organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Methyl­benzo­yl)benzoic acid monohydrate

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: zhuhj@njut.edu.cn

(Received 31 March 2008; accepted 17 April 2008; online 23 April 2008)

In the title compound, C15H12O3·H2O, the two rings are oriented at a dihedral angle of 69.12 (3)°. In the crystal structure, intermolecular O—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional framework.

Related literature

For a general background, see: Lin et al. (2004[Lin, L., Yang, J. Z. & Xu, L. (2004). Ranliao Yu Ranse, 41, 289-290.]). For a related structure, see: Stanescu (1990[Stanescu, M. D. (1990). Chem. Mat. Sci. 52, 67-72.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12O3·H2O

  • Mr = 258.26

  • Triclinic, [P \overline 1]

  • a = 7.5410 (15) Å

  • b = 8.7480 (17) Å

  • c = 10.728 (2) Å

  • α = 79.96 (3)°

  • β = 77.83 (3)°

  • γ = 85.63 (3)°

  • V = 680.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 294 (2) K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.973, Tmax = 0.982

  • 2638 measured reflections

  • 2435 independent reflections

  • 1840 reflections with I > 2σ(I)

  • Rint = 0.052

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.193

  • S = 1.01

  • 2435 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
OW—HWA⋯O2i 0.85 2.42 2.842 (4) 111
OW—HWB⋯O1ii 0.85 2.38 2.803 (4) 111
O3—H3B⋯OW 0.82 1.80 2.601 (4) 165
Symmetry codes: (i) -x+1, -y, -z; (ii) x, y-1, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2-(4-methylbenzoyl)benzoic acid (MBBA) is an important dye intermediate used for the synthesis of 2-methylanthraquinone (Lin et al., 2004). We report herein the crystal structure of the title compound, (I).

The asymmetric unit of the title compound, (I), (Fig. 1), contains one MBBA and one water molecules. The bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C2-C7) and B (C9-C14) are, of course, planar, and they are oriented at a dihedral angle of 69.12 (3)°.

In the crystal structure, intra- and intermolecular O-H···O hydrogen bonds (Table 1) link the molecules to form a three-dimensional framework (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For a general background, see: Lin et al. (2004). For a related structure, see: Stanescu (1990). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared according to the method described by Stanescu (1990). Crystals of (I) suitable for X-ray analysis were obtained by dissolving MBBA (2.0 g) in water (100 ml) and evaporating water slowly at room temperature for about 15 d.

Refinement top

H atoms were positioned geometrically, with O-H = 0.82 Å (for OH) and 0.85 Å (for H2O) and C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,O), where x = 1.5 for OH and H2O H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
2-(4-Methylbenzoyl)benzoic acid monohydrate top
Crystal data top
C15H12O3·H2OZ = 2
Mr = 258.26F(000) = 272
Triclinic, P1Dx = 1.260 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5410 (15) ÅCell parameters from 25 reflections
b = 8.7480 (17) Åθ = 10–13°
c = 10.728 (2) ŵ = 0.09 mm1
α = 79.96 (3)°T = 294 K
β = 77.83 (3)°Block, colorless
γ = 85.63 (3)°0.30 × 0.20 × 0.20 mm
V = 680.6 (2) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
1840 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.052
Graphite monochromatorθmax = 25.2°, θmin = 2.0°
ω/2θ scansh = 89
Absorption correction: ψ scan
(North et al., 1968)
k = 1010
Tmin = 0.973, Tmax = 0.982l = 012
2638 measured reflections3 standard reflections every 120 min
2435 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.193 w = 1/[σ2(Fo2) + (0.07P)2 + P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2435 reflectionsΔρmax = 0.39 e Å3
172 parametersΔρmin = 0.34 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C15H12O3·H2Oγ = 85.63 (3)°
Mr = 258.26V = 680.6 (2) Å3
Triclinic, P1Z = 2
a = 7.5410 (15) ÅMo Kα radiation
b = 8.7480 (17) ŵ = 0.09 mm1
c = 10.728 (2) ÅT = 294 K
α = 79.96 (3)°0.30 × 0.20 × 0.20 mm
β = 77.83 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1840 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.052
Tmin = 0.973, Tmax = 0.9823 standard reflections every 120 min
2638 measured reflections intensity decay: none
2435 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.061172 parameters
wR(F2) = 0.193H-atom parameters constrained
S = 1.01Δρmax = 0.39 e Å3
2435 reflectionsΔρmin = 0.34 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3154 (3)0.5779 (3)0.2474 (3)0.0606 (7)
O20.3457 (3)0.2365 (3)0.1235 (2)0.0536 (6)
O30.1304 (3)0.0831 (3)0.1112 (3)0.0741 (9)
H3B0.21700.02180.09610.111*
OW0.3621 (4)0.1469 (3)0.0679 (3)0.0649 (7)
HWA0.47480.13680.06250.078*
HWB0.32450.23250.05830.078*
C10.3654 (8)0.0097 (5)0.7145 (4)0.0894 (15)
H1A0.26580.05810.74570.134*
H1B0.37920.06460.78180.134*
H1C0.47490.05050.68920.134*
C20.3286 (5)0.1244 (4)0.6000 (3)0.0556 (9)
C30.4516 (5)0.2367 (4)0.5386 (3)0.0552 (9)
H3A0.55920.23960.56720.066*
C40.4163 (4)0.3448 (4)0.4351 (3)0.0483 (8)
H4A0.50050.41940.39480.058*
C50.2585 (4)0.3428 (3)0.3915 (3)0.0426 (7)
C60.1346 (5)0.2306 (4)0.4517 (3)0.0531 (8)
H6A0.02710.22760.42290.064*
C70.1713 (6)0.1227 (4)0.5550 (3)0.0599 (10)
H7A0.08760.04750.59470.072*
C80.2224 (4)0.4632 (3)0.2816 (3)0.0431 (7)
C90.0626 (4)0.4530 (3)0.2224 (3)0.0412 (7)
C100.0716 (4)0.5713 (4)0.2360 (3)0.0491 (8)
H10A0.05660.65240.27800.059*
C110.2265 (4)0.5683 (4)0.1873 (3)0.0537 (9)
H11A0.31560.64740.19700.064*
C120.2500 (4)0.4501 (4)0.1250 (3)0.0539 (9)
H12A0.35500.44890.09280.065*
C130.1169 (4)0.3311 (4)0.1096 (3)0.0471 (8)
H13A0.13380.25060.06750.056*
C140.0391 (4)0.3326 (3)0.1566 (3)0.0410 (7)
C150.1881 (4)0.2129 (3)0.1288 (3)0.0438 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0532 (14)0.0482 (14)0.0769 (17)0.0065 (11)0.0189 (12)0.0089 (12)
O20.0396 (13)0.0515 (14)0.0682 (15)0.0127 (10)0.0078 (11)0.0156 (11)
O30.0535 (15)0.0465 (14)0.124 (2)0.0084 (11)0.0124 (15)0.0292 (15)
OW0.0646 (16)0.0387 (13)0.0809 (18)0.0083 (11)0.0040 (13)0.0081 (12)
C10.128 (4)0.062 (3)0.071 (3)0.016 (3)0.027 (3)0.009 (2)
C20.077 (3)0.0425 (18)0.0462 (19)0.0114 (17)0.0147 (17)0.0077 (15)
C30.059 (2)0.062 (2)0.0473 (19)0.0106 (17)0.0213 (16)0.0103 (16)
C40.0482 (19)0.0444 (18)0.0505 (18)0.0008 (14)0.0093 (15)0.0050 (14)
C50.0420 (17)0.0380 (16)0.0456 (17)0.0032 (13)0.0067 (13)0.0059 (13)
C60.058 (2)0.0505 (19)0.0506 (19)0.0074 (16)0.0137 (16)0.0015 (15)
C70.082 (3)0.0445 (19)0.051 (2)0.0144 (18)0.0119 (18)0.0037 (15)
C80.0378 (16)0.0369 (16)0.0499 (18)0.0034 (13)0.0020 (13)0.0049 (13)
C90.0350 (16)0.0399 (16)0.0415 (16)0.0079 (12)0.0010 (12)0.0007 (13)
C100.0444 (18)0.0440 (18)0.0552 (19)0.0105 (14)0.0036 (15)0.0114 (15)
C110.0408 (18)0.056 (2)0.058 (2)0.0182 (15)0.0038 (15)0.0090 (16)
C120.0344 (17)0.065 (2)0.057 (2)0.0076 (15)0.0078 (15)0.0010 (17)
C130.0420 (18)0.0439 (17)0.0506 (18)0.0004 (14)0.0039 (14)0.0022 (14)
C140.0338 (16)0.0361 (16)0.0465 (17)0.0058 (12)0.0004 (13)0.0012 (13)
C150.0453 (19)0.0362 (16)0.0479 (18)0.0055 (13)0.0072 (14)0.0068 (13)
Geometric parameters (Å, º) top
O1—C81.227 (4)C5—C81.494 (4)
O2—C151.209 (4)C6—C71.386 (5)
O3—C151.303 (4)C6—H6A0.9300
O3—H3B0.8200C7—H7A0.9300
OW—HWA0.8501C8—C91.491 (4)
OW—HWB0.8500C9—C101.396 (4)
C1—C21.505 (5)C9—C141.407 (4)
C1—H1A0.9600C10—C111.380 (5)
C1—H1B0.9600C10—H10A0.9300
C1—H1C0.9600C11—C121.366 (5)
C2—C71.374 (5)C11—H11A0.9300
C2—C31.384 (5)C12—C131.396 (5)
C3—C41.386 (5)C12—H12A0.9300
C3—H3A0.9300C13—C141.376 (4)
C4—C51.370 (4)C13—H13A0.9300
C4—H4A0.9300C14—C151.495 (4)
C5—C61.385 (4)
C15—O3—H3B109.5C6—C7—H7A119.3
HWA—OW—HWB120.0O1—C8—C9119.6 (3)
C2—C1—H1A109.5O1—C8—C5119.7 (3)
C2—C1—H1B109.5C9—C8—C5120.4 (3)
H1A—C1—H1B109.5C10—C9—C14119.1 (3)
C2—C1—H1C109.5C10—C9—C8116.5 (3)
H1A—C1—H1C109.5C14—C9—C8124.4 (3)
H1B—C1—H1C109.5C11—C10—C9120.2 (3)
C7—C2—C3118.2 (3)C11—C10—H10A119.9
C7—C2—C1121.2 (4)C9—C10—H10A119.9
C3—C2—C1120.6 (4)C12—C11—C10120.5 (3)
C2—C3—C4120.8 (3)C12—C11—H11A119.8
C2—C3—H3A119.6C10—C11—H11A119.8
C4—C3—H3A119.6C11—C12—C13120.2 (3)
C5—C4—C3120.6 (3)C11—C12—H12A119.9
C5—C4—H4A119.7C13—C12—H12A119.9
C3—C4—H4A119.7C14—C13—C12120.2 (3)
C4—C5—C6119.2 (3)C14—C13—H13A119.9
C4—C5—C8119.3 (3)C12—C13—H13A119.9
C6—C5—C8121.5 (3)C13—C14—C9119.7 (3)
C5—C6—C7119.8 (3)C13—C14—C15119.7 (3)
C5—C6—H6A120.1C9—C14—C15120.4 (3)
C7—C6—H6A120.1O2—C15—O3124.3 (3)
C2—C7—C6121.5 (3)O2—C15—C14122.5 (3)
C2—C7—H7A119.3O3—C15—C14113.3 (3)
C7—C2—C3—C40.3 (5)C5—C8—C9—C1464.3 (4)
C1—C2—C3—C4178.5 (3)C14—C9—C10—C111.1 (5)
C2—C3—C4—C50.1 (5)C8—C9—C10—C11178.1 (3)
C3—C4—C5—C60.4 (5)C9—C10—C11—C120.2 (5)
C3—C4—C5—C8178.6 (3)C10—C11—C12—C130.2 (5)
C4—C5—C6—C70.3 (5)C11—C12—C13—C140.3 (5)
C8—C5—C6—C7178.7 (3)C12—C13—C14—C91.2 (4)
C3—C2—C7—C60.5 (5)C12—C13—C14—C15174.3 (3)
C1—C2—C7—C6178.3 (4)C10—C9—C14—C131.6 (4)
C5—C6—C7—C20.2 (5)C8—C9—C14—C13177.6 (3)
C4—C5—C8—O113.4 (4)C10—C9—C14—C15173.9 (3)
C6—C5—C8—O1165.5 (3)C8—C9—C14—C157.0 (4)
C4—C5—C8—C9172.9 (3)C13—C14—C15—O2152.2 (3)
C6—C5—C8—C98.1 (4)C9—C14—C15—O223.2 (5)
O1—C8—C9—C1058.8 (4)C13—C14—C15—O327.6 (4)
C5—C8—C9—C10114.9 (3)C9—C14—C15—O3156.9 (3)
O1—C8—C9—C14122.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW—HWA···O2i0.852.422.842 (4)111
OW—HWB···O1ii0.852.382.803 (4)111
O3—H3B···OW0.821.802.601 (4)165
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC15H12O3·H2O
Mr258.26
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)7.5410 (15), 8.7480 (17), 10.728 (2)
α, β, γ (°)79.96 (3), 77.83 (3), 85.63 (3)
V3)680.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.973, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
2638, 2435, 1840
Rint0.052
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.193, 1.01
No. of reflections2435
No. of parameters172
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.34

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW—HWA···O2i0.852.422.842 (4)111.00
OW—HWB···O1ii0.852.382.803 (4)111.00
O3—H3B···OW0.821.802.601 (4)165.00
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLin, L., Yang, J. Z. & Xu, L. (2004). Ranliao Yu Ranse, 41, 289–290.  CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStanescu, M. D. (1990). Chem. Mat. Sci. 52, 67–72.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds