metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-4-(4-chloro­phen­yl)-6-ferro­cenylpyridine-3-carbo­nitrile

aDepartment of Public Health, Xuzhou Medical College, Xuzhou 221000, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Xuzhou Normal University, Xuzhou 221116, People's Republic of China
*Correspondence e-mail: laotu2001@263.net

(Received 28 March 2008; accepted 1 April 2008; online 26 April 2008)

In the mol­ecule of the title compound, [Fe(C5H5)(C17H11ClN3)], the dihedral angles between the two five–membered rings and between the two six-membered rings are 3.28 (4) and 51.33 (4)°, respectively. In the crystal structure, inter­molecular N—H⋯N hydrogen bonds link the mol­ecules into centrosymmetric dimers.

Related literature

For general background, see: Dombrowski et al. (1986[Dombrowski, K. E., Baldwin, W. & Sheats, J. E. (1986). J. Organomet. Chem. 302, 281-306.]); Alyoubi (2000[Alyoubi, A. O. (2000). Spectrochim. Acta Part A, 56, 2397-2404.]); Desai & Shah (2003[Desai, J. M. & Shah, V. H. (2003). Indian J. Chem. Sect. B, 42, 382-385.]); Murata et al. (2004[Murata, T., Shimada, M., Sakakibara, S., Yoshino, T., Masuda, T., Shintani, T., Sato, H., Koriyama, Y., Fukushima, K., Nunami, N., Yamauchi, M., Fuchikami, K., Komura, H., Watanabe, A., Ziegelbauer, K. B., Bacon, K. B. & Lowinger, T. B. (2004). Bioorg. Med. Chem. Lett. 14, 4019-4022.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C17H11ClN3)]

  • Mr = 413.68

  • Monoclinic, P 21 /n

  • a = 12.1517 (13) Å

  • b = 7.4214 (11) Å

  • c = 20.742 (2) Å

  • β = 97.691 (2)°

  • V = 1853.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.97 mm−1

  • T = 298 (2) K

  • 0.20 × 0.15 × 0.09 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.830, Tmax = 0.918

  • 8876 measured reflections

  • 3260 independent reflections

  • 2298 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.093

  • S = 1.09

  • 3260 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯N3i 0.86 2.28 3.047 (5) 149
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metallocenes are known to exhibit a wide range of biological activity. Among them, ferrocene has attracted special attention since it is neutral, chemically stable, non-toxic and able to cross cell membranes (Dombrowski et al., 1986). In fact, it is now well established that the incorporation of ferrocene units into organic molecules introduces significant and new properties in these materials. In addition, it has been demonstrated that molecules containing cyanopyridine moiety may be able to work as ligands towards transition-metal ions (Alyoubi, 2000), new drugs (Murata et al., 2004; Desai & Shah, 2003) and significant intermediates for the synthesis of important vitamins such as nicotinic acids and nicotinamides. For these reasons, the synthesis of new compounds containing cyanopyridine derivatives is strongly desired. We report herein the crystal structure of the title compound, (I).

In the molecule of (I), (Fig. 1), rings A (N1/C1-C5), B (C17-C22), C (C6-C10) and D (C11-C15) are, of course, planar. The dihedral angles between them are A/B = 51.33 (4)°, A/C = 13.20 (3)°, A/D = 16.32 (4)°, B/C = 46.38 (3)°, B/D= 44.47 (3)° and C/D = 3.28 (4)°. So, rings C and D are nearly paralllel to each other.

In the crystal structure, intermolecular N-H···N hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For general background, see: Dombrowski et al. (1986); Alyoubi (2000); Desai & Shah (2003); Murata et al. (2004).

Experimental top

Compound (I) was prepared by the reaction of 4-chlorobenzaldehyde (2 mmol), malononitrile (2 mmol), acetylferrocene (2 mmol) and ammonium acetate (4 mmol) in water (2 ml). Single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an aqueous ethanol solution (95%) (yield; 95%, m.p. 548-550 K). IR (cm-1): 3457, 3354, 2211; 1H NMR (DMSO-d6): 4.10 (5H, s, ferrocenyl), 4.50 (2H, s, ferrocenyl), 5.04 (2H, s, ferrocenyl), 6.81 (2H, brs, NH2), 6.95 (1H, s, ArH), 7.64 (2H, d, J = 8.4 Hz, ArH), 7.68 (2H, d, J = 8.4 Hz, ArH).7.87 (2H, brs, NH2), 7.88–8.01 (4H, m, ArH), 11.85 (1H, s, NH).

Refinement top

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH2) and C-H = 0.93 Å for aromatic H,and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram of (I). Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity.
2-Amino-4-(4-chlorophenyl)-6-ferrocenylpyridine-3-carbonitrile top
Crystal data top
[Fe(C5H5)(C17H11ClN3)]F(000) = 848
Mr = 413.68Dx = 1.482 Mg m3
Monoclinic, P21/nMelting point = 548–550 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 12.1517 (13) ÅCell parameters from 2405 reflections
b = 7.4214 (11) Åθ = 2.9–26.2°
c = 20.742 (2) ŵ = 0.97 mm1
β = 97.691 (2)°T = 298 K
V = 1853.7 (4) Å3Block, red
Z = 40.20 × 0.15 × 0.09 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3260 independent reflections
Radiation source: fine-focus sealed tube2298 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.830, Tmax = 0.918k = 86
8876 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0178P)2 + 2.3504P]
where P = (Fo2 + 2Fc2)/3
3260 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Fe(C5H5)(C17H11ClN3)]V = 1853.7 (4) Å3
Mr = 413.68Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.1517 (13) ŵ = 0.97 mm1
b = 7.4214 (11) ÅT = 298 K
c = 20.742 (2) Å0.20 × 0.15 × 0.09 mm
β = 97.691 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3260 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2298 reflections with I > 2σ(I)
Tmin = 0.830, Tmax = 0.918Rint = 0.041
8876 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.09Δρmax = 0.44 e Å3
3260 reflectionsΔρmin = 0.43 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.38223 (4)0.42499 (7)0.10732 (3)0.03424 (16)
Cl10.81792 (10)1.44271 (17)0.38672 (6)0.0694 (4)
N10.3585 (2)0.5432 (4)0.27711 (13)0.0335 (7)
N20.3644 (2)0.4443 (4)0.38140 (14)0.0450 (8)
H2A0.31540.36490.36720.054*
H2B0.38920.44910.42220.054*
N30.5500 (3)0.6983 (5)0.48341 (17)0.0652 (12)
C10.4019 (3)0.5604 (5)0.33992 (16)0.0321 (8)
C20.4807 (3)0.6949 (5)0.36089 (16)0.0301 (8)
C30.5168 (3)0.8132 (5)0.31540 (17)0.0307 (8)
C40.4739 (3)0.7885 (5)0.25086 (17)0.0309 (8)
H40.49770.86130.21890.037*
C50.3950 (3)0.6543 (5)0.23368 (16)0.0292 (8)
C60.3441 (3)0.6283 (5)0.16610 (16)0.0287 (8)
C70.3802 (3)0.6998 (5)0.10848 (18)0.0366 (9)
H70.44080.77550.10700.044*
C80.3080 (3)0.6355 (5)0.05402 (17)0.0396 (10)
H80.31250.66170.01060.048*
C90.2277 (3)0.5243 (5)0.07769 (17)0.0390 (10)
H90.17010.46480.05230.047*
C100.2493 (3)0.5186 (5)0.14592 (17)0.0345 (9)
H100.20880.45430.17320.041*
C110.5039 (4)0.2760 (6)0.1590 (2)0.0615 (13)
H110.53850.30050.20080.074*
C120.5390 (3)0.3359 (6)0.1002 (2)0.0582 (13)
H120.60030.40810.09640.070*
C130.4640 (4)0.2662 (6)0.0484 (2)0.0562 (12)
H130.46720.28350.00420.067*
C140.3841 (4)0.1665 (6)0.0753 (3)0.0594 (13)
H140.32490.10570.05190.071*
C150.4071 (4)0.1726 (6)0.1426 (3)0.0648 (14)
H150.36580.11780.17170.078*
C160.5217 (3)0.7025 (5)0.42883 (19)0.0409 (10)
C170.5934 (3)0.9656 (5)0.33533 (17)0.0308 (8)
C180.5737 (3)1.0847 (6)0.38359 (19)0.0469 (10)
H180.51271.06630.40550.056*
C190.6424 (3)1.2308 (6)0.4002 (2)0.0489 (11)
H190.62761.30990.43280.059*
C200.7325 (3)1.2576 (5)0.36813 (19)0.0429 (10)
C210.7559 (3)1.1393 (6)0.3206 (2)0.0487 (11)
H210.81821.15670.29980.058*
C220.6861 (3)0.9946 (6)0.30423 (19)0.0450 (10)
H220.70150.91550.27180.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0363 (3)0.0281 (3)0.0382 (3)0.0077 (3)0.0046 (2)0.0010 (3)
Cl10.0680 (7)0.0544 (8)0.0859 (9)0.0359 (6)0.0103 (6)0.0084 (7)
N10.0387 (16)0.0311 (18)0.0301 (15)0.0057 (15)0.0022 (13)0.0036 (15)
N20.0533 (19)0.049 (2)0.0304 (16)0.0262 (18)0.0027 (14)0.0062 (18)
N30.085 (3)0.067 (3)0.039 (2)0.033 (2)0.0095 (19)0.010 (2)
C10.0330 (18)0.033 (2)0.0308 (19)0.0026 (18)0.0045 (15)0.0014 (19)
C20.0306 (19)0.029 (2)0.0293 (19)0.0047 (16)0.0005 (16)0.0001 (17)
C30.0280 (18)0.027 (2)0.038 (2)0.0002 (16)0.0048 (16)0.0007 (17)
C40.0320 (19)0.029 (2)0.032 (2)0.0036 (16)0.0054 (16)0.0039 (17)
C50.0295 (18)0.0260 (19)0.0326 (19)0.0050 (16)0.0056 (16)0.0004 (17)
C60.0323 (19)0.027 (2)0.0264 (18)0.0038 (16)0.0022 (15)0.0028 (16)
C70.042 (2)0.026 (2)0.042 (2)0.0062 (19)0.0067 (18)0.006 (2)
C80.050 (2)0.042 (2)0.0275 (19)0.011 (2)0.0043 (18)0.0011 (19)
C90.039 (2)0.040 (2)0.036 (2)0.0075 (18)0.0011 (17)0.0050 (19)
C100.0318 (19)0.035 (2)0.036 (2)0.0041 (17)0.0018 (16)0.0006 (18)
C110.065 (3)0.054 (3)0.061 (3)0.031 (3)0.008 (3)0.001 (3)
C120.039 (2)0.052 (3)0.084 (4)0.018 (2)0.006 (2)0.009 (3)
C130.058 (3)0.049 (3)0.064 (3)0.014 (2)0.017 (2)0.017 (3)
C140.065 (3)0.033 (3)0.079 (4)0.007 (2)0.006 (3)0.011 (3)
C150.075 (3)0.038 (3)0.083 (4)0.017 (3)0.017 (3)0.015 (3)
C160.048 (2)0.036 (2)0.037 (2)0.0157 (19)0.0013 (19)0.006 (2)
C170.0309 (18)0.026 (2)0.0358 (19)0.0052 (16)0.0041 (15)0.0030 (17)
C180.043 (2)0.044 (2)0.057 (3)0.014 (2)0.0189 (19)0.012 (2)
C190.053 (3)0.040 (2)0.056 (3)0.011 (2)0.013 (2)0.012 (2)
C200.043 (2)0.039 (2)0.046 (2)0.014 (2)0.0060 (19)0.000 (2)
C210.041 (2)0.049 (3)0.060 (3)0.013 (2)0.019 (2)0.002 (2)
C220.045 (2)0.045 (2)0.046 (2)0.008 (2)0.0123 (19)0.004 (2)
Geometric parameters (Å, º) top
Fe1—C152.019 (5)C7—C81.417 (5)
Fe1—C102.020 (3)C7—H70.9300
Fe1—C142.031 (4)C8—C91.415 (5)
Fe1—C62.032 (3)C8—H80.9300
Fe1—C112.033 (4)C9—C101.405 (5)
Fe1—C92.034 (4)C9—H90.9300
Fe1—C72.040 (4)C10—H100.9300
Fe1—C122.040 (4)C11—C151.408 (6)
Fe1—C132.048 (4)C11—C121.415 (6)
Fe1—C82.052 (4)C11—H110.9300
Cl1—C201.734 (4)C12—C131.412 (6)
N1—C51.339 (4)C12—H120.9300
N1—C11.344 (4)C13—C141.395 (6)
N2—C11.340 (4)C13—H130.9300
N2—H2A0.8600C14—C151.385 (6)
N2—H2B0.8600C14—H140.9300
N3—C161.139 (4)C15—H150.9300
C1—C21.411 (5)C17—C181.380 (5)
C2—C31.401 (5)C17—C221.388 (5)
C2—C161.432 (5)C18—C191.384 (5)
C3—C41.382 (5)C18—H180.9300
C3—C171.488 (5)C19—C201.369 (5)
C4—C51.396 (5)C19—H190.9300
C4—H40.9300C20—C211.377 (5)
C5—C61.467 (4)C21—C221.383 (5)
C6—C101.426 (5)C21—H210.9300
C6—C71.429 (5)C22—H220.9300
C15—Fe1—C10105.34 (18)C6—C7—Fe169.2 (2)
C15—Fe1—C1440.01 (18)C8—C7—H7125.8
C10—Fe1—C14119.93 (18)C6—C7—H7125.8
C15—Fe1—C6120.45 (18)Fe1—C7—H7126.4
C10—Fe1—C641.22 (13)C9—C8—C7107.6 (3)
C14—Fe1—C6155.60 (18)C9—C8—Fe169.1 (2)
C15—Fe1—C1140.67 (18)C7—C8—Fe169.3 (2)
C10—Fe1—C11122.83 (18)C9—C8—H8126.2
C14—Fe1—C1167.62 (19)C7—C8—H8126.2
C6—Fe1—C11107.21 (16)Fe1—C8—H8127.0
C15—Fe1—C9122.21 (19)C10—C9—C8108.8 (3)
C10—Fe1—C940.55 (13)C10—C9—Fe169.2 (2)
C14—Fe1—C9107.10 (17)C8—C9—Fe170.4 (2)
C6—Fe1—C968.69 (14)C10—C9—H9125.6
C11—Fe1—C9158.94 (19)C8—C9—H9125.6
C15—Fe1—C7157.7 (2)Fe1—C9—H9126.4
C10—Fe1—C768.88 (15)C9—C10—C6108.3 (3)
C14—Fe1—C7161.62 (19)C9—C10—Fe170.3 (2)
C6—Fe1—C741.10 (13)C6—C10—Fe169.86 (19)
C11—Fe1—C7123.14 (18)C9—C10—H10125.9
C9—Fe1—C768.23 (15)C6—C10—H10125.9
C15—Fe1—C1268.25 (19)Fe1—C10—H10125.6
C10—Fe1—C12160.75 (17)C15—C11—C12107.5 (4)
C14—Fe1—C1267.58 (19)C15—C11—Fe169.1 (2)
C6—Fe1—C12125.06 (16)C12—C11—Fe169.9 (2)
C11—Fe1—C1240.67 (17)C15—C11—H11126.2
C9—Fe1—C12158.22 (17)C12—C11—H11126.2
C7—Fe1—C12109.75 (18)Fe1—C11—H11126.3
C15—Fe1—C1367.7 (2)C13—C12—C11107.6 (4)
C10—Fe1—C13155.78 (16)C13—C12—Fe170.1 (2)
C14—Fe1—C1340.00 (17)C11—C12—Fe169.4 (2)
C6—Fe1—C13162.41 (16)C13—C12—H12126.2
C11—Fe1—C1367.98 (19)C11—C12—H12126.2
C9—Fe1—C13122.00 (16)Fe1—C12—H12125.9
C7—Fe1—C13126.16 (18)C14—C13—C12107.5 (4)
C12—Fe1—C1340.39 (16)C14—C13—Fe169.3 (2)
C15—Fe1—C8159.28 (19)C12—C13—Fe169.5 (2)
C10—Fe1—C868.55 (15)C14—C13—H13126.2
C14—Fe1—C8124.52 (18)C12—C13—H13126.2
C6—Fe1—C868.82 (13)Fe1—C13—H13126.5
C11—Fe1—C8159.14 (19)C15—C14—C13109.2 (5)
C9—Fe1—C840.52 (14)C15—C14—Fe169.5 (3)
C7—Fe1—C840.53 (14)C13—C14—Fe170.7 (3)
C12—Fe1—C8123.74 (18)C15—C14—H14125.4
C13—Fe1—C8109.26 (17)C13—C14—H14125.4
C5—N1—C1118.1 (3)Fe1—C14—H14126.0
C1—N2—H2A120.0C14—C15—C11108.1 (5)
C1—N2—H2B120.0C14—C15—Fe170.5 (3)
H2A—N2—H2B120.0C11—C15—Fe170.2 (3)
N2—C1—N1116.0 (3)C14—C15—H15126.0
N2—C1—C2122.2 (3)C11—C15—H15126.0
N1—C1—C2121.8 (3)Fe1—C15—H15125.0
C3—C2—C1119.8 (3)N3—C16—C2175.2 (4)
C3—C2—C16122.6 (3)C18—C17—C22117.9 (3)
C1—C2—C16117.6 (3)C18—C17—C3121.7 (3)
C4—C3—C2117.2 (3)C22—C17—C3120.4 (3)
C4—C3—C17120.7 (3)C17—C18—C19121.7 (4)
C2—C3—C17122.0 (3)C17—C18—H18119.2
C3—C4—C5119.9 (3)C19—C18—H18119.2
C3—C4—H4120.0C20—C19—C18119.2 (4)
C5—C4—H4120.0C20—C19—H19120.4
N1—C5—C4123.1 (3)C18—C19—H19120.4
N1—C5—C6115.2 (3)C19—C20—C21120.7 (4)
C4—C5—C6121.7 (3)C19—C20—Cl1120.0 (3)
C10—C6—C7107.0 (3)C21—C20—Cl1119.3 (3)
C10—C6—C5125.2 (3)C20—C21—C22119.5 (4)
C7—C6—C5127.8 (3)C20—C21—H21120.3
C10—C6—Fe168.9 (2)C22—C21—H21120.3
C7—C6—Fe169.73 (19)C21—C22—C17121.0 (4)
C5—C6—Fe1124.7 (2)C21—C22—H22119.5
C8—C7—C6108.4 (3)C17—C22—H22119.5
C8—C7—Fe170.2 (2)
C5—N1—C1—N2178.8 (3)C13—Fe1—C10—C952.3 (5)
C5—N1—C1—C22.2 (5)C8—Fe1—C10—C937.1 (2)
N2—C1—C2—C3179.8 (3)C15—Fe1—C10—C6119.0 (2)
N1—C1—C2—C30.9 (5)C14—Fe1—C10—C6159.6 (2)
N2—C1—C2—C160.9 (5)C11—Fe1—C10—C678.3 (3)
N1—C1—C2—C16179.8 (3)C9—Fe1—C10—C6119.1 (3)
C1—C2—C3—C41.4 (5)C7—Fe1—C10—C638.3 (2)
C16—C2—C3—C4177.8 (3)C12—Fe1—C10—C651.3 (6)
C1—C2—C3—C17175.5 (3)C13—Fe1—C10—C6171.4 (4)
C16—C2—C3—C175.3 (5)C8—Fe1—C10—C681.9 (2)
C2—C3—C4—C52.3 (5)C10—Fe1—C11—C1574.5 (3)
C17—C3—C4—C5174.6 (3)C14—Fe1—C11—C1537.6 (3)
C1—N1—C5—C41.3 (5)C6—Fe1—C11—C15117.0 (3)
C1—N1—C5—C6179.9 (3)C9—Fe1—C11—C1541.7 (6)
C3—C4—C5—N11.1 (5)C7—Fe1—C11—C15159.3 (3)
C3—C4—C5—C6177.5 (3)C12—Fe1—C11—C15118.8 (4)
N1—C5—C6—C1010.9 (5)C13—Fe1—C11—C1581.0 (3)
C4—C5—C6—C10167.8 (3)C8—Fe1—C11—C15167.5 (4)
N1—C5—C6—C7166.7 (3)C15—Fe1—C11—C12118.8 (4)
C4—C5—C6—C714.6 (6)C10—Fe1—C11—C12166.7 (3)
N1—C5—C6—Fe176.5 (4)C14—Fe1—C11—C1281.2 (3)
C4—C5—C6—Fe1104.9 (4)C6—Fe1—C11—C12124.2 (3)
C15—Fe1—C6—C1078.2 (3)C9—Fe1—C11—C12160.5 (4)
C14—Fe1—C6—C1046.9 (5)C7—Fe1—C11—C1281.9 (3)
C11—Fe1—C6—C10120.5 (2)C13—Fe1—C11—C1237.8 (3)
C9—Fe1—C6—C1037.6 (2)C8—Fe1—C11—C1248.6 (6)
C7—Fe1—C6—C10118.5 (3)C15—C11—C12—C130.8 (5)
C12—Fe1—C6—C10161.7 (2)Fe1—C11—C12—C1359.9 (3)
C13—Fe1—C6—C10168.2 (5)C15—C11—C12—Fe159.1 (3)
C8—Fe1—C6—C1081.2 (2)C15—Fe1—C12—C1380.8 (3)
C15—Fe1—C6—C7163.4 (2)C10—Fe1—C12—C13154.6 (5)
C10—Fe1—C6—C7118.5 (3)C14—Fe1—C12—C1337.4 (3)
C14—Fe1—C6—C7165.4 (4)C6—Fe1—C12—C13166.5 (3)
C11—Fe1—C6—C7121.0 (3)C11—Fe1—C12—C13118.7 (4)
C9—Fe1—C6—C780.9 (2)C9—Fe1—C12—C1342.5 (6)
C12—Fe1—C6—C779.9 (3)C7—Fe1—C12—C13123.0 (3)
C13—Fe1—C6—C749.8 (6)C8—Fe1—C12—C1380.0 (3)
C8—Fe1—C6—C737.3 (2)C15—Fe1—C12—C1137.9 (3)
C15—Fe1—C6—C540.8 (4)C10—Fe1—C12—C1135.9 (7)
C10—Fe1—C6—C5118.9 (4)C14—Fe1—C12—C1181.3 (3)
C14—Fe1—C6—C572.1 (5)C6—Fe1—C12—C1174.8 (3)
C11—Fe1—C6—C51.6 (4)C9—Fe1—C12—C11161.2 (4)
C9—Fe1—C6—C5156.5 (3)C7—Fe1—C12—C11118.3 (3)
C7—Fe1—C6—C5122.6 (4)C13—Fe1—C12—C11118.7 (4)
C12—Fe1—C6—C542.7 (4)C8—Fe1—C12—C11161.3 (3)
C13—Fe1—C6—C572.8 (6)C11—C12—C13—C140.4 (5)
C8—Fe1—C6—C5159.8 (3)Fe1—C12—C13—C1459.1 (3)
C10—C6—C7—C80.4 (4)C11—C12—C13—Fe159.5 (3)
C5—C6—C7—C8178.3 (3)C15—Fe1—C13—C1436.9 (3)
Fe1—C6—C7—C859.5 (3)C10—Fe1—C13—C1440.8 (6)
C10—C6—C7—Fe159.1 (2)C6—Fe1—C13—C14158.3 (5)
C5—C6—C7—Fe1118.8 (4)C11—Fe1—C13—C1481.0 (3)
C15—Fe1—C7—C8160.1 (4)C9—Fe1—C13—C1478.2 (3)
C10—Fe1—C7—C881.3 (2)C7—Fe1—C13—C14163.3 (3)
C14—Fe1—C7—C841.0 (6)C12—Fe1—C13—C14119.0 (4)
C6—Fe1—C7—C8119.7 (3)C8—Fe1—C13—C14121.2 (3)
C11—Fe1—C7—C8162.5 (2)C15—Fe1—C13—C1282.1 (3)
C9—Fe1—C7—C837.6 (2)C10—Fe1—C13—C12159.8 (4)
C12—Fe1—C7—C8119.2 (2)C14—Fe1—C13—C12119.0 (4)
C13—Fe1—C7—C876.9 (3)C6—Fe1—C13—C1239.3 (7)
C15—Fe1—C7—C640.4 (5)C11—Fe1—C13—C1238.1 (3)
C10—Fe1—C7—C638.39 (19)C9—Fe1—C13—C12162.8 (3)
C14—Fe1—C7—C6160.7 (5)C7—Fe1—C13—C1277.7 (3)
C11—Fe1—C7—C677.8 (3)C8—Fe1—C13—C12119.8 (3)
C9—Fe1—C7—C682.1 (2)C12—C13—C14—C150.2 (5)
C12—Fe1—C7—C6121.1 (2)Fe1—C13—C14—C1559.0 (3)
C13—Fe1—C7—C6163.4 (2)C12—C13—C14—Fe159.2 (3)
C8—Fe1—C7—C6119.7 (3)C10—Fe1—C14—C1577.8 (3)
C6—C7—C8—C90.2 (4)C6—Fe1—C14—C1544.1 (5)
Fe1—C7—C8—C958.6 (3)C11—Fe1—C14—C1538.3 (3)
C6—C7—C8—Fe158.8 (2)C9—Fe1—C14—C15120.1 (3)
C15—Fe1—C8—C939.2 (6)C7—Fe1—C14—C15167.7 (5)
C10—Fe1—C8—C937.2 (2)C12—Fe1—C14—C1582.4 (3)
C14—Fe1—C8—C975.2 (3)C13—Fe1—C14—C15120.2 (4)
C6—Fe1—C8—C981.6 (2)C8—Fe1—C14—C15161.1 (3)
C11—Fe1—C8—C9164.4 (4)C15—Fe1—C14—C13120.2 (4)
C7—Fe1—C8—C9119.3 (3)C10—Fe1—C14—C13162.0 (3)
C12—Fe1—C8—C9159.6 (2)C6—Fe1—C14—C13164.3 (3)
C13—Fe1—C8—C9117.1 (2)C11—Fe1—C14—C1382.0 (3)
C15—Fe1—C8—C7158.6 (5)C9—Fe1—C14—C13119.7 (3)
C10—Fe1—C8—C782.2 (2)C7—Fe1—C14—C1347.5 (7)
C14—Fe1—C8—C7165.5 (3)C12—Fe1—C14—C1337.8 (3)
C6—Fe1—C8—C737.8 (2)C8—Fe1—C14—C1378.6 (3)
C11—Fe1—C8—C745.0 (6)C13—C14—C15—C110.7 (5)
C9—Fe1—C8—C7119.3 (3)Fe1—C14—C15—C1160.4 (3)
C12—Fe1—C8—C781.0 (3)C13—C14—C15—Fe159.7 (3)
C13—Fe1—C8—C7123.6 (2)C12—C11—C15—C140.9 (5)
C7—C8—C9—C100.1 (4)Fe1—C11—C15—C1460.6 (3)
Fe1—C8—C9—C1058.7 (3)C12—C11—C15—Fe159.6 (3)
C7—C8—C9—Fe158.8 (3)C10—Fe1—C15—C14118.6 (3)
C15—Fe1—C9—C1075.2 (3)C6—Fe1—C15—C14160.5 (3)
C14—Fe1—C9—C10116.3 (3)C11—Fe1—C15—C14118.5 (4)
C6—Fe1—C9—C1038.2 (2)C9—Fe1—C15—C1477.9 (3)
C11—Fe1—C9—C1044.4 (6)C7—Fe1—C15—C14169.8 (4)
C7—Fe1—C9—C1082.5 (2)C12—Fe1—C15—C1480.6 (3)
C12—Fe1—C9—C10171.5 (4)C13—Fe1—C15—C1436.9 (3)
C13—Fe1—C9—C10157.5 (2)C8—Fe1—C15—C1448.8 (6)
C8—Fe1—C9—C10120.1 (3)C10—Fe1—C15—C11122.9 (3)
C15—Fe1—C9—C8164.7 (2)C14—Fe1—C15—C11118.5 (4)
C10—Fe1—C9—C8120.1 (3)C6—Fe1—C15—C1180.9 (3)
C14—Fe1—C9—C8123.5 (2)C9—Fe1—C15—C11163.6 (3)
C6—Fe1—C9—C881.9 (2)C7—Fe1—C15—C1151.3 (6)
C11—Fe1—C9—C8164.5 (4)C12—Fe1—C15—C1137.9 (3)
C7—Fe1—C9—C837.6 (2)C13—Fe1—C15—C1181.7 (3)
C12—Fe1—C9—C851.3 (5)C8—Fe1—C15—C11167.4 (4)
C13—Fe1—C9—C882.4 (3)C4—C3—C17—C18126.9 (4)
C8—C9—C10—C60.4 (4)C2—C3—C17—C1849.8 (5)
Fe1—C9—C10—C659.8 (2)C4—C3—C17—C2251.3 (5)
C8—C9—C10—Fe159.4 (3)C2—C3—C17—C22131.9 (4)
C7—C6—C10—C90.5 (4)C22—C17—C18—C191.1 (6)
C5—C6—C10—C9178.5 (3)C3—C17—C18—C19177.2 (4)
Fe1—C6—C10—C960.1 (2)C17—C18—C19—C200.2 (6)
C7—C6—C10—Fe159.6 (2)C18—C19—C20—C211.1 (6)
C5—C6—C10—Fe1118.4 (3)C18—C19—C20—Cl1178.5 (3)
C15—Fe1—C10—C9122.0 (3)C19—C20—C21—C221.5 (6)
C14—Fe1—C10—C981.3 (3)Cl1—C20—C21—C22178.0 (3)
C6—Fe1—C10—C9119.1 (3)C20—C21—C22—C170.7 (6)
C11—Fe1—C10—C9162.6 (3)C18—C17—C22—C210.6 (6)
C7—Fe1—C10—C980.8 (2)C3—C17—C22—C21177.7 (3)
C12—Fe1—C10—C9170.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N3i0.862.283.047 (5)149
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C17H11ClN3)]
Mr413.68
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)12.1517 (13), 7.4214 (11), 20.742 (2)
β (°) 97.691 (2)
V3)1853.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.97
Crystal size (mm)0.20 × 0.15 × 0.09
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.830, 0.918
No. of measured, independent and
observed [I > 2σ(I)] reflections
8876, 3260, 2298
Rint0.041
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.093, 1.09
No. of reflections3260
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.43

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N3i0.862.283.047 (5)148.9
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (grant No. 20672090) and the Natural Science Foundation of Jiangsu Province (grant No. BK2006033) for financial support.

References

First citationAlyoubi, A. O. (2000). Spectrochim. Acta Part A, 56, 2397–2404.  CrossRef Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesai, J. M. & Shah, V. H. (2003). Indian J. Chem. Sect. B, 42, 382–385.  Google Scholar
First citationDombrowski, K. E., Baldwin, W. & Sheats, J. E. (1986). J. Organomet. Chem. 302, 281–306.  CrossRef CAS Web of Science Google Scholar
First citationMurata, T., Shimada, M., Sakakibara, S., Yoshino, T., Masuda, T., Shintani, T., Sato, H., Koriyama, Y., Fukushima, K., Nunami, N., Yamauchi, M., Fuchikami, K., Komura, H., Watanabe, A., Ziegelbauer, K. B., Bacon, K. B. & Lowinger, T. B. (2004). Bioorg. Med. Chem. Lett. 14, 4019–4022.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds