organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Methyl­piperazin-1-yl)isobenzo­furan-1(3H)-one

aDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey, and bDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey
*Correspondence e-mail: orhanb@omu.edu.tr

(Received 26 March 2008; accepted 26 March 2008; online 2 April 2008)

In the mol­ecule of the title compound, C13H16N2O2, the phthalide ring system is virtually planar, with a dihedral angle between the fused five- and six-membered rings of 1.17 (4)°. The methyl­piperazine ring adopts a chair conformation. In the crystal structure, inter­molecular C—H⋯O and C—H⋯N hydrogen bonds link the mol­ecules, generating edge-fused R33(17) ring motifs, to form a three-dimensional network.

Related literature

For a related structure, see: Odabaşoğlu & Büyükgüngör (2006[Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o1879-o1881.]). For ring motif details, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]). For ring conformation puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C13H16N2O2

  • Mr = 232.28

  • Monoclinic, P 21 /c

  • a = 13.1442 (7) Å

  • b = 6.0567 (4) Å

  • c = 15.7845 (10) Å

  • β = 104.022 (5)°

  • V = 1219.17 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.56 × 0.49 × 0.37 mm

Data collection
  • Stoe IPDSII diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.952, Tmax = 0.969

  • 14223 measured reflections

  • 2394 independent reflections

  • 1890 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.091

  • S = 1.04

  • 2394 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1i 0.98 2.69 3.6135 (18) 157
C10—H10A⋯N2ii 0.97 2.60 3.5315 (17) 160
Symmetry codes: (i) x, y-1, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The present work is part of a structural study of compounds of 3-substituted phthalides, and we report herein the structure of the title compound, (I).

In the molecule of (I), (Fig. 1), rings A (C2–C7) and B (C1/C2/C7/C8/O2) are, of course, planar. The dihedral angle between them is A/B = 1.17 (4)°. So, rings A and B are also nearly coplanar. Ring C (N1/N2/C9–C12) is not planar, having total puckering amplitude, QT, of 1.014 (3) Å. It adopts chair [ϕ = 29.44 (2)° and θ = 59.51 (3)°] conformation (Cremer & Pople, 1975).

In the crystal structure, intermolecular C—H···O and C—H···N hydrogen bonds (Table 1) link the molecules, generating edge-fused R33(17) (Fig. 2) ring motifs (Bernstein et al., 1995; Etter, 1990), to form a three-dimensional network, in which they may be effective in the stabilization of the structure.

Related literature top

For a related structure, see: Odabaşoğlu & Büyükgüngör (2006). For ring motif details, see: Bernstein et al. (1995); Etter (1990). For ring conformation puckering parameters, see: Cremer & Pople (1975).

Experimental top

The title compound was prepared according to the method described by Odabaşoğlu & Büyükgüngör (2006), using phthalaldehydic acid and 1-methylpiperazine as starting materials (yield; 85%). Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an ethanol–DMF (1:1) solution at room temperature.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93, 0.98, 0.97 and 0.96 Å for aromatic, methine, methylene and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram of (I), showing the formation of R33(17) ring motifs. Hydrogen bonds are shown as dashed lines [symmetry codes: (i) x, y + 1, z; (ii) 1 - x, 2 - y, 1/2 - z]. H atoms not involved in hydrogen bondings have been omitted for clarity.
3-(4-methylpiperazin-1-yl)isobenzofuran-1(3H)-one top
Crystal data top
C13H16N2O2F(000) = 496
Mr = 232.28Dx = 1.265 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 14223 reflections
a = 13.1442 (7) Åθ = 1.3–27.2°
b = 6.0567 (4) ŵ = 0.09 mm1
c = 15.7845 (10) ÅT = 296 K
β = 104.022 (5)°Prism, colourless
V = 1219.17 (13) Å30.56 × 0.49 × 0.37 mm
Z = 4
Data collection top
Stoe IPDSII
diffractometer
2394 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1890 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.035
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 1.6°
w–scan rotation methodh = 1616
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 77
Tmin = 0.952, Tmax = 0.969l = 1919
14223 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0465P)2 + 0.1087P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2394 reflectionsΔρmax = 0.14 e Å3
155 parametersΔρmin = 0.11 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.052 (3)
Crystal data top
C13H16N2O2V = 1219.17 (13) Å3
Mr = 232.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.1442 (7) ŵ = 0.09 mm1
b = 6.0567 (4) ÅT = 296 K
c = 15.7845 (10) Å0.56 × 0.49 × 0.37 mm
β = 104.022 (5)°
Data collection top
Stoe IPDSII
diffractometer
2394 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1890 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.969Rint = 0.035
14223 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.04Δρmax = 0.14 e Å3
2394 reflectionsΔρmin = 0.11 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.90768 (9)0.78386 (19)0.39052 (8)0.0726 (3)
O20.83029 (7)0.45298 (17)0.38597 (6)0.0573 (3)
N10.69300 (8)0.23856 (17)0.42651 (7)0.0465 (3)
N20.47776 (8)0.18458 (18)0.34023 (6)0.0468 (3)
C10.87740 (10)0.6335 (2)0.42833 (9)0.0536 (3)
C20.88098 (9)0.6114 (2)0.52149 (9)0.0500 (3)
C30.91995 (11)0.7553 (3)0.59001 (11)0.0616 (4)
H30.95120.88810.58100.074*
C40.91066 (11)0.6944 (3)0.67175 (11)0.0678 (4)
H40.93550.78800.71890.081*
C50.86475 (11)0.4955 (3)0.68471 (10)0.0656 (4)
H50.85970.45740.74060.079*
C60.82633 (10)0.3527 (3)0.61639 (9)0.0582 (4)
H60.79540.21940.62540.070*
C70.83528 (9)0.4141 (2)0.53414 (9)0.0479 (3)
C80.80023 (10)0.2952 (2)0.44870 (9)0.0502 (3)
H80.84190.16010.45090.060*
C90.66011 (11)0.0825 (2)0.35430 (9)0.0520 (3)
H9A0.70840.04120.36210.062*
H9B0.66080.15450.29950.062*
C100.55130 (11)0.0013 (2)0.35199 (9)0.0515 (3)
H10A0.52930.10290.30440.062*
H10B0.55150.07460.40610.062*
C110.51096 (10)0.3423 (2)0.41085 (9)0.0485 (3)
H11A0.50860.27290.46570.058*
H11B0.46290.46640.40170.058*
C120.62040 (10)0.4247 (2)0.41613 (9)0.0468 (3)
H12A0.62190.50540.36340.056*
H12B0.64170.52440.46530.056*
C130.37178 (12)0.1092 (3)0.33673 (11)0.0711 (5)
H13A0.32520.23360.32890.107*
H13B0.37060.03510.39030.107*
H13C0.34960.00890.28870.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0645 (7)0.0696 (7)0.0885 (8)0.0008 (5)0.0281 (6)0.0230 (6)
O20.0522 (5)0.0658 (6)0.0575 (6)0.0024 (5)0.0200 (4)0.0016 (5)
N10.0447 (6)0.0395 (6)0.0549 (6)0.0040 (5)0.0116 (5)0.0060 (5)
N20.0493 (6)0.0476 (6)0.0426 (6)0.0004 (5)0.0095 (4)0.0034 (5)
C10.0395 (7)0.0542 (8)0.0687 (9)0.0076 (6)0.0164 (6)0.0087 (7)
C20.0346 (6)0.0504 (8)0.0633 (8)0.0055 (6)0.0086 (6)0.0033 (6)
C30.0409 (7)0.0587 (9)0.0816 (10)0.0033 (6)0.0082 (7)0.0051 (8)
C40.0453 (8)0.0845 (12)0.0679 (10)0.0015 (8)0.0024 (7)0.0171 (9)
C50.0471 (8)0.0933 (12)0.0535 (8)0.0038 (8)0.0066 (6)0.0013 (8)
C60.0472 (8)0.0642 (9)0.0619 (8)0.0007 (7)0.0106 (6)0.0092 (7)
C70.0372 (6)0.0490 (8)0.0558 (8)0.0042 (6)0.0080 (5)0.0032 (6)
C80.0479 (7)0.0448 (7)0.0588 (8)0.0064 (6)0.0148 (6)0.0027 (6)
C90.0587 (8)0.0429 (7)0.0544 (8)0.0107 (6)0.0140 (6)0.0077 (6)
C100.0651 (8)0.0407 (7)0.0463 (7)0.0012 (6)0.0087 (6)0.0069 (6)
C110.0495 (7)0.0466 (7)0.0514 (7)0.0025 (6)0.0165 (6)0.0073 (6)
C120.0477 (7)0.0372 (7)0.0573 (8)0.0032 (6)0.0159 (6)0.0065 (6)
C130.0568 (9)0.0815 (11)0.0733 (10)0.0138 (8)0.0123 (7)0.0175 (9)
Geometric parameters (Å, º) top
C1—O11.2078 (17)C9—C101.504 (2)
C1—O21.3512 (17)C9—H9A0.9700
C1—C21.466 (2)C9—H9B0.9700
C2—C71.3740 (19)C10—N21.4537 (17)
C2—C31.387 (2)C10—H10A0.9700
C3—C41.375 (2)C10—H10B0.9700
C3—H30.9300C11—N21.4526 (16)
C4—C51.384 (2)C11—C121.5056 (18)
C4—H40.9300C11—H11A0.9700
C5—C61.379 (2)C11—H11B0.9700
C5—H50.9300C12—N11.4602 (16)
C6—C71.3826 (19)C12—H12A0.9700
C6—H60.9300C12—H12B0.9700
C7—C81.4995 (19)C13—N21.4543 (18)
C8—N11.4098 (17)C13—H13A0.9600
C8—O21.4966 (16)C13—H13B0.9600
C8—H80.9800C13—H13C0.9600
C9—N11.4629 (16)
C1—O2—C8110.62 (10)O2—C8—H8108.8
C8—N1—C12115.28 (10)C7—C8—H8108.8
C8—N1—C9116.08 (10)N1—C9—C10109.26 (10)
C12—N1—C9110.46 (10)N1—C9—H9A109.8
C11—N2—C10109.72 (10)C10—C9—H9A109.8
C11—N2—C13110.04 (11)N1—C9—H9B109.8
C10—N2—C13111.48 (12)C10—C9—H9B109.8
O1—C1—O2122.13 (14)H9A—C9—H9B108.3
O1—C1—C2129.07 (15)N2—C10—C9110.63 (11)
O2—C1—C2108.78 (12)N2—C10—H10A109.5
C7—C2—C3121.67 (14)C9—C10—H10A109.5
C7—C2—C1108.45 (12)N2—C10—H10B109.5
C3—C2—C1129.87 (14)C9—C10—H10B109.5
C4—C3—C2117.60 (15)H10A—C10—H10B108.1
C4—C3—H3121.2N2—C11—C12111.45 (10)
C2—C3—H3121.2N2—C11—H11A109.3
C3—C4—C5120.85 (15)C12—C11—H11A109.3
C3—C4—H4119.6N2—C11—H11B109.3
C5—C4—H4119.6C12—C11—H11B109.3
C6—C5—C4121.35 (14)H11A—C11—H11B108.0
C6—C5—H5119.3N1—C12—C11109.89 (10)
C4—C5—H5119.3N1—C12—H12A109.7
C5—C6—C7117.86 (14)C11—C12—H12A109.7
C5—C6—H6121.1N1—C12—H12B109.7
C7—C6—H6121.1C11—C12—H12B109.7
C2—C7—C6120.67 (13)H12A—C12—H12B108.2
C2—C7—C8109.69 (12)N2—C13—H13A109.5
C6—C7—C8129.64 (13)N2—C13—H13B109.5
N1—C8—O2113.53 (10)H13A—C13—H13B109.5
N1—C8—C7114.27 (11)N2—C13—H13C109.5
O2—C8—C7102.45 (10)H13A—C13—H13C109.5
N1—C8—H8108.8H13B—C13—H13C109.5
O1—C1—O2—C8179.48 (12)C2—C7—C8—O21.01 (13)
C2—C1—O2—C80.77 (13)C6—C7—C8—O2178.33 (12)
O1—C1—C2—C7178.69 (14)N1—C8—O2—C1124.81 (11)
O2—C1—C2—C70.10 (14)C7—C8—O2—C11.08 (13)
O1—C1—C2—C30.2 (2)O2—C8—N1—C1255.67 (14)
O2—C1—C2—C3178.84 (13)C7—C8—N1—C1261.34 (15)
C7—C2—C3—C40.5 (2)O2—C8—N1—C975.74 (14)
C1—C2—C3—C4178.35 (13)C7—C8—N1—C9167.25 (11)
C2—C3—C4—C50.5 (2)C10—C9—N1—C8167.50 (11)
C3—C4—C5—C60.4 (2)C10—C9—N1—C1258.87 (14)
C4—C5—C6—C70.1 (2)N1—C9—C10—N259.53 (14)
C3—C2—C7—C60.25 (19)C9—C10—N2—C1158.56 (13)
C1—C2—C7—C6178.80 (11)C9—C10—N2—C13179.29 (11)
C3—C2—C7—C8179.66 (12)C12—C11—N2—C1057.22 (14)
C1—C2—C7—C80.61 (14)C12—C11—N2—C13179.77 (12)
C5—C6—C7—C20.08 (19)N2—C11—C12—N156.78 (14)
C5—C6—C7—C8179.35 (13)C11—C12—N1—C8168.52 (10)
C2—C7—C8—N1124.24 (12)C11—C12—N1—C957.45 (14)
C6—C7—C8—N155.10 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.982.693.6135 (18)157
C10—H10A···N2ii0.972.603.5315 (17)160
Symmetry codes: (i) x, y1, z; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H16N2O2
Mr232.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.1442 (7), 6.0567 (4), 15.7845 (10)
β (°) 104.022 (5)
V3)1219.17 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.56 × 0.49 × 0.37
Data collection
DiffractometerStoe IPDSII
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.952, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
14223, 2394, 1890
Rint0.035
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.091, 1.04
No. of reflections2394
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.11

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.982.693.6135 (18)156.7
C10—H10A···N2ii0.972.603.5315 (17)160.4
Symmetry codes: (i) x, y1, z; (ii) x+1, y1/2, z+1/2.
 

Footnotes

3-Substituted phthalides. XXXVI.

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDSII diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationOdabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o1879–o1881.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds