metal-organic compounds
Retracted: Diaquabis(pyridine-2-carboxylato-κ2N,O)cobalt(II)
aCollege of Chemistry & Chemical Engineering, Provincial Key Laboratory of Coordination Chemistry, Jinggangshan University, Jian 343009, People's Republic of China
*Correspondence e-mail: gshuang08@126.com
In the molecule of the title compound, [Co(C6H4NO2)2(H2O)2], the coordination environment around the CoII atom is distorted octahedral; two N and two O atoms of the pyridine-2-carboxylate ligands lie in the equatorial plane and the two water O atoms in the axial positions. In the intermolecular O—H⋯O hydrogen bonds link the molecules, forming a supramoleular network structure.
Related literature
For general background, see: Desiraju (1997); Braga et al. (1998); McCann et al. (1996); Wai et al. (1990); Yaghi et al. (1996); Min & Lee (2002); Maira et al. (2001). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808010507/hk2450sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808010507/hk2450Isup2.hkl
The title compound was synthesized using hydrothermal method in a 23 ml Teflon-lined Parr bomb. Cobalt(II) chloride hexahydrate (47.6 mg, 0.2 mmol), pyridine-2-carboxylic acid (49.2 mg, 0.4 mmol) and distilled water (6 g) were placed into the bomb and sealed. The bomb was then heated under autogenous pressure up to 413 K over the course of 7 d and allowed to cool at room temperature for 24 h. Upon opening the bomb, a clear colorless solution was decanted from small pink crystals. These crystals were washed with distilled water followed by ethanol, and allowed to air-dry at room temperature.
H1B and H2B (for H2O) were located in difference syntheses and refined isotropically [O-H = 0.784 (18) and 0.771 (16) Å, Uiso(H) = 0.065 (16) and 0.035 (12) Å2]. The remaining H1A and H2A (for H2O) and aromatic H atoms were positioned geometrically, with O-H = 0.82 Å (for H2O) and C-H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,O), where x = 1.2 for aromatic H atoms and x = 1.5 for all other H atoms.
Data collection: SMART (Siemens, 1996); cell
SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Co(C6H4NO2)2(H2O)2] | F(000) = 692 |
Mr = 339.17 | Dx = 1.486 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 2863 reflections |
a = 11.7401 (3) Å | θ = 2.6–23.8° |
b = 8.9994 (6) Å | µ = 1.16 mm−1 |
c = 14.9211 (3) Å | T = 273 K |
β = 105.985 (2)° | Plate, pink |
V = 1515.52 (11) Å3 | 0.24 × 0.18 × 0.08 mm |
Z = 4 |
Bruker APEXII area-detector diffractometer | 2926 independent reflections |
Radiation source: fine-focus sealed tube | 2065 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
ϕ and ω scans | θmax = 26.0°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −14→14 |
Tmin = 0.770, Tmax = 0.918 | k = −11→11 |
9384 measured reflections | l = −18→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.060 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.227 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.152P)2 + 0.1958P] where P = (Fo2 + 2Fc2)/3 |
2926 reflections | (Δ/σ)max < 0.001 |
200 parameters | Δρmax = 0.83 e Å−3 |
6 restraints | Δρmin = −0.62 e Å−3 |
[Co(C6H4NO2)2(H2O)2] | V = 1515.52 (11) Å3 |
Mr = 339.17 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 11.7401 (3) Å | µ = 1.16 mm−1 |
b = 8.9994 (6) Å | T = 273 K |
c = 14.9211 (3) Å | 0.24 × 0.18 × 0.08 mm |
β = 105.985 (2)° |
Bruker APEXII area-detector diffractometer | 2926 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2065 reflections with I > 2σ(I) |
Tmin = 0.770, Tmax = 0.918 | Rint = 0.042 |
9384 measured reflections |
R[F2 > 2σ(F2)] = 0.060 | 6 restraints |
wR(F2) = 0.227 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | Δρmax = 0.83 e Å−3 |
2926 reflections | Δρmin = −0.62 e Å−3 |
200 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.74558 (5) | 0.85905 (7) | 0.62775 (4) | 0.0500 (3) | |
O1 | 0.8193 (3) | 0.7460 (4) | 0.7578 (2) | 0.0528 (8) | |
H1A | 0.7662 | 0.7036 | 0.7737 | 0.079* | |
H1B | 0.8854 (17) | 0.719 (5) | 0.773 (3) | 0.065 (16)* | |
O2 | 0.5921 (3) | 0.8896 (4) | 0.6792 (3) | 0.0562 (9) | |
H2A | 0.5826 | 0.8156 | 0.7083 | 0.084* | |
H2B | 0.546 (3) | 0.953 (3) | 0.673 (3) | 0.035 (12)* | |
O3 | 0.6510 (3) | 0.9270 (3) | 0.48901 (19) | 0.0497 (8) | |
O4 | 0.5390 (3) | 0.8577 (3) | 0.3503 (2) | 0.0560 (9) | |
O5 | 0.8183 (3) | 1.0767 (4) | 0.6673 (2) | 0.0512 (8) | |
O6 | 0.9716 (3) | 1.2287 (4) | 0.6898 (3) | 0.0724 (11) | |
N1 | 0.9333 (3) | 0.8598 (4) | 0.6113 (3) | 0.0504 (9) | |
N2 | 0.6905 (3) | 0.6452 (4) | 0.5461 (2) | 0.0406 (8) | |
C1 | 0.6032 (3) | 0.8310 (5) | 0.4295 (3) | 0.0423 (9) | |
C2 | 0.6267 (3) | 0.6693 (5) | 0.4583 (3) | 0.0392 (9) | |
C3 | 0.5838 (4) | 0.5535 (5) | 0.3968 (3) | 0.0533 (11) | |
H3 | 0.5424 | 0.5722 | 0.3351 | 0.064* | |
C4 | 0.6040 (4) | 0.4115 (6) | 0.4293 (3) | 0.0552 (11) | |
H4 | 0.5727 | 0.3319 | 0.3906 | 0.066* | |
C5 | 0.6700 (4) | 0.3862 (5) | 0.5184 (4) | 0.0552 (12) | |
H5 | 0.6864 | 0.2897 | 0.5404 | 0.066* | |
C6 | 0.7120 (4) | 0.5054 (5) | 0.5755 (3) | 0.0495 (10) | |
H6 | 0.7569 | 0.4880 | 0.6364 | 0.059* | |
C7 | 0.9224 (4) | 1.1095 (5) | 0.6665 (3) | 0.0513 (11) | |
C8 | 0.9904 (4) | 0.9869 (5) | 0.6340 (3) | 0.0489 (11) | |
C9 | 1.1060 (4) | 1.0058 (7) | 0.6312 (4) | 0.0704 (15) | |
H9 | 1.1443 | 1.0961 | 0.6485 | 0.085* | |
C10 | 1.1635 (6) | 0.8917 (7) | 0.6029 (6) | 0.091 (2) | |
H10 | 1.2403 | 0.9039 | 0.5983 | 0.109* | |
C11 | 1.1064 (6) | 0.7581 (8) | 0.5811 (6) | 0.102 (2) | |
H11 | 1.1445 | 0.6768 | 0.5639 | 0.123* | |
C12 | 0.9906 (5) | 0.7476 (6) | 0.5856 (5) | 0.0772 (17) | |
H12 | 0.9510 | 0.6578 | 0.5698 | 0.093* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0509 (5) | 0.0450 (5) | 0.0472 (5) | −0.0007 (3) | 0.0018 (3) | −0.0005 (2) |
O1 | 0.0397 (16) | 0.060 (2) | 0.0502 (18) | 0.0013 (15) | −0.0015 (13) | 0.0150 (14) |
O2 | 0.056 (2) | 0.0450 (19) | 0.070 (2) | 0.0125 (16) | 0.0209 (17) | 0.0143 (16) |
O3 | 0.0515 (17) | 0.0412 (18) | 0.0466 (17) | −0.0020 (13) | −0.0031 (13) | 0.0045 (13) |
O4 | 0.0550 (19) | 0.052 (2) | 0.0467 (18) | 0.0079 (14) | −0.0106 (14) | 0.0083 (13) |
O5 | 0.0467 (17) | 0.0448 (18) | 0.0613 (19) | −0.0019 (14) | 0.0135 (14) | −0.0096 (15) |
O6 | 0.078 (2) | 0.059 (2) | 0.089 (3) | −0.0299 (19) | 0.037 (2) | −0.031 (2) |
N1 | 0.049 (2) | 0.046 (2) | 0.059 (2) | −0.0010 (17) | 0.0189 (18) | −0.0046 (17) |
N2 | 0.0418 (18) | 0.037 (2) | 0.0366 (18) | −0.0012 (14) | 0.0011 (14) | 0.0024 (13) |
C1 | 0.0331 (19) | 0.049 (2) | 0.040 (2) | 0.0023 (17) | 0.0035 (16) | 0.0025 (18) |
C2 | 0.0334 (19) | 0.041 (2) | 0.039 (2) | −0.0012 (16) | 0.0032 (15) | −0.0034 (17) |
C3 | 0.051 (2) | 0.053 (3) | 0.046 (2) | 0.005 (2) | −0.0033 (18) | −0.008 (2) |
C4 | 0.056 (3) | 0.044 (3) | 0.061 (3) | 0.002 (2) | 0.008 (2) | −0.012 (2) |
C5 | 0.064 (3) | 0.041 (3) | 0.064 (3) | 0.001 (2) | 0.023 (2) | −0.001 (2) |
C6 | 0.057 (2) | 0.044 (3) | 0.044 (2) | 0.001 (2) | 0.0068 (19) | 0.0031 (19) |
C7 | 0.059 (3) | 0.055 (3) | 0.039 (2) | −0.011 (2) | 0.0124 (19) | −0.0056 (19) |
C8 | 0.050 (2) | 0.055 (3) | 0.042 (2) | 0.006 (2) | 0.0146 (18) | 0.0039 (19) |
C9 | 0.058 (3) | 0.073 (4) | 0.086 (4) | −0.008 (3) | 0.027 (3) | −0.001 (3) |
C10 | 0.069 (4) | 0.085 (5) | 0.134 (6) | −0.001 (4) | 0.054 (4) | 0.006 (4) |
C11 | 0.085 (4) | 0.079 (5) | 0.165 (8) | 0.016 (4) | 0.074 (5) | −0.007 (5) |
C12 | 0.076 (4) | 0.052 (3) | 0.114 (5) | −0.001 (3) | 0.043 (3) | −0.012 (3) |
Co1—O1 | 2.150 (3) | C1—C2 | 1.521 (6) |
Co1—O2 | 2.162 (3) | C2—C3 | 1.389 (6) |
Co1—O3 | 2.151 (3) | C3—C4 | 1.365 (7) |
Co1—O5 | 2.153 (3) | C3—H3 | 0.9300 |
Co1—N1 | 2.284 (4) | C4—C5 | 1.361 (7) |
Co1—N2 | 2.274 (3) | C4—H4 | 0.9300 |
O1—H1A | 0.8200 | C5—C6 | 1.374 (6) |
O1—H1B | 0.784 (18) | C5—H5 | 0.9300 |
O2—H2A | 0.8200 | C6—H6 | 0.9300 |
O2—H2B | 0.771 (16) | C7—C8 | 1.517 (6) |
O3—C1 | 1.255 (5) | C8—C9 | 1.380 (7) |
O4—C1 | 1.238 (5) | C9—C10 | 1.359 (8) |
O5—C7 | 1.261 (5) | C9—H9 | 0.9300 |
O6—C7 | 1.222 (5) | C10—C11 | 1.371 (9) |
N1—C8 | 1.321 (6) | C10—H10 | 0.9300 |
N1—C12 | 1.327 (6) | C11—C12 | 1.383 (8) |
N2—C6 | 1.334 (5) | C11—H11 | 0.9300 |
N2—C2 | 1.335 (5) | C12—H12 | 0.9300 |
O1—Co1—O2 | 84.68 (13) | N2—C2—C1 | 116.2 (3) |
O1—Co1—O3 | 167.36 (12) | C3—C2—C1 | 121.8 (4) |
O1—Co1—O5 | 98.78 (12) | C4—C3—C2 | 118.2 (4) |
O2—Co1—O3 | 92.63 (13) | C4—C3—H3 | 120.9 |
O2—Co1—O5 | 95.35 (13) | C2—C3—H3 | 120.9 |
O3—Co1—O5 | 93.75 (12) | C5—C4—C3 | 120.0 (4) |
O1—Co1—N1 | 86.44 (14) | C5—C4—H4 | 120.0 |
O2—Co1—N1 | 163.96 (15) | C3—C4—H4 | 120.0 |
O3—Co1—N1 | 98.83 (14) | C4—C5—C6 | 119.1 (5) |
O5—Co1—N1 | 72.84 (12) | C4—C5—H5 | 120.5 |
O1—Co1—N2 | 93.86 (12) | C6—C5—H5 | 120.5 |
O2—Co1—N2 | 98.99 (14) | N2—C6—C5 | 122.0 (4) |
O3—Co1—N2 | 74.33 (12) | N2—C6—H6 | 119.0 |
O5—Co1—N2 | 161.68 (13) | C5—C6—H6 | 119.0 |
N1—Co1—N2 | 94.91 (13) | O6—C7—O5 | 125.9 (5) |
Co1—O1—H1A | 109.5 | O6—C7—C8 | 118.7 (4) |
Co1—O1—H1B | 122 (3) | O5—C7—C8 | 115.4 (4) |
H1A—O1—H1B | 123.0 | N1—C8—C9 | 122.2 (4) |
Co1—O2—H2A | 109.5 | N1—C8—C7 | 116.0 (4) |
Co1—O2—H2B | 132 (2) | C9—C8—C7 | 121.9 (5) |
H2A—O2—H2B | 118.0 | C10—C9—C8 | 119.5 (5) |
C1—O3—Co1 | 119.8 (3) | C10—C9—H9 | 120.2 |
C7—O5—Co1 | 121.5 (3) | C8—C9—H9 | 120.2 |
C8—N1—C12 | 118.1 (4) | C9—C10—C11 | 119.0 (5) |
C8—N1—Co1 | 114.3 (3) | C9—C10—H10 | 120.5 |
C12—N1—Co1 | 127.5 (3) | C11—C10—H10 | 120.5 |
C6—N2—C2 | 118.6 (4) | C10—C11—C12 | 118.1 (6) |
C6—N2—Co1 | 128.5 (3) | C10—C11—H11 | 120.9 |
C2—N2—Co1 | 112.8 (3) | C12—C11—H11 | 120.9 |
O4—C1—O3 | 125.3 (4) | N1—C12—C11 | 123.0 (6) |
O4—C1—C2 | 118.2 (4) | N1—C12—H12 | 118.5 |
O3—C1—C2 | 116.6 (4) | C11—C12—H12 | 118.5 |
N2—C2—C3 | 122.0 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1B···O4i | 0.78 (2) | 1.98 (3) | 2.733 (4) | 161 (4) |
O1—H1A···O5ii | 0.82 | 1.88 | 2.679 (4) | 164 |
O2—H2B···O4iii | 0.77 (2) | 1.96 (2) | 2.712 (4) | 166 (3) |
O2—H2A···O6ii | 0.82 | 1.96 | 2.699 (5) | 149 |
Symmetry codes: (i) x+1/2, −y+3/2, z+1/2; (ii) −x+3/2, y−1/2, −z+3/2; (iii) −x+1, −y+2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Co(C6H4NO2)2(H2O)2] |
Mr | 339.17 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 273 |
a, b, c (Å) | 11.7401 (3), 8.9994 (6), 14.9211 (3) |
β (°) | 105.985 (2) |
V (Å3) | 1515.52 (11) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.16 |
Crystal size (mm) | 0.24 × 0.18 × 0.08 |
Data collection | |
Diffractometer | Bruker APEXII area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.770, 0.918 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9384, 2926, 2065 |
Rint | 0.042 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.060, 0.227, 1.07 |
No. of reflections | 2926 |
No. of parameters | 200 |
No. of restraints | 6 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.83, −0.62 |
Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Co1—O1 | 2.150 (3) | Co1—O5 | 2.153 (3) |
Co1—O2 | 2.162 (3) | Co1—N1 | 2.284 (4) |
Co1—O3 | 2.151 (3) | Co1—N2 | 2.274 (3) |
O1—Co1—O2 | 84.68 (13) | O3—Co1—N1 | 98.83 (14) |
O1—Co1—O3 | 167.36 (12) | O5—Co1—N1 | 72.84 (12) |
O1—Co1—O5 | 98.78 (12) | O1—Co1—N2 | 93.86 (12) |
O2—Co1—O3 | 92.63 (13) | O2—Co1—N2 | 98.99 (14) |
O2—Co1—O5 | 95.35 (13) | O3—Co1—N2 | 74.33 (12) |
O3—Co1—O5 | 93.75 (12) | O5—Co1—N2 | 161.68 (13) |
O1—Co1—N1 | 86.44 (14) | N1—Co1—N2 | 94.91 (13) |
O2—Co1—N1 | 163.96 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1B···O4i | 0.784 (18) | 1.98 (3) | 2.733 (4) | 161 (4) |
O1—H1A···O5ii | 0.82 | 1.88 | 2.679 (4) | 164 |
O2—H2B···O4iii | 0.771 (16) | 1.959 (16) | 2.712 (4) | 166 (3) |
O2—H2A···O6ii | 0.82 | 1.96 | 2.699 (5) | 149 |
Symmetry codes: (i) x+1/2, −y+3/2, z+1/2; (ii) −x+3/2, y−1/2, −z+3/2; (iii) −x+1, −y+2, −z+1. |
Acknowledgements
We thank the Youth Program of Jinggangshan University for financial support of this work.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Braga, D., Grepioni, F. & Desiraju, G. R. (1998). Chem. Rev. 98, 1375–1386. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Desiraju, G. R. (1997). J. Chem. Soc. Chem. Commun. pp. 1475–1476. CrossRef Google Scholar
Maira, S. M., Galetic, I., Brazil, D. P., Decech, S., Ingley, E., Thelen, M. & Hemmings, B. A. (2001). Science, 294, 374–380. Web of Science CrossRef PubMed CAS Google Scholar
McCann, M., Casey, M. T., Devereux, M., Curran, M., Cardin, C. & Todd, A. (1996). Polyhedron, 15, 2117–2120. CSD CrossRef CAS Web of Science Google Scholar
Min, D. & Lee, S. M. (2002). Inorg. Chem. Commun. 5, 978–983. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1996). SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Wai, H. Y., Ru, J. W. & Mark, T. C. W. (1990). J. Crystallogr. Spectrosc. Res. 20, 307–312. Google Scholar
Yaghi, O. M., Li, H. & Groy, T. L. (1996). J. Am. Chem. Soc. 118, 9096–9101. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the synthesis of crystal structures by design, the assembly of molecular units in predefined arrangements is a key goal (Desiraju, 1997; Braga et al., 1998). Due to carboxyl groups are one of the most important classes of biological ligands, the coordination of metal-carboxyl groups complexes are of critical importance in biological systems, organic materials and coordination chemistry. Recently, carboxyl groups with variable coordination modes have been used to construct metal-organic supramolecular structures (McCann et al., 1996; Wai et al., 1990; Yaghi et al., 1996; Min & Lee 2002; Maira et al., 2001). We report herein the crystal structure of the title compound, (I).
In the molecule of (I) (Fig. 1), the ligand bond lengths (Allen et al., 1987) and angles are within normal ranges. The two N and the two O atoms of the two pyridine-2-carboxylato ligands in the equatorial plane around the CoII atom form a distorted square-planar arrangement, while the distorted octahedral coordination is completed by the two O atoms of water molecules in the axial positions (Table 1 and Fig. 1). The Co-O bonds [average 2.154 (3) Å] are somewhat shorter than the Co-N distances [average 2.279 (3) Å].
In the crystal structure, intermolecular O-H···O hydrogen bonds (Table 2) link the molecules to form a supramoleular network structure (Fig. 2), in which they may be effective in the stabilization of the structure.