organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(2-Hydr­­oxy-5-methyl­anilino)isobenzo­furan-1(3H)-one

aDepartment of Chemistry, Faculty of Arts & Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey, and bDepartment of Physics, Faculty of Arts & Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey
*Correspondence e-mail: muodabas@omu.edu.tr

(Received 28 March 2008; accepted 28 March 2008; online 2 April 2008)

In the mol­ecule of the title compound, C15H13NO3, the phthalide ring system is virtually planar, with a dihedral angle of 1.98 (3)° between the fused five- and six-membered rings. The substituted aromatic ring is oriented at a dihedral angle of 57.50 (3)° with respect to the phthalide ring system. In the crystal structure, inter­molecular O—H⋯O and N—H⋯O hydrogen bonds link the mol­ecules, forming a three-dimensional network.

Related literature

For a related structure, see: Odabaşoğlu & Büyükgüngör (2006[Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o1879-o1881.]). For ring-motif details, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13NO3

  • Mr = 255.26

  • Orthorhombic, P n a 21

  • a = 8.7198 (5) Å

  • b = 15.5950 (14) Å

  • c = 9.3992 (6) Å

  • V = 1278.15 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.64 × 0.42 × 0.28 mm

Data collection
  • Stoe IPDSII diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.957, Tmax = 0.982

  • 4658 measured reflections

  • 1418 independent reflections

  • 1196 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.066

  • S = 0.99

  • 1418 reflections

  • 175 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.08 e Å−3

  • Δρmin = −0.09 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O1i 0.82 1.95 2.767 (2) 173
N1—H1⋯O2ii 0.86 2.78 3.5593 (19) 152
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The present work is part of a structural study of compounds of 3-substituted phthalides, and we report here the crystal structure of the title compound, (I).

The molecule of (I), (Fig. 1), is built up from a phthalimide unit connected to 2-hydroxy-5-methylphnyl group through an amino group. Rings A (C2-C7), B (C1/C2/C7/C8/O2) and C (C9-C14) are, of course, planar. The dihedral angles between them are A/B = 1.98 (3)°, A/C = 58.27 (3)° and B/C = 56.39 (3)°. So, rings A and B are also nearly coplanar. Ring C is oriented with respect to the coplanar ring system at a dihedral angle of 57.50 (3)°.

In the crystal structure, intermolecular O-H···O and N-H···O hydrogen bonds (Table 1) link the molecules by C(4) chains (Fig. 2) (Bernstein et al., 1995; Etter, 1990), to form a three-dimensional network (Fig. 3), in which they may be effective in the stabilization of the structure.

Related literature top

For related structure, see: Odabaşoğlu & Büyükgüngör (2006). For ring-motif details, see: Bernstein et al. (1995); Etter (1990).

Experimental top

The title compound was prepared according to the method described by Odabaşoğlu & Büyükgüngör (2006), using phthalaldehydic acid and 2-aminophenol as starting materials (yield; 80%). Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an ethanol-DMF (1:1) solution at room temperature.

Refinement top

H atoms were positioned geometrically, with O-H = 0.82 Å (for OH), N-H = 0.86 Å (for NH) and C-H = 0.93 and 0.98 Å for aromatic and methine H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,O,N), where x = 1.5 for OH and NH H and x = 1.2 for all other H atoms.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram of (I), showing the formation of C(4) chain along the [100] direction. Hydrogen bonds are shown as dashed lines [symmetry code: (i) 1 - x, -y, z + 1/2]. H atoms not involved in hydrogen bondings have been omitted for clarity.
[Figure 3] Fig. 3. A partial packing diagram of (I). Hydrogen bonds are shown as dashed lines [symmetry code: (i) 1 - x, -y, z + 1/2]. H atoms not involved in hydrogen bondings have been omitted for clarity.
3-(2-Hydroxy-5-methylanilino)isobenzofuran-1(3H)-one top
Crystal data top
C15H13NO3F(000) = 536
Mr = 255.26Dx = 1.327 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 4658 reflections
a = 8.7198 (5) Åθ = 2.2–27.2°
b = 15.5950 (14) ŵ = 0.09 mm1
c = 9.3992 (6) ÅT = 296 K
V = 1278.15 (16) Å3Prism, colorless
Z = 40.64 × 0.42 × 0.28 mm
Data collection top
Stoe IPDSII
diffractometer
1418 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1196 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.027
Detector resolution: 6.67 pixels mm-1θmax = 26.7°, θmin = 2.5°
ω rotation method scansh = 1110
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1219
Tmin = 0.957, Tmax = 0.982l = 1011
4658 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0415P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
1418 reflectionsΔρmax = 0.08 e Å3
175 parametersΔρmin = 0.09 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.014 (2)
Crystal data top
C15H13NO3V = 1278.15 (16) Å3
Mr = 255.26Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 8.7198 (5) ŵ = 0.09 mm1
b = 15.5950 (14) ÅT = 296 K
c = 9.3992 (6) Å0.64 × 0.42 × 0.28 mm
Data collection top
Stoe IPDSII
diffractometer
1418 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1196 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.982Rint = 0.027
4658 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0281 restraint
wR(F2) = 0.066H-atom parameters constrained
S = 0.99Δρmax = 0.08 e Å3
1418 reflectionsΔρmin = 0.09 e Å3
175 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.40903 (18)0.07832 (10)0.36000 (19)0.0720 (4)
O20.45824 (13)0.20974 (10)0.43987 (15)0.0570 (4)
O30.20122 (14)0.44221 (12)0.70125 (18)0.0703 (5)
H3A0.16790.47960.75420.105*
N10.34673 (16)0.34164 (11)0.51886 (18)0.0520 (4)
H10.24840.34540.52100.062*
C10.3901 (2)0.15492 (14)0.3495 (2)0.0545 (5)
C20.3001 (2)0.20426 (14)0.2462 (2)0.0525 (5)
C30.2126 (2)0.17580 (17)0.1316 (3)0.0669 (6)
H30.20140.11770.11210.080*
C40.1436 (3)0.23701 (19)0.0486 (3)0.0749 (7)
H40.08370.21990.02830.090*
C50.1609 (3)0.32357 (18)0.0765 (3)0.0726 (6)
H50.11460.36360.01690.087*
C60.2468 (2)0.35171 (17)0.1926 (2)0.0631 (6)
H60.25760.40980.21290.076*
C70.31506 (19)0.28990 (15)0.2760 (2)0.0517 (5)
C80.41502 (19)0.30062 (13)0.4044 (2)0.0495 (4)
H80.50760.33220.37710.059*
C90.43056 (19)0.37720 (11)0.6310 (2)0.0433 (4)
C100.35434 (19)0.43126 (13)0.7257 (2)0.0491 (4)
C110.4335 (2)0.46949 (13)0.8349 (2)0.0533 (5)
H110.38190.50410.89970.064*
C120.5902 (2)0.45668 (13)0.8491 (2)0.0548 (5)
H120.64320.48420.92170.066*
C130.6683 (2)0.40359 (14)0.7568 (2)0.0511 (4)
C140.5859 (2)0.36305 (13)0.6500 (2)0.0493 (4)
H140.63640.32530.58950.059*
C150.8385 (2)0.3893 (2)0.7713 (3)0.0793 (7)
H15A0.88950.40950.68720.119*
H15B0.85840.32920.78330.119*
H15C0.87600.42010.85260.119*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0755 (9)0.0573 (10)0.0832 (11)0.0036 (7)0.0069 (9)0.0174 (9)
O20.0564 (6)0.0588 (9)0.0558 (7)0.0021 (6)0.0041 (7)0.0153 (7)
O30.0509 (7)0.0807 (12)0.0793 (10)0.0085 (7)0.0030 (8)0.0320 (8)
N10.0421 (7)0.0615 (10)0.0523 (9)0.0042 (7)0.0017 (7)0.0164 (8)
C10.0486 (9)0.0570 (12)0.0580 (11)0.0076 (9)0.0066 (9)0.0176 (11)
C20.0469 (9)0.0619 (13)0.0488 (10)0.0091 (8)0.0069 (8)0.0155 (10)
C30.0619 (11)0.0785 (17)0.0603 (12)0.0107 (11)0.0022 (10)0.0241 (13)
C40.0698 (13)0.095 (2)0.0599 (13)0.0043 (12)0.0101 (11)0.0271 (14)
C50.0718 (13)0.0891 (19)0.0571 (12)0.0046 (12)0.0071 (10)0.0059 (12)
C60.0643 (12)0.0654 (15)0.0597 (12)0.0035 (10)0.0028 (10)0.0063 (11)
C70.0454 (9)0.0633 (13)0.0465 (10)0.0068 (8)0.0053 (8)0.0110 (10)
C80.0457 (8)0.0528 (11)0.0501 (11)0.0061 (8)0.0012 (8)0.0103 (9)
C90.0503 (9)0.0392 (10)0.0405 (8)0.0068 (7)0.0015 (8)0.0007 (8)
C100.0501 (9)0.0467 (11)0.0506 (10)0.0026 (7)0.0022 (8)0.0032 (9)
C110.0655 (11)0.0466 (11)0.0480 (10)0.0007 (8)0.0011 (9)0.0087 (9)
C120.0683 (11)0.0502 (11)0.0460 (10)0.0103 (9)0.0089 (9)0.0013 (10)
C130.0526 (9)0.0551 (12)0.0456 (10)0.0060 (9)0.0040 (9)0.0050 (9)
C140.0502 (9)0.0523 (12)0.0453 (10)0.0004 (8)0.0044 (8)0.0021 (9)
C150.0531 (11)0.115 (2)0.0695 (14)0.0051 (12)0.0079 (11)0.0088 (15)
Geometric parameters (Å, º) top
O3—H3A0.8200C8—O21.504 (3)
N1—H10.8600C8—H80.9800
C1—O11.210 (3)C9—C141.384 (2)
C1—O21.344 (2)C9—C101.394 (3)
C1—C21.466 (3)C9—N11.397 (2)
C2—C71.371 (3)C10—O31.366 (2)
C2—C31.393 (3)C10—C111.373 (3)
C3—C41.372 (4)C11—C121.387 (3)
C3—H30.9300C11—H110.9300
C4—C51.383 (4)C12—C131.379 (3)
C4—H40.9300C12—H120.9300
C5—C61.395 (3)C13—C141.387 (3)
C5—H50.9300C13—C151.506 (3)
C6—C71.378 (3)C14—H140.9300
C6—H60.9300C15—H15A0.9600
C7—C81.498 (3)C15—H15B0.9600
C8—N11.386 (2)C15—H15C0.9600
O1—C1—O2121.1 (2)C14—C9—N1123.10 (16)
O1—C1—C2130.19 (19)C10—C9—N1118.16 (15)
O2—C1—C2108.75 (18)O3—C10—C11124.26 (17)
C7—C2—C3121.4 (2)O3—C10—C9115.74 (16)
C7—C2—C1108.97 (16)C11—C10—C9120.00 (16)
C3—C2—C1129.7 (2)C10—C11—C12120.27 (18)
C4—C3—C2117.3 (2)C10—C11—H11119.9
C4—C3—H3121.4C12—C11—H11119.9
C2—C3—H3121.4C13—C12—C11120.84 (17)
C3—C4—C5121.5 (2)C13—C12—H12119.6
C3—C4—H4119.2C11—C12—H12119.6
C5—C4—H4119.2C12—C13—C14118.20 (16)
C4—C5—C6120.9 (2)C12—C13—C15121.22 (18)
C4—C5—H5119.5C14—C13—C15120.58 (19)
C6—C5—H5119.5C9—C14—C13121.89 (17)
C7—C6—C5117.2 (2)C9—C14—H14119.1
C7—C6—H6121.4C13—C14—H14119.1
C5—C6—H6121.4C13—C15—H15A109.5
C2—C7—C6121.62 (19)C13—C15—H15B109.5
C2—C7—C8109.19 (19)H15A—C15—H15B109.5
C6—C7—C8129.2 (2)C13—C15—H15C109.5
N1—C8—C7115.26 (14)H15A—C15—H15C109.5
N1—C8—O2111.73 (16)H15B—C15—H15C109.5
C7—C8—O2102.67 (15)C8—N1—C9122.95 (13)
N1—C8—H8109.0C8—N1—H1118.5
C7—C8—H8109.0C9—N1—H1118.5
O2—C8—H8109.0C1—O2—C8110.39 (16)
C14—C9—C10118.71 (16)C10—O3—H3A109.5
O1—C1—C2—C7179.2 (2)N1—C9—C10—O31.9 (3)
O2—C1—C2—C70.1 (2)C14—C9—C10—C110.2 (3)
O1—C1—C2—C30.4 (4)N1—C9—C10—C11178.11 (17)
O2—C1—C2—C3178.76 (19)O3—C10—C11—C12178.1 (2)
C7—C2—C3—C40.8 (3)C9—C10—C11—C122.0 (3)
C1—C2—C3—C4177.9 (2)C10—C11—C12—C131.9 (3)
C2—C3—C4—C50.5 (3)C11—C12—C13—C140.3 (3)
C3—C4—C5—C61.5 (4)C11—C12—C13—C15180.0 (2)
C4—C5—C6—C71.0 (3)C10—C9—C14—C132.5 (3)
C3—C2—C7—C61.3 (3)N1—C9—C14—C13175.70 (19)
C1—C2—C7—C6177.66 (17)C12—C13—C14—C92.6 (3)
C3—C2—C7—C8179.96 (17)C15—C13—C14—C9177.7 (2)
C1—C2—C7—C81.11 (19)C7—C8—N1—C9162.60 (18)
C5—C6—C7—C20.3 (3)O2—C8—N1—C980.7 (2)
C5—C6—C7—C8178.81 (19)C14—C9—N1—C810.7 (3)
C2—C7—C8—N1120.00 (19)C10—C9—N1—C8167.55 (18)
C6—C7—C8—N161.4 (3)O1—C1—O2—C8179.57 (18)
C2—C7—C8—O21.72 (17)C2—C1—O2—C81.21 (19)
C6—C7—C8—O2176.92 (18)N1—C8—O2—C1122.30 (16)
C14—C9—C10—O3179.76 (17)C7—C8—O2—C11.79 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O1i0.821.952.767 (2)173
N1—H1···O2ii0.862.783.5593 (19)152
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC15H13NO3
Mr255.26
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)296
a, b, c (Å)8.7198 (5), 15.5950 (14), 9.3992 (6)
V3)1278.15 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.64 × 0.42 × 0.28
Data collection
DiffractometerStoe IPDSII
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.957, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
4658, 1418, 1196
Rint0.027
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.066, 0.99
No. of reflections1418
No. of parameters175
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.08, 0.09

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O1i0.821.952.767 (2)172.8
N1—H1···O2ii0.862.783.5593 (19)151.8
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z.
 

Footnotes

3-Substituted phthalides. Part XXXVII.

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDSII diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationOdabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o1879–o1881.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds