organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Iso­propyl­phen­yl)-5-(4-meth­oxy­phen­yl)pyrazolidin-3-one

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: zhuhj@njut.edu.cn

(Received 7 April 2008; accepted 10 April 2008; online 16 April 2008)

In the mol­ecule of the title compound, C19H22N2O2, the pyrazolidinone ring has an envelope conformation, with the C atom attached to the 4-methoxy­phenyl ring displaced by 0.354 (3) Å from the plane of the other ring atoms. The 4-iso­propyl­phenyl ring is oriented with respect to the 4-meth­oxy­phenyl ring at a dihedral angle of 88.94 (3)°. Intra­molecular C—H⋯N hydrogen bonds result in the formation of two planar five-membered rings, which are oriented with respect to the adjacent 4-isopropyl­phenyl and 4-meth­oxy­phenyl rings at dihedral angles of 4.05 (3) and 0.50 (3)°, respectively. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers.

Related literature

For general background, see: Menozzi et al. (1990[Menozzi, G., Mosti, L. & Schenone, P. (1990). Il Farmaco, 45, 167-186.]); Brooks et al. (1990[Brooks, D. W., Basha, A., Gunn, B. P. & Bhatia, P. A. (1990). US Patent No. 4 970 210.]); Greenwood et al. (1995[Greenwood, B., Helton, D. R. & Howbert, J. J. (1995). US Patent No. 5 399 565.]).

[Scheme 1]

Experimental

Crystal data
  • C19H22N2O2

  • Mr = 310.39

  • Monoclinic, P 21 /n

  • a = 14.737 (3) Å

  • b = 7.1490 (14) Å

  • c = 17.493 (4) Å

  • β = 112.03 (3)°

  • V = 1708.4 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 294 (2) K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.969, Tmax = 0.984

  • 3472 measured reflections

  • 3340 independent reflections

  • 1835 reflections with I > 2σ(I)

  • Rint = 0.052

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.078

  • wR(F2) = 0.163

  • S = 1.06

  • 3340 reflections

  • 202 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.78 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.86 1.96 2.819 (4) 175
C8—H8A⋯N2 0.93 2.44 2.761 (5) 100
C14—H14A⋯N1 0.93 2.54 2.887 (5) 102
Symmetry code: (i) -x+1, -y+2, -z+2.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyrazolidin-3-one derivatives are important chemical materials of effective medicines used for treatment of inflammation. They are of great interest because of their biological properties, such as antipyretic activity (Menozzi et al., 1990), liphoxygenase enzyme inhibition (Brooks et al., 1990) and cholecystokinin (CCK) receptor antagonist activity (Greenwood et al., 1995). We report herein the crystal structure of the title compound, (I).

In the molecule of (I), (Fig. 1), rings A (C4-C9) and C (C13-C18) are, of course, planar. The dihedral angle between them is A/C = 88.94 (3)°. Ring B (N1/N2/C10-C12) has envelope conformation with atom C10 displaced by 0.354 (3) Å from the plane of the other ring atoms. The intramolecular C-H···N hydrogen bonds (Table 1) result in the formation of two planar five-membered rings D (N1/N2/C7/C8/H8A) and E (N1/C10/C13/C14/H14A). They are oriented with respect to the adjacent rings at dihedral angles of A/D = 4.05 (3)° and C/E = 0.50 (3)°. So, they are also nearly coplanar.

In the crystal structure, intermolecular N-H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For general background, see: Menozzi et al. (1990); Brooks et al. (1990); Greenwood et al. (1995).

Experimental top

For the preparation of the title compound, ethanolamine (4 ml) and n-butanol (20 ml) were added to a solution of sodium (40 mmol) in anhydrous methanol (9 mol). Then, the methanol was removed by distillation and 3-(4-methylphenyl) acrylate was added. The mixture was refluxed for 1 h at the temperature above 373 K, after which isopropyphenyl hydrazine (4 ml) was added. The reactants were refluxed for a further 10 h, left to cool to room temperature, and then acidified with acetic acid (36%), allowed to stand, filtered, and the filter cake was crystallized from ethyl acetate to give the title compound (m.p. 435-437 K). It was crystallized by the slow evaporation of an ethyl acetate solution.

Refinement top

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93, 0.98, 0.97 and 0.96 Å for aromatic, methine, methylene and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. A partial packing diagram of (I). Hydrogen bonds are shown as dashed lines.
1-(4-Isopropylphenyl)-5-(4-methoxyphenyl)pyrazolidin-3-one top
Crystal data top
C19H22N2O2F(000) = 664
Mr = 310.39Dx = 1.207 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 14.737 (3) Åθ = 9–13°
b = 7.1490 (14) ŵ = 0.08 mm1
c = 17.493 (4) ÅT = 294 K
β = 112.03 (3)°Block, colorless
V = 1708.4 (7) Å30.40 × 0.30 × 0.20 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1835 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.052
Graphite monochromatorθmax = 26.0°, θmin = 1.6°
ω/2θ scansh = 1816
Absorption correction: ψ scan
(North et al., 1968)
k = 08
Tmin = 0.969, Tmax = 0.984l = 021
3472 measured reflections3 standard reflections every 120 min
3340 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.008P)2 + 3.2P]
where P = (Fo2 + 2Fc2)/3
3340 reflections(Δ/σ)max < 0.001
202 parametersΔρmax = 0.38 e Å3
1 restraintΔρmin = 0.78 e Å3
Crystal data top
C19H22N2O2V = 1708.4 (7) Å3
Mr = 310.39Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.737 (3) ŵ = 0.08 mm1
b = 7.1490 (14) ÅT = 294 K
c = 17.493 (4) Å0.40 × 0.30 × 0.20 mm
β = 112.03 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1835 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.052
Tmin = 0.969, Tmax = 0.9843 standard reflections every 120 min
3472 measured reflections intensity decay: none
3340 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0781 restraint
wR(F2) = 0.163H-atom parameters constrained
S = 1.06Δρmax = 0.38 e Å3
3340 reflectionsΔρmin = 0.78 e Å3
202 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.52570 (18)0.7545 (4)1.04046 (16)0.0569 (7)
N10.2835 (2)0.9106 (4)0.97974 (18)0.0486 (8)
N20.3849 (2)0.9266 (4)0.99532 (18)0.0508 (8)
H2A0.41041.02780.98590.061*
C10.0956 (5)1.2768 (9)1.2266 (4)0.117 (2)
H1A0.07721.36081.26110.176*
H1B0.13831.18211.26010.176*
H1C0.03801.21911.18760.176*
O20.0840 (2)0.3384 (4)0.67816 (16)0.0656 (8)
C20.0897 (4)1.5470 (7)1.1350 (3)0.091
H2B0.07051.62381.17140.136*
H2C0.03231.50351.09060.136*
H2D0.12941.61891.11310.136*
C30.1471 (4)1.3827 (7)1.1817 (3)0.0881 (16)
H3A0.20571.43521.22440.106*
C40.1840 (3)1.2577 (6)1.1290 (3)0.0657 (11)
C50.1216 (3)1.1481 (7)1.0656 (3)0.0792 (14)
H5A0.05491.15071.05480.095*
C60.1557 (3)1.0349 (6)1.0180 (3)0.0684 (12)
H6A0.11160.96490.97540.082*
C70.2539 (3)1.0251 (5)1.0332 (2)0.0467 (9)
C80.3165 (3)1.1359 (5)1.0951 (2)0.0538 (10)
H8A0.38311.13481.10530.065*
C90.2817 (3)1.2487 (6)1.1424 (3)0.0626 (11)
H9A0.32571.32031.18430.075*
C100.2671 (3)0.7054 (5)0.9853 (2)0.0485 (9)
H10A0.22510.68781.01690.058*
C110.3691 (3)0.6265 (5)1.0361 (2)0.0522 (10)
H11A0.37800.61231.09360.063*
H11B0.37920.50641.01470.063*
C120.4378 (3)0.7731 (5)1.0257 (2)0.0473 (9)
C130.2185 (3)0.6143 (5)0.9026 (2)0.0489 (9)
C140.1919 (3)0.7046 (6)0.8282 (2)0.0556 (10)
H14A0.20440.83200.82740.067*
C150.1471 (3)0.6114 (6)0.7545 (2)0.0583 (11)
H15A0.12890.67680.70500.070*
C160.1289 (3)0.4205 (6)0.7537 (2)0.0544 (10)
C170.1560 (3)0.3291 (6)0.8282 (2)0.0691 (12)
H17A0.14390.20170.82920.083*
C180.2002 (3)0.4224 (5)0.9003 (2)0.0636 (12)
H18A0.21880.35650.94970.076*
C190.0726 (3)0.1427 (6)0.6765 (3)0.0721 (13)
H19A0.03990.10190.62060.108*
H19B0.03440.10840.70830.108*
H19C0.13580.08450.69960.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0495 (16)0.0490 (16)0.0681 (17)0.0004 (13)0.0174 (13)0.0023 (13)
N10.0495 (18)0.0428 (17)0.0569 (19)0.0016 (15)0.0238 (15)0.0036 (15)
N20.0493 (18)0.0411 (17)0.068 (2)0.0024 (15)0.0287 (16)0.0015 (16)
C10.158 (6)0.112 (5)0.131 (5)0.002 (4)0.110 (5)0.012 (4)
O20.0709 (19)0.0627 (19)0.0500 (16)0.0031 (15)0.0077 (14)0.0046 (14)
C20.0910.0910.0910.0000.0340.000
C30.098 (4)0.083 (4)0.105 (4)0.008 (3)0.064 (3)0.003 (3)
C40.071 (3)0.059 (3)0.078 (3)0.003 (2)0.042 (2)0.006 (2)
C50.051 (2)0.092 (4)0.105 (4)0.001 (3)0.040 (3)0.009 (3)
C60.054 (2)0.068 (3)0.089 (3)0.016 (2)0.034 (2)0.020 (3)
C70.047 (2)0.042 (2)0.053 (2)0.0051 (17)0.0211 (18)0.0005 (18)
C80.051 (2)0.055 (2)0.055 (2)0.0008 (19)0.0204 (19)0.011 (2)
C90.074 (3)0.057 (3)0.061 (3)0.007 (2)0.029 (2)0.008 (2)
C100.051 (2)0.044 (2)0.055 (2)0.0040 (18)0.0254 (18)0.0009 (18)
C110.063 (2)0.041 (2)0.046 (2)0.0069 (19)0.0129 (18)0.0012 (17)
C120.056 (2)0.044 (2)0.042 (2)0.0043 (19)0.0191 (17)0.0029 (17)
C130.047 (2)0.045 (2)0.050 (2)0.0016 (18)0.0125 (17)0.0050 (18)
C140.057 (2)0.045 (2)0.058 (2)0.0012 (19)0.014 (2)0.0083 (19)
C150.065 (3)0.056 (3)0.046 (2)0.001 (2)0.0116 (19)0.008 (2)
C160.045 (2)0.061 (3)0.049 (2)0.0008 (19)0.0084 (17)0.000 (2)
C170.089 (3)0.046 (2)0.057 (3)0.012 (2)0.010 (2)0.001 (2)
C180.090 (3)0.042 (2)0.049 (2)0.008 (2)0.014 (2)0.0026 (19)
C190.075 (3)0.069 (3)0.067 (3)0.017 (3)0.020 (2)0.017 (2)
Geometric parameters (Å, º) top
O1—C121.229 (4)C7—C81.379 (5)
N1—N21.418 (4)C8—C91.383 (5)
N1—C71.429 (4)C8—H8A0.9300
N1—C101.496 (4)C9—H9A0.9300
N2—C121.336 (4)C10—C131.501 (5)
N2—H2A0.8600C10—C111.538 (5)
C1—C31.488 (6)C10—H10A0.9800
C1—H1A0.9600C11—C121.515 (5)
C1—H1B0.9600C11—H11A0.9700
C1—H1C0.9600C11—H11B0.9700
O2—C161.368 (4)C13—C141.372 (5)
O2—C191.407 (5)C13—C181.396 (5)
C2—C31.498 (6)C14—C151.380 (5)
C2—H2B0.9600C14—H14A0.9300
C2—H2C0.9600C15—C161.390 (5)
C2—H2D0.9600C15—H15A0.9300
C3—C41.524 (6)C16—C171.378 (5)
C3—H3A0.9800C17—C181.358 (5)
C4—C91.370 (5)C17—H17A0.9300
C4—C51.386 (6)C18—H18A0.9300
C5—C61.384 (6)C19—H19A0.9600
C5—H5A0.9300C19—H19B0.9600
C6—C71.372 (5)C19—H19C0.9600
C6—H6A0.9300
N2—N1—C7112.7 (3)C4—C9—H9A119.1
N2—N1—C10104.5 (3)C8—C9—H9A119.1
C7—N1—C10115.0 (3)N1—C10—C13113.1 (3)
C12—N2—N1115.2 (3)N1—C10—C11104.5 (3)
C12—N2—H2A122.4C13—C10—C11114.0 (3)
N1—N2—H2A122.4N1—C10—H10A108.3
C3—C1—H1A109.5C13—C10—H10A108.3
C3—C1—H1B109.5C11—C10—H10A108.3
H1A—C1—H1B109.5C12—C11—C10103.3 (3)
C3—C1—H1C109.5C12—C11—H11A111.1
H1A—C1—H1C109.5C10—C11—H11A111.1
H1B—C1—H1C109.5C12—C11—H11B111.1
C16—O2—C19117.2 (3)C10—C11—H11B111.1
C3—C2—H2B109.5H11A—C11—H11B109.1
C3—C2—H2C109.5O1—C12—N2125.8 (3)
H2B—C2—H2C109.5O1—C12—C11126.8 (3)
C3—C2—H2D109.5N2—C12—C11107.4 (3)
H2B—C2—H2D109.5C14—C13—C18116.9 (4)
H2C—C2—H2D109.5C14—C13—C10125.0 (3)
C1—C3—C2113.1 (4)C18—C13—C10118.1 (3)
C1—C3—C4112.9 (4)C13—C14—C15121.7 (4)
C2—C3—C4112.7 (4)C13—C14—H14A119.1
C1—C3—H3A105.8C15—C14—H14A119.1
C2—C3—H3A105.8C14—C15—C16120.4 (4)
C4—C3—H3A105.8C14—C15—H15A119.8
C9—C4—C5116.7 (4)C16—C15—H15A119.8
C9—C4—C3121.0 (4)O2—C16—C17125.1 (4)
C5—C4—C3122.4 (4)O2—C16—C15116.9 (4)
C6—C5—C4122.0 (4)C17—C16—C15118.0 (4)
C6—C5—H5A119.0C18—C17—C16121.0 (4)
C4—C5—H5A119.0C18—C17—H17A119.5
C7—C6—C5120.5 (4)C16—C17—H17A119.5
C7—C6—H6A119.8C17—C18—C13122.0 (4)
C5—C6—H6A119.8C17—C18—H18A119.0
C6—C7—C8118.0 (4)C13—C18—H18A119.0
C6—C7—N1117.5 (3)O2—C19—H19A109.5
C8—C7—N1124.4 (3)O2—C19—H19B109.5
C7—C8—C9121.0 (4)H19A—C19—H19B109.5
C7—C8—H8A119.5O2—C19—H19C109.5
C9—C8—H8A119.5H19A—C19—H19C109.5
C4—C9—C8121.7 (4)H19B—C19—H19C109.5
C7—N1—N2—C12112.7 (3)C7—N1—C10—C11103.1 (3)
C10—N1—N2—C1212.9 (4)N1—C10—C11—C1221.7 (4)
C1—C3—C4—C9120.1 (5)C13—C10—C11—C12102.3 (3)
C2—C3—C4—C9110.2 (5)N1—N2—C12—O1176.9 (3)
C1—C3—C4—C559.8 (7)N1—N2—C12—C111.5 (4)
C2—C3—C4—C569.8 (6)C10—C11—C12—O1163.7 (4)
C9—C4—C5—C60.0 (7)C10—C11—C12—N214.7 (4)
C3—C4—C5—C6180.0 (4)N1—C10—C13—C140.7 (5)
C4—C5—C6—C71.2 (8)C11—C10—C13—C14118.5 (4)
C5—C6—C7—C82.2 (6)N1—C10—C13—C18179.5 (4)
C5—C6—C7—N1177.8 (4)C11—C10—C13—C1860.3 (5)
N2—N1—C7—C6173.6 (3)C18—C13—C14—C151.4 (6)
C10—N1—C7—C666.8 (5)C10—C13—C14—C15179.8 (4)
N2—N1—C7—C81.8 (5)C13—C14—C15—C161.0 (6)
C10—N1—C7—C8117.9 (4)C19—O2—C16—C175.9 (6)
C6—C7—C8—C92.1 (6)C19—O2—C16—C15174.9 (4)
N1—C7—C8—C9177.4 (4)C14—C15—C16—O2179.8 (3)
C5—C4—C9—C80.0 (7)C14—C15—C16—C170.6 (6)
C3—C4—C9—C8179.9 (4)O2—C16—C17—C18179.9 (4)
C7—C8—C9—C41.1 (6)C15—C16—C17—C180.7 (7)
N2—N1—C10—C13103.6 (3)C16—C17—C18—C131.2 (7)
C7—N1—C10—C13132.3 (3)C14—C13—C18—C171.5 (7)
N2—N1—C10—C1121.0 (4)C10—C13—C18—C17179.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.861.962.819 (4)175
C8—H8A···N20.932.442.761 (5)100
C14—H14A···N10.932.542.887 (5)102
Symmetry code: (i) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC19H22N2O2
Mr310.39
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)14.737 (3), 7.1490 (14), 17.493 (4)
β (°) 112.03 (3)
V3)1708.4 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.969, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
3472, 3340, 1835
Rint0.052
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.078, 0.163, 1.06
No. of reflections3340
No. of parameters202
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.78

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.861.962.819 (4)175.0
C8—H8A···N20.932.442.761 (5)100.0
C14—H14A···N10.932.542.887 (5)102.0
Symmetry code: (i) x+1, y+2, z+2.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationBrooks, D. W., Basha, A., Gunn, B. P. & Bhatia, P. A. (1990). US Patent No. 4 970 210.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGreenwood, B., Helton, D. R. & Howbert, J. J. (1995). US Patent No. 5 399 565.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMenozzi, G., Mosti, L. & Schenone, P. (1990). Il Farmaco, 45, 167–186.  CAS PubMed Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds