 19.4088 (5) ŵ = 0.50 mm1
c = 9.5086 (3) ÅT = 296 K
β = 110.842 (2)°Prism, light yellow
V = 1310.68 (7) Å30.63 × 0.43 × 0.24 mm
Z = 4
Data collection top
Stoe IPDSII
diffractometer
2783 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2341 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.057
Detector resolution: 6.67 pixels mm-1θmax = 26.7°, θmin = 2.1°
w–scan rotation methodh = 99
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 2424
Tmin = 0.759, Tmax = 0.881l = 1212
20050 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0491P)2 + 0.2555P]
where P = (Fo2 + 2Fc2)/3
2783 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C14H7Cl2NO3V = 1310.68 (7) Å3
Mr = 308.11Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.5993 (2) ŵ = 0.50 mm1
b = 19.4088 (5) ÅT = 296 K
c = 9.5086 (3) Å0.63 × 0.43 × 0.24 mm
β = 110.842 (2)°
Data collection top
Stoe IPDSII
diffractometer
2783 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2341 reflections with I > 2σ(I)
Tmin = 0.759, Tmax = 0.881Rint = 0.057
20050 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.04Δρmax = 0.21 e Å3
2783 reflectionsΔρmin = 0.29 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.80274 (8)0.37446 (3)1.02115 (6)0.07009 (18)
Cl20.94040 (7)0.51106 (3)1.20351 (5)0.06418 (17)
O10.26937 (18)0.49684 (6)0.49490 (13)0.0517 (3)
O20.47116 (19)0.69592 (7)0.75853 (16)0.0587 (3)
O30.40599 (18)0.69007 (7)0.39975 (18)0.0624 (4)
H3A0.42090.72460.35540.094*
N10.33154 (18)0.60578 (7)0.60028 (15)0.0420 (3)
C10.3563 (2)0.53405 (8)0.59612 (17)0.0398 (3)
C20.5079 (2)0.51681 (8)0.74085 (17)0.0392 (3)
C30.5789 (2)0.45386 (9)0.79893 (18)0.0458 (4)
H30.53890.41350.74400.055*
C40.7133 (2)0.45279 (10)0.94342 (19)0.0471 (4)
C50.7747 (2)0.51343 (10)1.02414 (18)0.0480 (4)
C60.7042 (2)0.57666 (10)0.96318 (18)0.0482 (4)
H60.74630.61731.01620.058*
C70.5688 (2)0.57720 (9)0.82043 (17)0.0411 (3)
C80.4593 (2)0.63491 (9)0.73015 (19)0.0433 (4)
C90.1835 (2)0.64372 (8)0.49155 (18)0.0424 (4)
C100.2248 (2)0.68665 (9)0.3911 (2)0.0467 (4)
C110.0805 (3)0.72369 (10)0.2877 (2)0.0589 (5)
H110.10580.75220.21850.071*
C120.1002 (3)0.71844 (11)0.2873 (3)0.0682 (6)
H120.19620.74400.21870.082*
C130.1400 (3)0.67573 (12)0.3875 (3)0.0683 (6)
H130.26250.67240.38640.082*
C140.0020 (3)0.63797 (11)0.4894 (2)0.0562 (5)
H140.02470.60870.55650.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0715 (3)0.0663 (3)0.0640 (3)0.0148 (2)0.0136 (2)0.0208 (2)
Cl20.0489 (2)0.0998 (4)0.0362 (2)0.0005 (2)0.00566 (17)0.0018 (2)
O10.0567 (7)0.0453 (7)0.0417 (6)0.0052 (5)0.0037 (5)0.0066 (5)
O20.0618 (8)0.0423 (7)0.0678 (8)0.0033 (6)0.0181 (6)0.0142 (6)
O30.0524 (7)0.0550 (8)0.0860 (10)0.0091 (6)0.0323 (7)0.0242 (7)
N10.0434 (7)0.0367 (7)0.0412 (7)0.0020 (5)0.0095 (6)0.0002 (5)
C10.0419 (8)0.0395 (8)0.0372 (8)0.0037 (6)0.0131 (6)0.0015 (6)
C20.0397 (7)0.0433 (8)0.0339 (7)0.0042 (6)0.0122 (6)0.0022 (6)
C30.0488 (9)0.0427 (9)0.0434 (8)0.0011 (7)0.0134 (7)0.0002 (7)
C40.0448 (8)0.0557 (10)0.0418 (8)0.0044 (7)0.0165 (7)0.0089 (7)
C50.0398 (8)0.0694 (12)0.0341 (7)0.0010 (8)0.0122 (6)0.0010 (8)
C60.0443 (8)0.0584 (11)0.0391 (8)0.0062 (7)0.0114 (7)0.0101 (7)
C70.0399 (8)0.0443 (9)0.0388 (8)0.0035 (6)0.0136 (6)0.0057 (6)
C80.0420 (8)0.0426 (9)0.0453 (8)0.0053 (6)0.0155 (7)0.0073 (7)
C90.0401 (8)0.0377 (8)0.0450 (8)0.0004 (6)0.0096 (7)0.0021 (6)
C100.0447 (8)0.0387 (8)0.0551 (10)0.0038 (7)0.0160 (7)0.0014 (7)
C110.0621 (11)0.0437 (10)0.0633 (11)0.0079 (8)0.0129 (9)0.0098 (8)
C120.0504 (11)0.0565 (12)0.0786 (14)0.0129 (9)0.0007 (10)0.0018 (10)
C130.0374 (9)0.0718 (13)0.0878 (15)0.0009 (9)0.0126 (9)0.0096 (12)
C140.0462 (9)0.0581 (11)0.0640 (11)0.0077 (8)0.0191 (8)0.0053 (9)
Geometric parameters (Å, º) top
O3—H3A0.8200C8—O21.211 (2)
C1—O11.1967 (19)C8—N11.391 (2)
C1—N11.407 (2)C9—C141.376 (2)
C1—C21.485 (2)C9—C101.385 (2)
C2—C31.370 (2)C9—N11.431 (2)
C2—C71.382 (2)C10—O31.351 (2)
C3—C41.390 (2)C10—C111.385 (2)
C3—H30.9300C11—C121.375 (3)
C4—C51.392 (3)C11—H110.9300
C4—Cl11.7213 (18)C12—C131.375 (3)
C5—C61.381 (3)C12—H120.9300
C5—Cl21.7229 (17)C13—C141.377 (3)
C6—C71.381 (2)C13—H130.9300
C6—H60.9300C14—H140.9300
C7—C81.475 (2)
C10—O3—H3A109.5C6—C7—C8130.28 (15)
C8—N1—C1111.65 (13)C2—C7—C8108.41 (14)
C8—N1—C9123.59 (13)O2—C8—N1124.64 (16)
C1—N1—C9124.56 (13)O2—C8—C7129.15 (16)
O1—C1—N1125.34 (15)N1—C8—C7106.20 (13)
O1—C1—C2129.33 (15)C14—C9—C10120.68 (16)
N1—C1—C2105.33 (13)C14—C9—N1119.67 (16)
C3—C2—C7121.90 (15)C10—C9—N1119.64 (14)
C3—C2—C1129.71 (15)O3—C10—C11123.37 (17)
C7—C2—C1108.32 (14)O3—C10—C9117.63 (15)
C2—C3—C4117.19 (16)C11—C10—C9119.00 (16)
C2—C3—H3121.4C12—C11—C10120.09 (19)
C4—C3—H3121.4C12—C11—H11120.0
C3—C4—C5121.12 (16)C10—C11—H11120.0
C3—C4—Cl1118.46 (14)C13—C12—C11120.52 (18)
C5—C4—Cl1120.42 (13)C13—C12—H12119.7
C6—C5—C4121.06 (15)C11—C12—H12119.7
C6—C5—Cl2118.48 (14)C12—C13—C14119.85 (18)
C4—C5—Cl2120.46 (14)C12—C13—H13120.1
C7—C6—C5117.47 (16)C14—C13—H13120.1
C7—C6—H6121.3C9—C14—C13119.84 (19)
C5—C6—H6121.3C9—C14—H14120.1
C6—C7—C2121.24 (16)C13—C14—H14120.1
O1—C1—C2—C34.3 (3)C14—C9—C10—O3179.76 (17)
N1—C1—C2—C3175.38 (16)N1—C9—C10—O30.7 (2)
O1—C1—C2—C7178.66 (16)C14—C9—C10—C110.2 (3)
N1—C1—C2—C71.70 (17)N1—C9—C10—C11179.21 (16)
C7—C2—C3—C41.2 (2)O3—C10—C11—C12178.91 (19)
C1—C2—C3—C4175.57 (16)C9—C10—C11—C121.0 (3)
C2—C3—C4—C51.0 (3)C10—C11—C12—C131.0 (3)
C2—C3—C4—Cl1178.97 (12)C11—C12—C13—C140.1 (3)
C3—C4—C5—C60.0 (3)C10—C9—C14—C130.7 (3)
Cl1—C4—C5—C6179.98 (13)N1—C9—C14—C13178.34 (17)
C3—C4—C5—Cl2179.64 (13)C12—C13—C14—C90.7 (3)
Cl1—C4—C5—Cl20.3 (2)O2—C8—N1—C1177.64 (16)
C4—C5—C6—C70.9 (2)C7—C8—N1—C13.01 (17)
Cl2—C5—C6—C7178.74 (13)O2—C8—N1—C97.3 (3)
C5—C6—C7—C20.8 (2)C7—C8—N1—C9172.01 (14)
C5—C6—C7—C8175.66 (16)O1—C1—N1—C8177.39 (15)
C3—C2—C7—C60.3 (2)C2—C1—N1—C82.95 (17)
C1—C2—C7—C6177.09 (15)O1—C1—N1—C97.6 (3)
C3—C2—C7—C8177.42 (15)C2—C1—N1—C9172.02 (14)
C1—C2—C7—C80.07 (17)C14—C9—N1—C8102.12 (19)
C6—C7—C8—O24.3 (3)C10—C9—N1—C876.9 (2)
C2—C7—C8—O2178.86 (17)C14—C9—N1—C172.3 (2)
C6—C7—C8—N1174.99 (17)C10—C9—N1—C1108.70 (18)
C2—C7—C8—N11.84 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2i0.821.902.7235 (18)177
C3—H3···O3ii0.932.553.397 (2)152
C13—H13···O3iii0.932.593.505 (2)168
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1, z+1; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC14H7Cl2NO3
Mr308.11
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.5993 (2), 19.4088 (5), 9.5086 (3)
β (°) 110.842 (2)
V3)1310.68 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.50
Crystal size (mm)0.63 × 0.43 × 0.24
Data collection
DiffractometerStoe IPDSII
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.759, 0.881
No. of measured, independent and
observed [I > 2σ(I)] reflections
20050, 2783, 2341
Rint0.057
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.096, 1.04
No. of reflections2783
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.29

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2i0.821.902.7235 (18)176.6
C3—H3···O3ii0.932.553.397 (2)151.9
C13—H13···O3iii0.932.593.505 (2)167.9
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1, z+1; (iii) x1, y, z.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDSII diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAbdel-Hafez, A. A. M. (2004). Arch. Pharm. Res. 27, 495–501.  Web of Science PubMed CAS Google Scholar
First citationAntunes, R., Batista, H., Srivastava, R. M., Thomas, G., Araújo, C. C., Longo, R. L., Magalhães, H., Leão, M. B. C. & Pavão, A. C. (2003). J. Mol. Struct. 660, 1–13.  Web of Science CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCechinel, V., de Campos, F., Correa, R., Yunes, R. A. & Nunes, R. J. (2003). Quím. Nova, 26, 230–241.  Google Scholar
First citationChapman, J. M., Cocolas, G. H. & Hall, I. H. (1979). J. Med. Chem. 22, 1399–1402.  CrossRef CAS PubMed Web of Science Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHall, I. H., Reynolds, D. J., Wong, O. T., Oswald, C. B. & Murthy, A. R. K. (1987). Pharm. Res. 4, 472–479.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHall, I. H., Voorstad, P. J., Chapman, J. M. & Cocolas, G. H. (1983). J. Pharm. Sci. 72, 845–851.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSena, V. L. M., Srivastava, M. R., de Simone, C. A., da Cruz Gonçalves, S. M., Silva, R. O. & Pereira, M. A. (2007). J. Braz. Chem. Soc. 18, 1224–1234.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrivastava, R. M., Oliveira, F. J. S., da Silva, L. P., de Freitas Filho, J. R., Oliveira, S. P. & Lima, V. L. M. (2001). Carbohydr. Res. 332, 335–340.  Web of Science CrossRef PubMed CAS Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds