organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2,4-Di­chloro­phen­yl)-3-[5-(4-meth­oxy­phen­yl)-1,3,4-thia­diazol-2-yl]-1,3-thia­zolidin-4-one

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
*Correspondence e-mail: rwan@njut.edu.cn

(Received 27 March 2008; accepted 29 March 2008; online 4 April 2008)

In the mol­ecule of the title compound, C18H13Cl2N3O2S2, the thia­zolidinone ring has an envelope conformation with the S atom displaced by 0.394 (3) Å from the plane of the other ring atoms. The thia­diazole ring is oriented at a dihedral angle of 7.40 (4)° with respect to the 4-methoxy­phenyl ring. Intra­molecular C—H⋯S, C—H⋯N and C—H⋯Cl hydrogen bonds result in the formation of two planar and two non-planar five-membered rings. The planar five-membered rings are oriented at a dihedral angle of 6.23 (3)°. The 2,4-dichloro­phenyl ring is oriented at dihedral angles of 84.21 (4) and 83.55 (3)° with respect to the thia­diazole and 4-methoxy­phenyl rings, respectively. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers.

Related literature

For general background, see: Chen et al. (2000[Chen, H. S., Li, Z. M. & Han, Y. F. (2000). J. Agric. Food Chem. 48, 5312-5315.]); Kidwai et al. (2000[Kidwai, M., Negi, N. & Misra, P. (2000). J. Indian Chem. Soc. 77, 46-48.]); Vicentini et al. (1998[Vicentini, C. B., Manfrini, M., Veronese, A. C. & Guarneri, M. (1998). J. Heterocycl. Chem. 35, 29-36.]); Arun et al. (1999[Arun, K. P., Nag, V. L. & Panda, C. S. (1999). Indian J. Chem. 38B, 998-1001.]); Wasfy et al. (1996[Wasfy, A. A., Nassar, S. A. & Eissa, A. M. (1996). Indian J. Chem. 35B, 1218-1220.]).

[Scheme 1]

Experimental

Crystal data
  • C18H13Cl2N3O2S2

  • Mr = 438.33

  • Triclinic, [P \overline 1]

  • a = 7.1310 (14) Å

  • b = 8.1540 (16) Å

  • c = 16.671 (3) Å

  • α = 93.19 (3)°

  • β = 96.43 (3)°

  • γ = 105.89 (3)°

  • V = 922.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.60 mm−1

  • T = 298 (2) K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.841, Tmax = 0.943

  • 3606 measured reflections

  • 3315 independent reflections

  • 2228 reflections with I > 2σ(I)

  • Rint = 0.084

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.211

  • S = 1.02

  • 3315 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯S1 0.93 2.79 3.180 (7) 106
C6—H6A⋯N1 0.93 2.55 2.856 (8) 100
C12—H12A⋯Cl2 0.98 2.63 3.063 (5) 107
C14—H14A⋯N3 0.93 2.54 2.863 (8) 101
C14—H14A⋯O1i 0.93 2.41 3.219 (7) 146
Symmetry code: (i) -x+2, -y+1, -z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,3,4-Thiadiazole derivatives containing the thiazolidinone unit are of great interest because of their chemical and pharmaceutical properties. Some derivatives have fungicidal activities and exhibit certain herbicidal activities (Chen et al., 2000; Kidwai et al., 2000; Vicentini et al., 1998). On the other hand, some of them show insecticidal activities (Arun et al., 1999; Wasfy et al., 1996). We report herein the crystal structure of the title compound, (I).

In the molecule of (I), (Fig. 1), rings A (C2-C7), B (S1/N1/N2/C8/C9) and D (C13-C18) are, of course, planar. The dihedral angles between them are A/B = 7.40 (4)°, A/D = 83.55 (3)° and B/D = 84.21 (4)°. So, rings A and B are nearly coplanar. Ring C (S2/N3/C10-C12) has envelope conformation with atom S2 displaced by 0.394 (3) Å from the plane of the other ring atoms. The intramolecular C-H···S, C-H···N and C-H···Cl hydrogen bonds (Table 1) result in the formation of two planar and two non-planar five-membered rings E (S1/C4/H4A/C5/C8), F (N1/C5/C6/H6A/C8) and G (N3/C12-C14/H14A), H (Cl2/C12/H12A/C13/C18). The dihedral angle between the planar rings E and F is E/F = 6.23 (3)°, and they are oriented with respect to the adjacent rings at dihedral angles of A/E = 3.26 (4)°, A/F = 4.55 (3)°, B/E = 5.03 (4)° and B/F = 7.27 (4)°. So, they are also nearly coplanar.

In the crystal structure, intermolecular C-H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For general background, see: Chen et al. (2000); Kidwai et al. (2000); Vicentini et al. (1998); Arun et al. (1999); Wasfy et al. (1996).

Experimental top

N-(2,4-dichlorobenzylidene)-5-(4-methoxyphenyl)-1,3,4-thiadiazol -2-amine (5 mmol) and mercapto-acetic acid (5 mmol) were added in toluene (50 ml). The water was removed by distillation for 5 h. The reaction mixture was left to cool to room temperature, filtered, and the filter cake was crystallized from acetone to give pure compound (I) (m.p. 507-509 K). Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an acetone solution.

Refinement top

H atoms were positioned geometrically, with C-H = 0.93, 0.98, 0.97 and 0.96 Å for aromatic, methine, methylene and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines
[Figure 2] Fig. 2. A partial packing diagram of (I). Hydrogen bonds are shown as dashed lines.
2-(2,4-Dichlorophenyl)-3-[5-(4-methoxyphenyl)-1,3,4-thiadiazol-2-yl]-1,3- thiazolidin-4-one top
Crystal data top
C18H13Cl2N3O2S2Z = 2
Mr = 438.33F(000) = 448
Triclinic, P1Dx = 1.578 Mg m3
Hall symbol: -P 1Melting point = 507–509 K
a = 7.1310 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.1540 (16) ÅCell parameters from 25 reflections
c = 16.671 (3) Åθ = 9–12°
α = 93.19 (3)°µ = 0.60 mm1
β = 96.43 (3)°T = 298 K
γ = 105.89 (3)°Block, colorless
V = 922.7 (3) Å30.30 × 0.10 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2228 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.084
Graphite monochromatorθmax = 25.2°, θmin = 1.2°
ω/2θ scansh = 08
Absorption correction: ψ scan
(North et al., 1968)
k = 99
Tmin = 0.841, Tmax = 0.943l = 1919
3606 measured reflections3 standard reflections every 200 reflections
3315 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.211H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1P)2 + 2P]
where P = (Fo2 + 2Fc2)/3
3315 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
C18H13Cl2N3O2S2γ = 105.89 (3)°
Mr = 438.33V = 922.7 (3) Å3
Triclinic, P1Z = 2
a = 7.1310 (14) ÅMo Kα radiation
b = 8.1540 (16) ŵ = 0.60 mm1
c = 16.671 (3) ÅT = 298 K
α = 93.19 (3)°0.30 × 0.10 × 0.10 mm
β = 96.43 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2228 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.084
Tmin = 0.841, Tmax = 0.9433 standard reflections every 200 reflections
3606 measured reflections intensity decay: none
3315 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.211H-atom parameters constrained
S = 1.02Δρmax = 0.47 e Å3
3315 reflectionsΔρmin = 0.61 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.3375 (3)0.6645 (2)0.50289 (13)0.0801 (6)
Cl21.1228 (2)1.20318 (19)0.40205 (10)0.0606 (5)
S10.78625 (18)0.7174 (2)0.06058 (9)0.0492 (4)
S20.5812 (2)0.9562 (2)0.33166 (11)0.0659 (5)
O11.3277 (6)0.6538 (6)0.2389 (2)0.0616 (11)
O20.4564 (5)0.6490 (6)0.1380 (3)0.0653 (12)
N11.1375 (6)0.9039 (7)0.1050 (3)0.0535 (13)
N21.0345 (6)0.9262 (7)0.1690 (3)0.0557 (13)
N30.7229 (6)0.8433 (6)0.2094 (3)0.0488 (12)
C11.5346 (9)0.7003 (9)0.2423 (4)0.0677 (18)
H1B1.55860.66720.29550.102*
H1C1.59620.64310.20300.102*
H1D1.58800.82200.23060.102*
C21.2658 (8)0.6915 (7)0.1674 (3)0.0481 (13)
C31.0653 (8)0.6308 (9)0.1639 (4)0.0606 (17)
H3A0.98260.56750.20880.073*
C40.9884 (8)0.6632 (8)0.0956 (4)0.0556 (16)
H4A0.85380.62030.09440.067*
C51.1052 (7)0.7578 (7)0.0282 (3)0.0444 (13)
C61.3061 (8)0.8127 (8)0.0323 (4)0.0561 (16)
H6A1.39000.87210.01310.067*
C71.3842 (8)0.7822 (8)0.1009 (4)0.0556 (16)
H7A1.51890.82370.10210.067*
C81.0288 (7)0.8015 (7)0.0450 (3)0.0451 (13)
C90.8518 (7)0.8390 (7)0.1524 (3)0.0457 (13)
C100.5300 (7)0.7452 (8)0.1973 (4)0.0491 (14)
C110.4280 (9)0.7736 (9)0.2684 (4)0.0670 (18)
H11A0.40380.67340.29870.080*
H11B0.30250.79280.24990.080*
C120.7992 (7)0.9486 (7)0.2846 (3)0.0463 (13)
H12A0.86931.06430.27310.056*
C130.9363 (7)0.8774 (7)0.3396 (3)0.0414 (12)
C140.9118 (8)0.7054 (7)0.3390 (4)0.0501 (14)
H14A0.80990.63220.30330.060*
C151.0296 (8)0.6354 (7)0.3883 (4)0.0518 (14)
H15A1.00950.51750.38650.062*
C161.1798 (8)0.7468 (8)0.4411 (3)0.0473 (13)
C171.2064 (7)0.9194 (7)0.4448 (3)0.0464 (13)
H17A1.30640.99270.48130.056*
C181.0853 (7)0.9832 (7)0.3946 (3)0.0425 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0617 (10)0.0839 (13)0.0961 (14)0.0270 (9)0.0084 (9)0.0253 (10)
Cl20.0494 (8)0.0463 (8)0.0828 (11)0.0091 (6)0.0096 (7)0.0025 (7)
S10.0242 (6)0.0653 (10)0.0511 (9)0.0018 (6)0.0043 (6)0.0040 (7)
S20.0417 (8)0.0898 (13)0.0728 (11)0.0289 (8)0.0138 (8)0.0028 (9)
O10.044 (2)0.072 (3)0.058 (3)0.001 (2)0.0138 (19)0.011 (2)
O20.028 (2)0.088 (3)0.068 (3)0.001 (2)0.0030 (19)0.002 (3)
N10.028 (2)0.076 (3)0.051 (3)0.004 (2)0.011 (2)0.005 (2)
N20.030 (2)0.075 (3)0.054 (3)0.002 (2)0.008 (2)0.003 (3)
N30.026 (2)0.072 (3)0.049 (3)0.012 (2)0.012 (2)0.007 (2)
C10.045 (3)0.090 (5)0.071 (4)0.018 (3)0.026 (3)0.002 (4)
C20.038 (3)0.049 (3)0.053 (3)0.004 (2)0.009 (3)0.006 (3)
C30.033 (3)0.084 (5)0.053 (4)0.004 (3)0.000 (3)0.010 (3)
C40.025 (3)0.076 (4)0.057 (4)0.003 (3)0.001 (2)0.002 (3)
C50.029 (3)0.048 (3)0.052 (3)0.003 (2)0.004 (2)0.005 (3)
C60.027 (3)0.076 (4)0.050 (3)0.005 (3)0.001 (2)0.009 (3)
C70.029 (3)0.075 (4)0.055 (4)0.001 (3)0.009 (3)0.001 (3)
C80.025 (2)0.052 (3)0.056 (3)0.004 (2)0.007 (2)0.011 (3)
C90.030 (3)0.056 (3)0.052 (3)0.012 (2)0.007 (2)0.011 (3)
C100.025 (3)0.061 (4)0.062 (4)0.010 (2)0.008 (3)0.012 (3)
C110.039 (3)0.092 (5)0.072 (4)0.018 (3)0.020 (3)0.008 (4)
C120.034 (3)0.054 (3)0.054 (3)0.015 (2)0.010 (2)0.006 (3)
C130.028 (2)0.048 (3)0.049 (3)0.011 (2)0.011 (2)0.000 (2)
C140.037 (3)0.052 (3)0.058 (4)0.009 (3)0.005 (3)0.003 (3)
C150.041 (3)0.043 (3)0.071 (4)0.011 (3)0.014 (3)0.004 (3)
C160.035 (3)0.058 (4)0.053 (3)0.016 (3)0.010 (2)0.011 (3)
C170.028 (3)0.057 (4)0.050 (3)0.006 (2)0.006 (2)0.000 (3)
C180.034 (3)0.042 (3)0.054 (3)0.010 (2)0.019 (2)0.003 (2)
Geometric parameters (Å, º) top
S1—C91.721 (6)C4—C51.375 (8)
S1—C81.732 (5)C4—H4A0.9300
Cl1—C161.734 (6)C5—C61.390 (7)
O1—C21.366 (7)C5—C81.456 (8)
O1—C11.427 (7)C6—C71.366 (8)
N1—C81.295 (7)C6—H6A0.9300
N1—N21.393 (6)C7—H7A0.9300
C1—H1B0.9600C10—C111.498 (8)
C1—H1C0.9600C11—H11A0.9700
C1—H1D0.9600C11—H11B0.9700
Cl2—C181.735 (5)C12—C131.517 (7)
S2—C111.788 (7)C12—H12A0.9800
S2—C121.832 (5)C13—C141.364 (8)
O2—C101.200 (7)C13—C181.381 (7)
C2—C71.358 (8)C14—C151.367 (8)
C2—C31.388 (7)C14—H14A0.9300
N2—C91.292 (7)C15—C161.383 (8)
N3—C101.375 (7)C15—H15A0.9300
N3—C91.399 (7)C16—C171.365 (8)
N3—C121.441 (7)C17—C181.360 (8)
C3—C41.362 (8)C17—H17A0.9300
C3—H3A0.9300
C9—S1—C886.0 (3)N2—C9—S1116.2 (4)
C2—O1—C1117.6 (5)N3—C9—S1124.3 (4)
C8—N1—N2113.1 (4)O2—C10—N3124.0 (5)
O1—C1—H1B109.5O2—C10—C11125.4 (5)
O1—C1—H1C109.5N3—C10—C11110.6 (5)
H1B—C1—H1C109.5C10—C11—S2108.7 (4)
O1—C1—H1D109.5C10—C11—H11A110.0
H1B—C1—H1D109.5S2—C11—H11A110.0
H1C—C1—H1D109.5C10—C11—H11B110.0
C11—S2—C1292.5 (3)S2—C11—H11B110.0
C7—C2—O1125.2 (5)H11A—C11—H11B108.3
C7—C2—C3118.7 (5)N3—C12—C13112.7 (4)
O1—C2—C3116.1 (5)N3—C12—S2104.8 (3)
C9—N2—N1110.6 (5)C13—C12—S2111.2 (4)
C10—N3—C9122.2 (5)N3—C12—H12A109.3
C10—N3—C12119.5 (4)C13—C12—H12A109.3
C9—N3—C12118.3 (4)S2—C12—H12A109.3
C4—C3—C2120.7 (5)C14—C13—C18117.3 (5)
C4—C3—H3A119.7C14—C13—C12121.2 (5)
C2—C3—H3A119.7C18—C13—C12121.5 (5)
C3—C4—C5121.5 (5)C13—C14—C15123.3 (5)
C3—C4—H4A119.2C13—C14—H14A118.4
C5—C4—H4A119.2C15—C14—H14A118.4
C4—C5—C6116.7 (5)C14—C15—C16117.3 (5)
C4—C5—C8123.5 (5)C14—C15—H15A121.4
C6—C5—C8119.8 (5)C16—C15—H15A121.4
C7—C6—C5122.1 (5)C17—C16—C15121.2 (5)
C7—C6—H6A119.0C17—C16—Cl1119.7 (4)
C5—C6—H6A119.0C15—C16—Cl1119.0 (5)
C2—C7—C6120.2 (5)C18—C17—C16119.4 (5)
C2—C7—H7A119.9C18—C17—H17A120.3
C6—C7—H7A119.9C16—C17—H17A120.3
N1—C8—C5122.9 (4)C17—C18—C13121.5 (5)
N1—C8—S1114.1 (4)C17—C18—Cl2117.8 (4)
C5—C8—S1123.0 (4)C13—C18—Cl2120.6 (4)
N2—C9—N3119.5 (5)
C1—O1—C2—C75.7 (9)C12—N3—C10—O2177.0 (6)
C1—O1—C2—C3174.3 (6)C9—N3—C10—C11179.2 (5)
C8—N1—N2—C90.6 (7)C12—N3—C10—C112.1 (7)
C7—C2—C3—C40.7 (10)O2—C10—C11—S2169.0 (5)
O1—C2—C3—C4179.3 (6)N3—C10—C11—S212.0 (7)
C2—C3—C4—C50.6 (10)C12—S2—C11—C1017.2 (5)
C3—C4—C5—C62.5 (9)C10—N3—C12—C13106.6 (5)
C3—C4—C5—C8177.4 (6)C9—N3—C12—C1370.6 (6)
C4—C5—C6—C73.2 (10)C10—N3—C12—S214.5 (6)
C8—C5—C6—C7176.8 (6)C9—N3—C12—S2168.3 (4)
O1—C2—C7—C6179.9 (6)C11—S2—C12—N317.6 (4)
C3—C2—C7—C60.1 (10)C11—S2—C12—C13104.5 (4)
C5—C6—C7—C21.9 (10)N3—C12—C13—C1431.0 (7)
N2—N1—C8—C5179.4 (5)S2—C12—C13—C1486.3 (6)
N2—N1—C8—S10.9 (7)N3—C12—C13—C18151.9 (5)
C4—C5—C8—N1173.3 (6)S2—C12—C13—C1890.8 (5)
C6—C5—C8—N16.6 (9)C18—C13—C14—C151.7 (8)
C4—C5—C8—S18.3 (8)C12—C13—C14—C15178.9 (5)
C6—C5—C8—S1171.8 (5)C13—C14—C15—C160.1 (9)
C9—S1—C8—N11.5 (5)C14—C15—C16—C171.4 (8)
C9—S1—C8—C5179.9 (5)C14—C15—C16—Cl1178.2 (4)
N1—N2—C9—N3179.6 (5)C15—C16—C17—C181.3 (8)
N1—N2—C9—S11.8 (7)Cl1—C16—C17—C18178.3 (4)
C10—N3—C9—N2175.9 (5)C16—C17—C18—C130.3 (8)
C12—N3—C9—N21.1 (8)C16—C17—C18—Cl2179.4 (4)
C10—N3—C9—S11.7 (8)C14—C13—C18—C171.7 (8)
C12—N3—C9—S1178.7 (4)C12—C13—C18—C17179.0 (5)
C8—S1—C9—N21.9 (5)C14—C13—C18—Cl2178.0 (4)
C8—S1—C9—N3179.6 (5)C12—C13—C18—Cl20.7 (7)
C9—N3—C10—O20.1 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···S10.932.793.180 (7)106
C6—H6A···N10.932.552.856 (8)100
C12—H12A···Cl20.982.633.063 (5)107
C14—H14A···N30.932.542.863 (8)101
C14—H14A···O1i0.932.413.219 (7)146
Symmetry code: (i) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H13Cl2N3O2S2
Mr438.33
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.1310 (14), 8.1540 (16), 16.671 (3)
α, β, γ (°)93.19 (3), 96.43 (3), 105.89 (3)
V3)922.7 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.60
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.841, 0.943
No. of measured, independent and
observed [I > 2σ(I)] reflections
3606, 3315, 2228
Rint0.084
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.211, 1.02
No. of reflections3315
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.61

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···S10.932.793.180 (7)106
C6—H6A···N10.932.552.856 (8)100
C12—H12A···Cl20.982.633.063 (5)107
C14—H14A···N30.932.542.863 (8)101
C14—H14A···O1i0.932.413.219 (7)146
Symmetry code: (i) x+2, y+1, z.
 

Acknowledgements

The authors thank Professor Hua-Qin Wang of Nanjing University for carrying out the X-ray crystallographic analysis.

References

First citationArun, K. P., Nag, V. L. & Panda, C. S. (1999). Indian J. Chem. 38B, 998–1001.  Google Scholar
First citationChen, H. S., Li, Z. M. & Han, Y. F. (2000). J. Agric. Food Chem. 48, 5312–5315.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKidwai, M., Negi, N. & Misra, P. (2000). J. Indian Chem. Soc. 77, 46–48.  CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVicentini, C. B., Manfrini, M., Veronese, A. C. & Guarneri, M. (1998). J. Heterocycl. Chem. 35, 29–36.  CrossRef CAS Google Scholar
First citationWasfy, A. A., Nassar, S. A. & Eissa, A. M. (1996). Indian J. Chem. 35B, 1218–1220.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds