organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages o867-o868

(2E)-3-(4-Chloro­phen­yl)-1-(1H-pyrrol-2-yl)prop-2-en-1-one

aInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan, and cDepartment of Chemistry, F.C. University, Lahore 54600, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 12 April 2008; accepted 15 April 2008; online 18 April 2008)

In the mol­ecule of the title compound, C13H10ClNO, the benzene and pyrrole rings are oriented at a dihedral angle of 7.37 (12)°. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric R22(10) dimers. There are C—H⋯π inter­actions between benzene and pyrrole rings and a benzene C—H group. A weak ππ inter­action between the pyrrole rings [centroid–centroid distance 3.8515 (11) Å] further stabilizes the structure. There is also a π inter­action between the pyrrole ring and the carbonyl group, with a carbon–centroid distance of 3.4825 (18) Å.

Related literature

For general background, see: Varga et al. (2003[Varga, L., Nagy, T., Kövesdi, I., Benet-Buchkholz, J., Dormán, G., Ürge, L. & Darvas, F. (2003). Tetrahedron, 59, 655-662.]); Katritzky & Rees (1984[Katritzky, A. R. & Rees, C. W. (1984). Comprehensive Heterocyclic Chemistry, pp. 25-85. Oxford: Pergamon Press.]); Wu et al. (2003[Wu, J. H., Wang, X. H., Yi, Y. H. & Lee, K. H. (2003). Bioorg. Med. Chem. Lett. 13, 1813-1815.]); Nam et al. (2003[Nam, N. H., Kim, Y., You, Y. J., Hong, D. H., Kim, H. M. & Ahn, B. Z. (2003). Eur. J. Med. Chem. 38, 179-187.]); Sondhi et al. (2005[Sondhi, S. M., Singh, N., Johar, M. & Kumar, A. (2005). Bioorg. Med. Chem. 13, 6158-6166.]); Miyazaki et al. (2005[Miyazaki, Y., Matsunaga, S., Tang, J., Maeda, Y., Nakano, M., Phillippe, R. J., Sibahara, M., Liu, W., Sato, H., Wang, L. & Nolte, R. T. (2005). Bioorg. Med. Chem. Lett. 13, 2203-2207.]). For related literature, see: Powers et al. (1998[Powers, D. G., Casebier, D. S., Focas, D., Ryan, W. J., Troth, J. R. & Coffen, D. L. (1998). Tetrahedron, 54, 4085-4096.]); Hu et al. (2006[Hu, Y.-M., Wu, F.-H., Qu, Y., Zhang, X. & Song, F.-F. (2006). Acta Cryst. E62, o2830-o2831.]); Wang et al. (2005[Wang, L., Yang, W. & Zhang, D.-C. (2005). Acta Cryst. E61, o2820-o2822.]); Zeng & Cen (2006[Zeng, X. C. & Cen, Y. Z. (2006). Acta Cryst. E62, o673-o674.]). For ring motif details, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10ClNO

  • Mr = 231.67

  • Monoclinic, P 21 /c

  • a = 13.0401 (7) Å

  • b = 5.6326 (3) Å

  • c = 15.6857 (8) Å

  • β = 94.979 (3)°

  • V = 1147.76 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 296 (2) K

  • 0.30 × 0.22 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsion, USA.]) Tmin = 0.903, Tmax = 0.935

  • 13745 measured reflections

  • 3081 independent reflections

  • 2180 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.128

  • S = 1.02

  • 3081 reflections

  • 185 parameters

  • All H-atom parameters refined

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.83 (2) 2.12 (2) 2.902 (2) 156 (2)
C3—H3⋯CgAii 0.938 (18) 2.897 (17) 3.6339 (19) 136.4 (13)
C6—H6⋯CgBiii 0.94 (2) 2.651 (19) 3.4017 (19) 137.8 (16)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}]. CgA and CgB are the centroids of the C1–C6 and N1/C10–C13 rings, respectively.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsion, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsion, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Chalcones are 1,3-diaryl α,β-unsaturated compounds commonly used as starting materials for the synthesis of several biologically active compounds like pyrimidines and imidazoles (Varga et al., 2003). Most of the chalcones and their derivatives show biological activities such as antimicrobial (Katritzky & Rees, 1984), anti-AIDS (Wu et al., 2003), antimalarial (Nam et al., 2003), anti-inflammatory and analgesic (Sondhi et al., 2005) and antitumor (Miyazaki et al., 2005). While synthesizing different pyrimidine based compounds, we prepared the fine crystals of the title compound, (I), with known method (Powers et al., 1998). We report herein its crystal structure.

The crystal structures of 3-(4-chlorophenyl)-1-(3,4-dimethyl-2,5-dihydro-1H- pyrrol-1-yl)prop-2-enone, (II) (Hu et al., 2006), methyl-3-(1H-pyrrol-2-yl- carboxamido)propionate, (III) (Zeng & Cen, 2006) and 1,3-bis(4-chlorophenyl)- prop-2-en-1-one, (IV) (Wang et al., 2005) have been reported, previously. The title compound, (I), contains the moieties involved in these reported structures.

In the molecule of (I), (Fig. 1), the bond lengths N1-C10 [1.3711 (19) Å], N1-C13 [1.338 (3) Å] and C11-C12 [1.388 (3) Å] are reported as 1.457 (5), 1.461 (5) and 1.328 (6) Å in (II) and 1.369 (2), 1.349 (3) and 1.398 (3) Å in (III), respectively. Rings A (C1-C6) and B (N1/C10-C13) are, of course, planar and they are oriented at a dihedral angle of 7.37 (12)°. So, they are nearly coplanar. The planar central moiety (O1/C7-C9) is oriented with respect to rings A and B at dihedral angles of 8.92 (12)° and 1.94 (15)°, respectively.

In the crystal structure, intermolecular N-H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric R22(10) dimers (Fig. 2) (Bernstein et al., 1995), in which they may be effective in the stabilization of the structure. The C—H···π interactions (Table 1) and ππ interactions between B rings CgB···CgBiv [symmetry code: (iv) -x, -y, 1 - z] further stabilize the structure, with a centroid-centroid distance of 3.8515 (11) Å. There is also a π interaction between the ring B at -x, -y, 1 - z and the carbonyl moiety, with C9-centroid distance of 3.4825 (18) Å.

Related literature top

For general background, see: Varga et al. (2003); Katritzky & Rees (1984); Wu et al. (2003); Nam et al. (2003); Sondhi et al. (2005); Miyazaki et al. (2005). For related literature, see: Powers et al. (1998); Hu et al. (2006); Wang et al. (2005); Zeng & Cen (2006). For ring motif details, see: Bernstein et al. (1995).

Experimental top

For the preparation of the title compound, a mixture of 4-chlorobenzaldehyde (1.4 g, 10 mmol) and 2-acetyl pyrrole (1.09 g, 10 mmol) was added to MeOH (20 ml) and stirred for 10 min at room temperature. Then, aqueous NaOH solution (10%, 4 ml) was added dropwise with continuous stirring at ambient temperature for 30 min. Light yellow precipitates appeared, to which cold water (40 ml) was added. Yellow colored powder was obtained from the filtrate, which was washed with cold MeOH, and then dried. The residue was recrystallized by dissolving in CHCl3 (10 ml) and adding n-hexane dropwise. Fine yellow crystals were obtained (yield; 1.7 g, 73%, m.p. 420-422 K).

Refinement top

H atoms were located in a difference syntheses and refined [N-H = 0.83 (2) Å and Uiso(H) = 0.073 (6) Å2; C-H = 0.937 (19)-0.98 (2) Å and Uiso(H) = 0.062 (5)-0.091 (7) Å2].

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram of (I), showing the formation of centro- symmetric R22(10) ring motifs. Hydrogen bonds are shown as dashed lines.
(2E)-3-(4-Chlorophenyl)-1-(1H-pyrrol-2-yl)prop-2-en-1-one top
Crystal data top
C13H10ClNOF(000) = 480
Mr = 231.67Dx = 1.341 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2883 reflections
a = 13.0401 (7) Åθ = 2.4–28.7°
b = 5.6326 (3) ŵ = 0.31 mm1
c = 15.6857 (8) ÅT = 296 K
β = 94.979 (3)°Prismatic, light yellow
V = 1147.76 (10) Å30.30 × 0.22 × 0.20 mm
Z = 4
Data collection top
Bruker KappaAPEXII CCD
diffractometer
3081 independent reflections
Radiation source: fine-focus sealed tube2180 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 7.30 pixels mm-1θmax = 29.1°, θmin = 1.6°
ω scansh = 1717
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 77
Tmin = 0.903, Tmax = 0.935l = 2121
13745 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0533P)2 + 0.3294P]
where P = (Fo2 + 2Fc2)/3
3081 reflections(Δ/σ)max < 0.001
185 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C13H10ClNOV = 1147.76 (10) Å3
Mr = 231.67Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.0401 (7) ŵ = 0.31 mm1
b = 5.6326 (3) ÅT = 296 K
c = 15.6857 (8) Å0.30 × 0.22 × 0.20 mm
β = 94.979 (3)°
Data collection top
Bruker KappaAPEXII CCD
diffractometer
3081 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2180 reflections with I > 2σ(I)
Tmin = 0.903, Tmax = 0.935Rint = 0.026
13745 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.128All H-atom parameters refined
S = 1.02Δρmax = 0.29 e Å3
3081 reflectionsΔρmin = 0.30 e Å3
185 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.47349 (5)0.30082 (12)0.06812 (4)0.0972 (3)
O10.10949 (10)0.4232 (2)0.43283 (8)0.0672 (4)
N10.05564 (11)0.2306 (3)0.58749 (10)0.0572 (4)
C10.29765 (11)0.0517 (3)0.26744 (10)0.0464 (3)
C20.34920 (13)0.1623 (3)0.28485 (11)0.0525 (4)
C30.40411 (13)0.2692 (3)0.22394 (12)0.0566 (4)
C40.40726 (13)0.1631 (3)0.14559 (11)0.0563 (4)
C50.35867 (14)0.0498 (3)0.12645 (11)0.0588 (4)
C60.30445 (13)0.1551 (3)0.18805 (11)0.0537 (4)
C70.23600 (12)0.1706 (3)0.32855 (10)0.0503 (4)
C80.20870 (13)0.0873 (3)0.40137 (11)0.0548 (4)
C90.14204 (12)0.2253 (3)0.45499 (11)0.0522 (4)
C100.11764 (11)0.1179 (3)0.53393 (10)0.0501 (4)
C110.14707 (13)0.0945 (3)0.57282 (11)0.0566 (4)
C120.10275 (15)0.1076 (4)0.65000 (13)0.0659 (5)
C130.04627 (14)0.0958 (4)0.65667 (12)0.0668 (5)
H20.3481 (14)0.236 (3)0.3387 (13)0.066 (5)*
H30.4387 (13)0.413 (3)0.2358 (11)0.062 (5)*
H60.2713 (14)0.300 (4)0.1763 (12)0.063 (5)*
H50.3607 (15)0.124 (4)0.0702 (14)0.075 (6)*
H70.2116 (14)0.324 (4)0.3102 (12)0.067 (5)*
H80.2289 (15)0.069 (4)0.4203 (13)0.076 (6)*
H10.0220 (17)0.353 (4)0.5749 (14)0.073 (6)*
H110.1896 (14)0.211 (3)0.5521 (12)0.063 (5)*
H120.1118 (15)0.226 (4)0.6931 (14)0.075 (6)*
H130.0089 (17)0.150 (4)0.7011 (15)0.091 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.1189 (5)0.0979 (5)0.0810 (4)0.0298 (3)0.0442 (3)0.0182 (3)
O10.0738 (8)0.0584 (7)0.0716 (8)0.0223 (6)0.0185 (6)0.0044 (6)
N10.0521 (7)0.0644 (9)0.0560 (8)0.0095 (7)0.0107 (6)0.0144 (7)
C10.0443 (7)0.0442 (7)0.0509 (8)0.0037 (6)0.0063 (6)0.0076 (6)
C20.0576 (9)0.0474 (8)0.0535 (9)0.0092 (7)0.0107 (7)0.0012 (7)
C30.0576 (9)0.0457 (8)0.0676 (11)0.0115 (7)0.0123 (8)0.0056 (7)
C40.0568 (9)0.0561 (9)0.0578 (9)0.0044 (7)0.0144 (7)0.0152 (7)
C50.0653 (10)0.0612 (10)0.0512 (9)0.0050 (8)0.0120 (7)0.0006 (8)
C60.0584 (9)0.0467 (8)0.0567 (9)0.0107 (7)0.0083 (7)0.0008 (7)
C70.0500 (8)0.0475 (8)0.0536 (9)0.0098 (6)0.0062 (6)0.0073 (7)
C80.0558 (9)0.0531 (9)0.0565 (9)0.0132 (7)0.0113 (7)0.0078 (7)
C90.0481 (8)0.0550 (9)0.0537 (9)0.0078 (7)0.0062 (6)0.0136 (7)
C100.0439 (7)0.0546 (9)0.0518 (8)0.0040 (6)0.0048 (6)0.0162 (7)
C110.0531 (9)0.0556 (9)0.0614 (10)0.0012 (7)0.0072 (7)0.0107 (8)
C120.0647 (10)0.0701 (12)0.0638 (11)0.0064 (9)0.0113 (8)0.0008 (10)
C130.0576 (10)0.0844 (13)0.0604 (11)0.0042 (9)0.0163 (8)0.0137 (10)
Geometric parameters (Å, º) top
Cl—C41.7339 (15)C5—H50.98 (2)
O1—C91.232 (2)C6—H60.94 (2)
N1—C131.338 (3)C7—C81.312 (2)
N1—C101.3711 (19)C7—H70.96 (2)
N1—H10.83 (2)C8—C91.481 (2)
C1—C61.384 (2)C8—H80.96 (2)
C1—C21.396 (2)C9—C101.438 (2)
C1—C71.465 (2)C10—C111.382 (2)
C2—C31.381 (2)C11—C121.388 (3)
C2—H20.94 (2)C11—H110.937 (19)
C3—C41.370 (3)C12—C131.371 (3)
C3—H30.938 (18)C12—H120.95 (2)
C4—C51.377 (2)C13—H130.94 (2)
C5—C61.380 (2)
C13—N1—C10109.55 (16)C8—C7—C1127.72 (15)
C13—N1—H1125.3 (15)C8—C7—H7118.5 (12)
C10—N1—H1124.5 (15)C1—C7—H7113.7 (12)
C6—C1—C2118.16 (14)C7—C8—C9121.58 (16)
C6—C1—C7118.54 (14)C7—C8—H8120.7 (12)
C2—C1—C7123.29 (15)C9—C8—H8117.7 (12)
C3—C2—C1120.73 (16)O1—C9—C10121.80 (14)
C3—C2—H2118.7 (12)O1—C9—C8121.29 (16)
C1—C2—H2120.6 (12)C10—C9—C8116.91 (14)
C4—C3—C2119.22 (16)N1—C10—C11106.62 (15)
C4—C3—H3120.2 (11)N1—C10—C9121.27 (15)
C2—C3—H3120.5 (11)C11—C10—C9132.10 (14)
C3—C4—C5121.75 (15)C10—C11—C12108.08 (16)
C3—C4—Cl119.27 (13)C10—C11—H11127.2 (12)
C5—C4—Cl118.98 (14)C12—C11—H11124.7 (12)
C4—C5—C6118.40 (16)C13—C12—C11106.80 (18)
C4—C5—H5121.3 (12)C13—C12—H12124.5 (13)
C6—C5—H5120.3 (12)C11—C12—H12128.6 (13)
C5—C6—C1121.72 (15)N1—C13—C12108.94 (17)
C5—C6—H6119.6 (12)N1—C13—H13120.7 (15)
C1—C6—H6118.7 (12)C12—C13—H13130.3 (15)
C6—C1—C2—C30.9 (2)C7—C8—C9—O10.3 (3)
C7—C1—C2—C3178.38 (16)C7—C8—C9—C10179.47 (15)
C1—C2—C3—C40.3 (3)C13—N1—C10—C110.09 (19)
C2—C3—C4—C51.2 (3)C13—N1—C10—C9179.06 (15)
C2—C3—C4—Cl178.39 (13)O1—C9—C10—N10.9 (2)
C3—C4—C5—C61.0 (3)C8—C9—C10—N1179.32 (14)
Cl—C4—C5—C6178.67 (14)O1—C9—C10—C11177.75 (17)
C4—C5—C6—C10.3 (3)C8—C9—C10—C112.0 (3)
C2—C1—C6—C51.2 (3)N1—C10—C11—C120.27 (19)
C7—C1—C6—C5178.12 (15)C9—C10—C11—C12178.54 (17)
C6—C1—C7—C8170.00 (17)C10—C11—C12—C130.5 (2)
C2—C1—C7—C89.3 (3)C10—N1—C13—C120.4 (2)
C1—C7—C8—C9177.33 (15)C11—C12—C13—N10.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.83 (2)2.12 (2)2.902 (2)156 (2)
C3—H3···CgAii0.938 (18)2.897 (17)3.6339 (19)136.4 (13)
C6—H6···CgBiii0.94 (2)2.651 (19)3.4017 (19)137.8 (16)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y1/2, z+1/2; (iii) x, y1/2, z3/2.

Experimental details

Crystal data
Chemical formulaC13H10ClNO
Mr231.67
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.0401 (7), 5.6326 (3), 15.6857 (8)
β (°) 94.979 (3)
V3)1147.76 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.30 × 0.22 × 0.20
Data collection
DiffractometerBruker KappaAPEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.903, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
13745, 3081, 2180
Rint0.026
(sin θ/λ)max1)0.684
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.128, 1.02
No. of reflections3081
No. of parameters185
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.29, 0.30

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.83 (2)2.12 (2)2.902 (2)156 (2)
C3—H3···CgAii0.938 (18)2.897 (17)3.6339 (19)136.4 (13)
C6—H6···CgBiii0.94 (2)2.651 (19)3.4017 (19)137.8 (16)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y1/2, z+1/2; (iii) x, y1/2, z3/2.
 

Acknowledgements

The authors acknowledge the Higher Education Com­mision, Islamabad, Pakistan, for funding the purchase of the diffractometer.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsion, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsion, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHu, Y.-M., Wu, F.-H., Qu, Y., Zhang, X. & Song, F.-F. (2006). Acta Cryst. E62, o2830–o2831.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKatritzky, A. R. & Rees, C. W. (1984). Comprehensive Heterocyclic Chemistry, pp. 25–85. Oxford: Pergamon Press.  Google Scholar
First citationMiyazaki, Y., Matsunaga, S., Tang, J., Maeda, Y., Nakano, M., Phillippe, R. J., Sibahara, M., Liu, W., Sato, H., Wang, L. & Nolte, R. T. (2005). Bioorg. Med. Chem. Lett. 13, 2203–2207.  Web of Science CrossRef Google Scholar
First citationNam, N. H., Kim, Y., You, Y. J., Hong, D. H., Kim, H. M. & Ahn, B. Z. (2003). Eur. J. Med. Chem. 38, 179–187.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPowers, D. G., Casebier, D. S., Focas, D., Ryan, W. J., Troth, J. R. & Coffen, D. L. (1998). Tetrahedron, 54, 4085–4096.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSondhi, S. M., Singh, N., Johar, M. & Kumar, A. (2005). Bioorg. Med. Chem. 13, 6158–6166.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVarga, L., Nagy, T., Kövesdi, I., Benet-Buchkholz, J., Dormán, G., Ürge, L. & Darvas, F. (2003). Tetrahedron, 59, 655–662.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, L., Yang, W. & Zhang, D.-C. (2005). Acta Cryst. E61, o2820–o2822.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWu, J. H., Wang, X. H., Yi, Y. H. & Lee, K. H. (2003). Bioorg. Med. Chem. Lett. 13, 1813–1815.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZeng, X. C. & Cen, Y. Z. (2006). Acta Cryst. E62, o673–o674.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages o867-o868
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds